Centrality dependence of hadronization and chemical freeze out conditions at the LHC

Size: px
Start display at page:

Download "Centrality dependence of hadronization and chemical freeze out conditions at the LHC"

Transcription

1 F. Becattini University of Florence Centrality dependence of hadronization and chemical freeze out conditions at the LHC F.B., M. Bleicher, E. Grossi, J. Steinheimer and R. Stock, arxiv: OUTLINE Introduction Centrality dependence The analysis Conclusions ECT* workshop on QCD and the statistical model

2 Dictionary Temperature Hadronization The process of hadron formation < > QCD phase transition LCEP = Latest Chemical Equilibrium Point of a hadron gas If hadronization occurs near or at chemical equilibrium, this is the point where chemical equilibrium ceases because of the collisions in an expanding hadron gas Chemical freeze out The (particle dependent) point where particle abundances freeze Kinetic freeze out The (approximate) point where elastic interactions cease

3 The picture Motivated by the investigations carried out at SPS energy in F.B., M. Bleicher, T. Kollegger, M. Mitrovski, T. Schuster and R. Stock, Phys. Rev. C 85 (2012) and the proton/pi anomaly observed at the LHC (see papers by Pratt, Aichelin, Steinheimer...) Hadronization occurs at (or implies) chemical equilibrium For small systems, no reinteractions For large systems, such as heavy ions, final state collisions may occur because of the large number of particles. Collisions distort the primordial equilibrium distribution

4 Picture's picture

5 Comparing reconstructed LCEP's with lattice QCD in central collisions F.B., M. Bleicher, T. Kollegger, T. Schuster, J. Steinheimer and R. Stock, Phys. Rev. Lett. 111 (2013) Lattice calculations from F. Karsch, J. Phys. G 38, (2011); S. Borsanyi et al., ibidem G. Endrodi, Z. Fodor, S. D. Katz and K. K. Szabo, JHEP 1104, 001 (2011) See also: The critical line of two flavor QCD at finite isospin or baryon densities from imaginary chemical potentials. P. Cea, L. Cosmai, M. D'Elia, A. Papa, F. Sanfilippo, Phys.Rev. D85 (2012)

6 Freeze out and centrality If the picture is correct, we should expect some centrality dependent effect Particle interactions in an expanding, approximately hydrodynamical system, cease when For a sphere, the expansion time is R/3(dR/dt) and if dr/dt ~ mean velocity, the above inequality becomes:

7 Freeze out and centrality (2) Therefore, freeze out occurs when with a density Therefore, the larger the multiplicity, the larger the freeze out radius and the lower the particle density. If one starts with a large number of particles at the hadronization, the system will take more time to decouple, and this will happen at a lower density. If nfo > nhad decoupling is instantaneous, otherwise it is not.

8 Freeze out and centrality (3) U. Heinz, G. Kestin, CPOD 2006 nucl th: Kinetic freeze out (at RHIC energy) DOES vary significantly as a function of centrality, whereas chemical does not. Interpretation: if kinetic decoupling occurs in the expanding hadron gas stage, it MUST depend on the geometry, roughly on Surface/Volume ratio. On the other hand, chemical seems NOT to depend, which is an indication that equilibrium is not achieved through hadronic collisions

9 Centrality dependence of chemistry STAR

10 Centrality dependence of chemistry (2) The rise the LHC difficult to reconcile with previously proposed pictures

11 Programme Estimate the effect of inelastic hadronic rescattering (with UrQMD) Run URQMD (isochronous CF particlization after all cells have fallen below 850 MeV/fm3) in the same centrality bins as those of the ALICE experiment For each particle species, calculate the modification factor = yield after cascade/cf yield Use the modification factors to correct the theoretical statistical model predicted yields

12 URQMD modification factors

13 The results Red: reconstructed LCEP Black: chemical freeze out

14 Example: most central collisions

15 The temperature shift Difference between CF and LCEP (assuming full correlation between the T errors of the two fits)

16 The fit quality

17 We must see the details at some point

18 Conclusions Centrality dependence of chemistry at the LHC provides further evidence Chemical freeze out chemical equilibrium ( hadronization) Corrections to the assumed chemically equilibrated yields improve fit quality and make the temperature more constant than otherwise found LCEP Temperature estimated to be 164(4) MeV at zero B We are looking forward to new and improved calculations of the modification factors to check if we can achieve an even better fit

19 Interpolation Fit with 4th 6th order polynomials, chisquare fit with non diagonal covariance matrix assuming 0.5 positive correlation coefficients. Variation of this coefficient to 0.9 does not change the final result significantly.

20 Major effects of excluding antibaryons: Essential recovery of original freeze-out point Much better fit quality

21 A closer look F.B., M. Bleicher, T. Kollegger, M. Mitrovski, T. Schuster and R. Stock, Phys. Rev. C 85 (2012) Is the agreement between SHM and data an indication of common freeze-out? If yes, we should see a deterioration of fit quality to a simulation including post-hadronization inelastic rescattering PROGRAMME

22 Main effect of hadronic rescattering (afterburner): antibaryon loss

23 Second step: fitting to SHM ( S) - Hydro only using exp. errors

24 Major effects of including afterburning: Lowering the output c.f.o. T by ~ 10 MeV Sizeable worsening of fit quality

25 Third step: fitting to SHM ( S) removing antibaryons Hydro Hydro+UrQMD

26 What does the data say?

27 SPS energy A recently published p yield by NA49 in Pb-Pb at 17.2 GeV turned out to be consistently lower than the predicted by SHM. Predicted: 6.86 (F.B., J. Manninen and M. Gazdzicki, Phys. Rev. C 73 (2006) ) Measured: 4.23±0.35 New fit to Pb-Pb mult's at 17.2 GeV Lower T, lower quality F. B., M. Bleicher, T. Kollegger, M. Mitrovski, T. Schuster and R. Stock Phys. Rev. C 85 (2012)

28 Possible explanation: the effect of post hadronization rescattering Effect of UrQMD afterburning on initial statistical hadronic yields from a hydro code See also S. Bass and A. Dumitr Phys. Rev. C 61 (2000) Residual distribution of a fit to hadronic yields excluding anti baryons: Similar pattern of deviations

29 LHC energy The p ( p)/π yield in PbPb at 2.76 TeV is lower than predicted by the statistical hadronization model by 40% (prediction by A. Andronic et al., J.Phys. G38 (2011) ) Advocated as an effect of post-hadronization rescattering: J. Steinheimer, J. Aichelin and M. Bleicher, Phys. Rev. Lett. 110 (2013) Y. Pan and S. Pratt, Baryon Annihilation in Heavy Ion Collisions arxiv: [nucl th] F. B., M. Bleicher, T. Kollegger, T. Schuster, J. Steinheimer and R. Stock, Hadron Formation in Relativistic Nuclear Collisions and the QCD Phase Diagram,'' arxiv: [nucl th].

30 Where did we start from? F.B., An introduction to the Statistical Hadronization Model, arxiv:

31 How to reconstruct hadronization conditions? Strictly speaking, the latest hadro chemical equilibrium point (LHCEP) Estimating the effect of the afterburning with an analytical calculation (e.g. Pratt) or a Monte-Carlo (UrQMD) Critical line = Hadronization Latest chemical equilibrium point Chemical freeze-out Kinetic freeze-out Corrected fit to ALICE data Higher T, much better quality

Strangeness production in relativistic heavy ion collisions

Strangeness production in relativistic heavy ion collisions F. Becattini, University of Florence Strangeness production in relativistic heavy ion collisions OUTLINE Strangeness enhancement in heavy ion collisions Statistical model and strangeness undersaturation

More information

Thermal model for Pb+Pb collisions at s NN = 2.76 TeV with explicit treatment of hadronic ground states

Thermal model for Pb+Pb collisions at s NN = 2.76 TeV with explicit treatment of hadronic ground states EPJ Web of Conferences 97, 00003 ( 2015) DOI: 10.1051/ epjconf/ 20159700003 C Owned by the authors, published by EDP Sciences, 2015 hermal model for Pb+Pb collisions at s NN = 2.76 ev with explicit treatment

More information

arxiv: v2 [hep-ph] 2 Jul 2018

arxiv: v2 [hep-ph] 2 Jul 2018 Particle production at energies available at the CERN Large Hadron Collider within evolutionary model Yu. M. Sinyukov 1 and V. M. Shapoval 1 1 Bogolyubov Institute for Theoretical Physics, Metrolohichna

More information

Heavy Quarks in Heavy-Ion Collisions

Heavy Quarks in Heavy-Ion Collisions Heavy Quarks in Heavy-Ion Collisions Hendrik van Hees with T. Lang, J. Steinheimer, M. Bleicher Goethe University Frankfurt and FIAS July 18, 213 Hendrik van Hees (GU Frankfurt/FIAS) Heavy Quarks in HICs

More information

Understanding hadronization on the basis of fluctuations of conserved charges

Understanding hadronization on the basis of fluctuations of conserved charges Understanding hadronization on the basis of fluctuations of conserved charges R. Bellwied (University of Houston) in collaboration with S. Jena, D. McDonald (University of Houston) C. Ratti, P. Alba, V.

More information

SMR/ International Workshop on QCD at Cosmic Energies III. 28 May - 1 June, Lecture Notes. E. Zabrodin University of Oslo Oslo, Norway

SMR/ International Workshop on QCD at Cosmic Energies III. 28 May - 1 June, Lecture Notes. E. Zabrodin University of Oslo Oslo, Norway SMR/1842-26 International Workshop on QCD at Cosmic Energies III 28 May - 1 June, 2007 Lecture Notes E. Zabrodin University of Oslo Oslo, Norway Open questions of the statistical approach to or little

More information

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics HGS-HIRe Helmholtz Graduate School for Hadron and Ion Research Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Bjørn Bäuchle, Marcus Bleicher The UrQMD-Group

More information

Bulk matter formed in Pb Pb collisions at the LHC

Bulk matter formed in Pb Pb collisions at the LHC Bulk matter formed in Pb Pb collisions at the LHC Introductory remarks is quark matter at LHC in equilibrium? Energy dependence of hadron production and the quark hadron phase boundary The fireball expands

More information

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Probing the Extremes of Matter with Heavy Ions - Erice, 34th Course Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Frithjof Karsch Brookhaven National Laboratory &

More information

The QCD Equation of State at μ B > 0 from Lattice QCD

The QCD Equation of State at μ B > 0 from Lattice QCD The QCD Equation of State at μ B > 0 from Lattice QCD Hiroshi Ohno (BNL-Bielefeld-CCNU Collaboration) CCS, University of Tsukuba Brookhaven National Laboratory arxiv:1701.04325 [hep-lat] 7 th Workshop

More information

Thermal model fits: an overview

Thermal model fits: an overview Thermal model fits: an overview Volodymyr Vovchenko Goethe University Frankfurt & Frankfurt Institute for Advanced Studies Light up 2018 An ALICE and theory workshop, CERN June 14, 2018 The conventional

More information

arxiv: v1 [hep-ph] 11 Jun 2008

arxiv: v1 [hep-ph] 11 Jun 2008 Proc. 4th Winter Workshop on Nuclear Dynamics (008) 000 000 4th Winter Workshop on Nuclear Dynamics South Padre, Texas, USA April 1, 008 arxiv:0806.180v1 [hep-ph] 11 Jun 008 A fully integrated Boltzmann+hydrodynamics

More information

Heavy flavor with

Heavy flavor with Heavy flavor with CBM@FAIR Hendrik van Hees Goethe University Frankfurt and FIAS April 21, 2015 Hendrik van Hees (GU Frankfurt/FIAS) Heavy flavor with CBM@FAIR April 21, 2015 1 / 22 Outline 1 Motivation:

More information

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Freeze-out parameters Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Claudia Ratti University of Houston, Texas (USA) S. Borsanyi, Z. Fodor, S. Katz, S. Krieg, C. R.,

More information

Rapidity Dependence of Chemical Freeze out in Au Au Collisions

Rapidity Dependence of Chemical Freeze out in Au Au Collisions Rapidity Dependence of Chemical Freeze out in Au Au Collisions Kristen Parzuchowski Research Experience for Undergraduates Wayne State University August 7, 2015 Abstract The study of nuclear matter is

More information

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Quantifying the Properties of Hot and Dense QCD Matter, Seattle, 04.06.10 Hannah Petersen Thanks to: Jan Steinheimer,

More information

arxiv: v1 [nucl-ex] 25 Jan 2012

arxiv: v1 [nucl-ex] 25 Jan 2012 Cent. Eur. J. Phys. 1-5 Author version Central European Journal of Physics New results from fluctuation analysis in NA49 at the CERN SPS Research Article arxiv:1201.5237v1 [nucl-ex] 25 Jan 2012 Maja Maćkowiak-Paw

More information

Dynamical equilibration of stronglyinteracting

Dynamical equilibration of stronglyinteracting Dynamical equilibration of stronglyinteracting infinite parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein, W.Cassing CPOD, Wuhan, China 11 November 2011 1 Motivation

More information

Further development of the hydrokinetic model and description of the RHIC and LHC A+A femtoscopic data

Further development of the hydrokinetic model and description of the RHIC and LHC A+A femtoscopic data and description of the RHIC and LHC A+A femtoscopic data Iu.A. Karpenko Bogolyubov Institute for heoretical Physics, 1-b, Metrolohichna str., Kiev, 080, Ukraine E-mail: karpenko@bitp.kiev.ua Bogolyubov

More information

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions Hadronic Effects on T cc in Relativistic Heavy Ion Collisions Juhee Hong Yonsei University New Frontiers in QCD 2018, YITP, Kyoto University arxiv: 1804.05336, JH, Sungtae Cho, Taesoo Song, and Su Houng

More information

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Bjørn Bäuchle, Marcus Bleicher The UrQMD-Group Based on [arxiv:0810.0488 (nucl-th)] DPG Spring Meeting March

More information

Overview of anisotropic flow measurements from ALICE

Overview of anisotropic flow measurements from ALICE EPJ Web of Conferences 117, (2016) Overview of anisotropic flow measurements from ALICE You Zhou on behalf of the ALICE Collaboration Niels Bohr Institute, University of Copenhagen, Denmark Abstract Anisotropic

More information

The Study of the Critical Point of QCD using Fluctuations. Gary Westfall Terry Tarnowsky Hui Wang Michigan State University

The Study of the Critical Point of QCD using Fluctuations. Gary Westfall Terry Tarnowsky Hui Wang Michigan State University The Study of the Critical Point of QCD using Fluctuations Gary Westfall Terry Tarnowsky Hui Wang Michigan State University 1 Search for QCD Transitions If we pass through a QCD phase transition, we expect

More information

Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV

Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV Samantha G Brovko June 14, 2011 1 INTRODUCTION In ultra-relativistic heavy ion collisions a partonic state of

More information

A Senior Honors Thesis

A Senior Honors Thesis A Study Using Relativistic Hydrodynamics for Ultrarelativistic Heavy-Ion Collisions: The Quark-Gluon-Plasma to Hadron Phase Transition and LHC Predictions A Senior Honors Thesis Presented in Partial Fulfillment

More information

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC PHENIX! AGS! RHIC! STAR! Cover 3 decades of energy in center-of-mass s NN = 2.76 TeV 5.5 TeV (2015) CMS LHC! s NN = 5-200 GeV

More information

arxiv: v1 [nucl-ex] 10 Feb 2012

arxiv: v1 [nucl-ex] 10 Feb 2012 Cent. Eur. J. Phys. 1-5 Author version Central European Journal of Physics Highlights of the Beam Energy Scan from STAR Review Article arxiv:10.389v1 [nucl-ex] 10 Feb 01 A. Schmah for the STAR Collaboration

More information

Ruth-Moufang-Str. 1, Frankfurt am Main, Germany. Max-von-Laue-Str. 1, Frankfurt am Main, Germany and

Ruth-Moufang-Str. 1, Frankfurt am Main, Germany. Max-von-Laue-Str. 1, Frankfurt am Main, Germany and Charm quark transport in Pb+Pb reactions at s NN = 2.76 TeV from a (3+1) dimensional hybrid approach Thomas Lang 1,2, Hendrik van Hees 1,2, Jan Steinheimer 3, and Marcus Bleicher 1,2 1 Frankfurt Institute

More information

Hadronic resonance production with the ALICE experiment in pp and Pb-Pb collisions at LHC energies

Hadronic resonance production with the ALICE experiment in pp and Pb-Pb collisions at LHC energies Hadronic resonance production with the ALICE experiment in pp and Pb-Pb collisions at LHC energies ITEP Sergey Kiselev (ITEP Moscow) for the ALICE collaboration Motivation Analysis details pp@7 TeV: K*(892)

More information

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Claudia Ratti Università degli Studi di Torino, INFN, Sezione di Torino and University of Houston, Texas S. Borsanyi,

More information

Exploring the QCD phase diagram with conserved charge fluctuations

Exploring the QCD phase diagram with conserved charge fluctuations New Frontiers in QCD 2013 Exploring the QCD phase diagram with conserved charge fluctuations Frithjof Karsch Brookhaven National Laboratory & Bielefeld University OUTLINE conserved charge fluctuations

More information

PHY397K - NUCLEAR PHYSICS - 2

PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS - 2 PHY397K - NUCLEAR PHYSICS Spring 2015, Unique numbers: 57115 RLM 5.116, TTH 12:30-2:00 pm Christina Markert Office: RLM: 10.305 Phone: 512 471 8834 Email: cmarkert@physics.utexas.edu

More information

Small systems Resonances hadronic phase partonic phase?

Small systems Resonances hadronic phase partonic phase? Christina Markert University of Texas at Austin Small systems Resonances hadronic phase partonic phase? NeD-216, Phuket, Thailand, 31 Oct - 5 Nov 216 1 Phase diagram of nuclear matter (QCD) NeD-216, Phuket,

More information

arxiv:hep-ph/ v2 5 Jan 2007

arxiv:hep-ph/ v2 5 Jan 2007 Chemical Equilibrium in Heavy Ion Collisions: Rapidity Dependence. arxiv:hep-ph/7129v2 5 Jan 27, 1. Introduction F. Becattini 1, J. Cleymans 2 1 1, Università di Firenze and INFN Sezione di Firenze Largo

More information

arxiv: v1 [hep-lat] 19 Feb 2012

arxiv: v1 [hep-lat] 19 Feb 2012 Cent. Eur. J. Phys. -5 Author version Central European Journal of Physics Determination of Freeze-out Conditions from Lattice QCD Calculations Review Article arxiv:.473v [hep-lat] 9 Feb Frithjof Karsch,

More information

Collectivity in EPOS

Collectivity in EPOS 9-11 May 2017 Niels Bohr Institute Klaus Werner Subatech Nantes 1 Collectivity in EPOS (flow, non-flow, and parton saturation) Klaus Werner in collaboration with T. Pierog, Y. Karpenko, B. Guiot, G. Sophys

More information

Insights (?) from lattice QCD at finite baryo-chemical potential (title given to me)

Insights (?) from lattice QCD at finite baryo-chemical potential (title given to me) Exploring the QCD Phase Diagram through Energy Scans Insights (?) from lattice QCD at finite baryo-chemical potential (title given to me) Frithjof Karsch Bielefeld University & Brookhaven National Laboratory

More information

Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering. Hannah Petersen May 11, 2018, ECT*, Trento, Italy

Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering. Hannah Petersen May 11, 2018, ECT*, Trento, Italy Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering Hannah Petersen May 11, 2018, ECT*, Trento, Italy Motivation and Outline Hybrid transport+hydrodynamics approaches are successfully

More information

Quantifying the Sensitivity of Experimental Data to Variations in the QGP Equation of State

Quantifying the Sensitivity of Experimental Data to Variations in the QGP Equation of State Quantifying the Sensitivity of Experimental Data to Variations in the QGP Equation of State Lawrence Livermore National Laboratory E-mail: soltz@llnl.gov We have developed a framework, the Comprehensive

More information

Heavy quark production and elliptic flow at RHIC and LHC

Heavy quark production and elliptic flow at RHIC and LHC Heavy quark production and elliptic flow at RHIC and LHC Jan Uphoff with O. Fochler, Z. Xu and C. Greiner Institute for Theoretical Physics Hirschegg January 20, 2010 Outline Motivation Charm processes

More information

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions Claudia Ratti University of Houston, Texas (USA) S. Borsanyi, Z. Fodor, S. Katz, S. Krieg, C. R., K. Szabo, PRL 2014

More information

Hadron Production in ultra relativistic nuclear collisions and the QCD phase boundary

Hadron Production in ultra relativistic nuclear collisions and the QCD phase boundary Hadron Production in ultra relativistic nuclear collisions and the QCD phase boundary introductory remarks the thermal/statistical model results for AA collisions a note on thermal models in elementary

More information

Strangeness production in heavy ion collisions

Strangeness production in heavy ion collisions 1 Strangeness production in heavy ion collisions Krzysztof Redlich a a Gesellschaft für Schwerionenforschung, D-64291 Darmstadt, Germany Strangeness production in heavy ion collisions is discussed in a

More information

& Λ Production in ALICE

& Λ Production in ALICE Journal of Physics: Conference eries OPEN ACCE Related content K & Λ Production in ALICE - trangeness production in ALICE Domenico Elia and the ALICE Collaboration o cite this article: Luke Hanratty and

More information

Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model

Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model Zi-Wei Lin East Carolina University, Greenville, NC Results are mainly based on G.L. Ma & ZWL, Phys Rev C 93 (2016) /arxiv:1601.08160

More information

Hints of incomplete thermalization in RHIC data

Hints of incomplete thermalization in RHIC data Hints of incomplete thermalization in RHIC data Nicolas BORGHINI CERN in collaboration with R.S. BHALERAO Mumbai J.-P. BLAIZOT ECT J.-Y. OLLITRAULT Saclay N. BORGHINI p.1/30 RHIC Au Au results: the fashionable

More information

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC Benjamin Dönigus 03.12.2009 Seminar WS 2009/2010 Relativistische Schwerionenphysik Interface of Quark-Gluon Plasma and

More information

Fluctuations and QCD phase structure

Fluctuations and QCD phase structure Fluctuations and QCD phase structure Guo-yun Shao ( 邵国运 ) Xi an Jiaotong University Outline: Motivation Methods to describe fluctuations of conserved charges in heavy-ion collisions Numerical results and

More information

The QCD pseudocritical line from imaginary chemical potentials

The QCD pseudocritical line from imaginary chemical potentials The QCD pseudocritical line from imaginary chemical potentials Claudio Bonati Dipartimento di Fisica dell Università di Pisa and INFN - Sezione di Pisa, I-56127 Pisa, Italy E-mail: bonati@df.unipi.it Dipartimento

More information

arxiv: v1 [hep-ph] 12 Jan 2019

arxiv: v1 [hep-ph] 12 Jan 2019 First results of EPOS-HQ model for open heavy flavor production in A-A collission at RHIC and LHC E-mail: gossiaux@subatech.in2p3.fr arxiv:1901.03856v1 [hep-ph] 12 Jan 2019 Joerg Aichelin E-mail: aichelin@subatech.in2p3.fr

More information

What do we see? LHC lecture, Heidelberg, 1 Feb, Kai Schweda

What do we see? LHC lecture, Heidelberg, 1 Feb, Kai Schweda What do we see? 1/53 LHC lecture, Heidelberg, 1 Feb, 2010 Kai Schweda Hadron spectra from RHIC p+p and Au+Au collisions at 200 GeV Full kinematic reconstruction of (multi-) strange hadrons in large acceptance

More information

colliding ultra-relativistic nuclei at the LHC results and perspectives

colliding ultra-relativistic nuclei at the LHC results and perspectives colliding ultra-relativistic nuclei at the LHC results and perspectives and comments on some EIC relevant topics intro selected results from LHC Run1 and LHC Run2 plans and projections until 2030 brief

More information

EPOS 2 and LHC Results

EPOS 2 and LHC Results EPOS 2 and LHC Results Tanguy Pierog, K. Werner, Y. Karpenko Institut für Kernphysik, Karlsruhe, Germany 46th Rencontres de Moriond, QCD, La Thuile, France March the 24th 2011 T. Pierog, KIT - 1/19 Outline

More information

arxiv: v1 [hep-ph] 18 Feb 2016

arxiv: v1 [hep-ph] 18 Feb 2016 Nuclear Physics A Nuclear Physics A 00 (2016) 1 5 www.elsevier.com/locate/procedia arxiv:1602.05811v1 [hep-ph] 18 Feb 2016 Abstract Confronting fluctuations of conserved charges in central nuclear collisions

More information

Light flavour hadron production in the ALICE experiment at LHC

Light flavour hadron production in the ALICE experiment at LHC Light flavour hadron production in the ALICE experiment at LHC Angela Badalà INFN Sezione di Catania for the ALICE Collaboration ALICE heavy-ion runs Dataset s NN (TeV) Integrated luminosity 2010 Pb-Pb

More information

Can Momentum Correlations Proof Kinetic Equilibration in. Heavy Ion Collisions at 160 AGeV?

Can Momentum Correlations Proof Kinetic Equilibration in. Heavy Ion Collisions at 160 AGeV? Can Momentum Correlations Proof Kinetic Equilibration in Heavy Ion Collisions at 160 AGeV? M. Bleicher a, M. Belkacem a, C. Ernst a, H. Weber a, L. Gerland a, C. Spieles a, S. A. Bass b, H. Stöcker a,

More information

Hunt for the Quark-Gluon Plasma: 20 Years Later

Hunt for the Quark-Gluon Plasma: 20 Years Later Brazilian Journal of Physics, vol. 34, no. 1A, March, 2004 205 Hunt for the Quark-Gluon Plasma: 20 Years Later Takeshi Kodama Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528,

More information

The Quark-Gluon Plasma and the ALICE Experiment

The Quark-Gluon Plasma and the ALICE Experiment The Quark-Gluon Plasma and the ALICE Experiment David Evans The University of Birmingham IoP Nuclear Physics Conference 7 th April 2009 David Evans IoP Nuclear Physics Conference 2009 1 Outline of Talk

More information

arxiv:hep-ph/ v2 8 Aug 2002

arxiv:hep-ph/ v2 8 Aug 2002 Ω, J/ψ and ψ ransverse Mass Spectra at RHIC K.A. Bugaev a,b, M. Gaździcki c and M.I. Gorenstein a,d a Bogolyubov Institute for heoretical Physics, Kiev, Ukraine b Gesellschaft für Schwerionenforschung

More information

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics Stephan Endres, Hendrik van Hees, and Marcus Bleicher Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße

More information

Collective flow in (anti)proton-proton collision at Tevatron and LHC

Collective flow in (anti)proton-proton collision at Tevatron and LHC Collective flow in (anti)proton-proton collision at Tevatron and LHC Tanguy Pierog, K. Werner, Y. Karpenko, S. Porteboeuf Institut für Kernphysik, Karlsruhe, Germany XLVth Rencontres de Moriond, QCD, La

More information

Recent highlights in the light-flavour sector from ALICE

Recent highlights in the light-flavour sector from ALICE Recent highlights in the light-flavour sector from ALICE Enrico Fragiacomo INFN - Trieste MIAMI 2016 Lago Mar Resort, Fort Lauderdale, Florida 14-19 December 2016 Ultra-Relativistic Heavy-Ion collisions

More information

Lessons from RHIC and Potential Discoveries at LHC with Ions

Lessons from RHIC and Potential Discoveries at LHC with Ions Lessons from RHIC and Potential Discoveries at LHC with Ions recent reviews: M. Gyulassy and L. McLerran, Nucl. Phys. A750 (2005) 30 pbm and J. Stachel, Nature 448 (2007) 302 pbm and J. Wambach, Rev. Mod.

More information

Strangeness Production at SIS: Au+Au at 1.23A GeV with HADES & Microscopic Description by Transport Models

Strangeness Production at SIS: Au+Au at 1.23A GeV with HADES & Microscopic Description by Transport Models Strangeness Production at SIS: Au+Au at 1.23A GeV with HADES & Microscopic Description by Transport Models Timo Scheib Goethe Universität Frankfurt am Main // Outline HADES at SIS Strangeness Production

More information

Exploring the Phase Diagram of Nuclear Matter with Relativistic Heavy Ion Collisions

Exploring the Phase Diagram of Nuclear Matter with Relativistic Heavy Ion Collisions Journal of Physics: Conference Series PAPER OPEN ACCESS Exploring the Phase Diagram of Nuclear Matter with Relativistic Heavy Ion Collisions To cite this article: Rene Bellwied 2015 J. Phys.: Conf. Ser.

More information

Studies on the QCD Phase Diagram at SPS and FAIR

Studies on the QCD Phase Diagram at SPS and FAIR Journal of Physics: Conference Series Studies on the QCD Phase Diagram at SPS and FAIR To cite this article: Christoph lume 013 J. Phys.: Conf. Ser. 4 010 Related content - Particle production at the SPS

More information

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Bjørn Bäuchle, Marcus Bleicher The UrQMD-Group Palaver November 24 th, 2008 Collaborators The UrQMD-Group Marcus

More information

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Equation of state Pasi Huovinen Uniwersytet Wroc lawski Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Dec 14, 2016, University of Science and Technology of China, Hefei, China The

More information

Ultra-Relativistic Heavy Ion Collision Results

Ultra-Relativistic Heavy Ion Collision Results Ultra-Relativistic Heavy Ion Collision Results I. Overview of Effects Observed in Large Nucleus-Nucleus Collision Systems (Au+Au, Pb+Pb) High p T Hadrons Are Suppressed at LHC & RHIC Central Pb-Pb and

More information

arxiv: v1 [nucl-ex] 7 Jan 2019

arxiv: v1 [nucl-ex] 7 Jan 2019 Open Heavy Flavour: Experimental summary arxiv:9.95v [nucl-ex] 7 Jan 9 Deepa homas he University of exas at Austin E-mail: deepa.thomas@cern.ch In this paper I will review a few of the latest experimental

More information

Thermal dileptons as fireball probes at SIS energies

Thermal dileptons as fireball probes at SIS energies Thermal dileptons as fireball probes at SIS energies Critical Point and Onset of Deconfinement 2016, Wrocław. Florian Seck TU Darmstadt in collaboration with T. Galatyuk, P. M. Hohler, R. Rapp & J. Stroth

More information

Landau Levels in Lattice QCD in an External Magnetic Field

Landau Levels in Lattice QCD in an External Magnetic Field Landau Levels in Lattice QCD in an External Magnetic Field Matteo Giordano Eötvös Loránd University (ELTE) Budapest xqcd 2017 Pisa, 27/06/2017 Based on F. Bruckmann, G. Endrődi, MG, S. D. Katz, T. G. Kovács,

More information

relativistic nuclear collisions from FAIR to LHC energies and the phase structure of QCD

relativistic nuclear collisions from FAIR to LHC energies and the phase structure of QCD relativistic nuclear collisions from FAIR to LHC energies and the phase structure of QCD introduction and perspective the hadron resonance gas (u,d,s) hadron production, Lattice QCD and the QCD phase structure

More information

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon Melting and freeze-out conditions of hadrons in a thermal medium Juan M. Torres-Rincon Frankfurt Institute for Advanced Studies Frankfurt am Main, Germany in collaboration with J. Aichelin, H. Petersen,

More information

Current Status of QGP hydro + hadron cascade approach

Current Status of QGP hydro + hadron cascade approach Current Status of QGP hydro + hadron cascade approach Tetsufumi Hirano the Univ. of Tokyo/LBNL 6/14/2010 @ INT Introduction Outline Motivation A short history of hybrid approaches Importance of hadronic

More information

arxiv: v2 [nucl-ex] 8 Sep 2016

arxiv: v2 [nucl-ex] 8 Sep 2016 An experimental review on elliptic flow of strange and multi-strange hadrons in relativistic heavy ion collisions Shusu Shi 1 1 Key Laboratory of Quarks and Lepton Physics (MOE) and Institute of Particle

More information

Monte Carlo Non-Linear Flow modes studies with AMPT

Monte Carlo Non-Linear Flow modes studies with AMPT Monte Carlo Non-Linear Flow modes studies with AMP Daniel Noel Supervised by: Naghmeh Mohammadi 2 July - 31 August 218 1 Introduction Heavy-ion collisions at the Large Hadron Collider (LHC) generate such

More information

Strangeness in Heavy-Ion Collisions

Strangeness in Heavy-Ion Collisions Strangeness in Heavy-Ion Collisions ad nauseam Christoph Blume Goethe-University of Frankfurt 4 th International Symposium on Non-equilibrium Dynamics Giardini Naxos, Sicily, September 2015 Outline Starting

More information

Beam energy scan using a viscous hydro+cascade model

Beam energy scan using a viscous hydro+cascade model Beam energy scan using a viscous hydro+cascade model Iurii KARPENKO INFN sezione Firenze In collaboration with Marcus Bleicher, Pasi Huovinen and Hannah Petersen Iurii Karpenko (INFN) BES in a viscous

More information

Soft Physics in Relativistic Heavy Ion Collisions

Soft Physics in Relativistic Heavy Ion Collisions Soft Physics in Relativistic Heavy Ion Collisions Huichao Song 宋慧超 Peking University Hadron and Nuclear Physics in 2017 KEK, Tsukuba, Japan, Jan.7-10, 2017 Jan. 09, 2017 QGP QGP Hadrons nuclei atom 3

More information

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC?

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Non-Peturb QCD, IAP Paris, Klaus WERNER, Subatech, Nantes - Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Klaus Werner in collaboration with Iu. Karpenko, T. Pierog,

More information

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Pasi Huovinen J. W. Goethe Universität, Frankfurt Quantifying the properties of Hot QCD matter June 11, 1, Institute

More information

Jet quenching in PbPb collisions in CMS

Jet quenching in PbPb collisions in CMS Jet quenching in PbPb collisions in CMS Bolek Wyslouch École Polytechnique Massachusetts Institute of Technology arxiv:1102.1957 Orsay, February 18, 2011 1 Heavy Ions at the LHC Huge energy jump from RHIC:

More information

arxiv: v2 [nucl-th] 22 Nov 2017

arxiv: v2 [nucl-th] 22 Nov 2017 Conserved charge fluctuations are not conserved during the hadronic phase J. Steinheimer 1, V. Vovchenko 1,2,3, J. Aichelin 1,4, M. Bleicher 1,2, and H. Stöcker 1,2,5 1 Frankfurt Institute for Advanced

More information

5. Statistical Hadronization and Strangeness

5. Statistical Hadronization and Strangeness QGP Physics From SPS to LHC 5. Statistical Hadronization and Strangeness Prof. Dr. Johanna Stachel, PD Dr. Klaus Reygers Physikalisches Institut Universität Heidelberg SS 2011 1 5.1 Hadronization of the

More information

PoS(WPCF2011)012. New results on event-by-event fluctuations in A+A collisions at the CERN SPS. Grzegorz Stefanek for the NA49 Collaboration

PoS(WPCF2011)012. New results on event-by-event fluctuations in A+A collisions at the CERN SPS. Grzegorz Stefanek for the NA49 Collaboration New results on eventbyevent fluctuations in AA collisions at the CERN SPS for the NA9 Collaboration Jan Kochanowski University, Kielce, Poland Email: grzegorz.stefanek@pu.kielce.pl The study of central

More information

arxiv: v1 [nucl-th] 2 Mar 2015

arxiv: v1 [nucl-th] 2 Mar 2015 The domain of validity of fluid dynamics and the onset of cavitation in ultrarelativistic heavy ion collisions arxiv:503.0053v [nucl-th] 2 Mar 205 Department of Physics, McGill University, 3600 University

More information

Phenomenology of Heavy-Ion Collisions

Phenomenology of Heavy-Ion Collisions Phenomenology of Heavy-Ion Collisions Hendrik van Hees Goethe University Frankfurt and FIAS October 2, 2013 Hendrik van Hees (GU Frankfurt/FIAS) HIC Phenomenology October 2, 2013 1 / 20 Outline 1 Plan

More information

Three-fluid hydro based event simulation for NICA energy scan & New EoS with 1st order PT

Three-fluid hydro based event simulation for NICA energy scan & New EoS with 1st order PT Three-fluid hydro based event simulation for NICA energy scan & New EoS with 1st order PT David Blaschke & Niels-Uwe Bastian University of Wroclaw, Poland & JINR Dubna & MEPhI Moscow, Russia Theory of

More information

Heating up QGP: towards charm quark chemical equilibration

Heating up QGP: towards charm quark chemical equilibration Heating up QGP: towards charm quark chemical equilibration Mikko Laine (University of Bern, Switzerland) 1 What is it? 2 Melting / recombination: Leptonic annihilation: q q l + l Chemical equilibration:

More information

Chemical Nonequilibrium in QGP and The Phase Boundary to Hadron Matter

Chemical Nonequilibrium in QGP and The Phase Boundary to Hadron Matter Chemical Nonequilibrium in QGP and The Phase Boundary to Hadron Matter Vienna Equilibration Workshop, August 12, 2005 Jean Letessier and JR, nucl-th/0504028, other works Is there a chemical nonequilibrium

More information

Resonances in Hadronic Transport

Resonances in Hadronic Transport Resonances in Hadronic Transport Steffen A. Bass Duke University The UrQMD Transport Model Infinite Matter Resonances out of Equilibrium Transport Coefficients: η/s work supported through grants by 1 The

More information

HOT HADRONIC MATTER. Hampton University and Jefferson Lab

HOT HADRONIC MATTER. Hampton University and Jefferson Lab 200 Cr oss sect ion (m b) 0 K ptotal 20 5 K pelastic 2 1 K N 1 1.6 2 3 4 2 5 6 7 8 9 20 30 3 40 THE ROLE OF BARYON RESONANCES IN Relativistic Heavy Ion Collider (RHIC) HOT HADRONIC MATTER Au+Au K d 2.5

More information

Outline: Introduction and Motivation

Outline: Introduction and Motivation Heavy ion collisions at lower energies: challenges and opportunities Beam Energy Scan (BES I and II) from RHIC Lijuan Ruan (Brookhaven National Laboratory) Outline: Introduction and Motivation Results

More information

Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS

Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS P.Seyboth, MPI für Physik, München for the NA49 Collaboration Introduction Search for structure in the energy dependence of Inclusive

More information

Beam energy scan using a viscous hydro+cascade model: an update

Beam energy scan using a viscous hydro+cascade model: an update Beam energy scan using a viscous hydro+cascade model: an update Iurii KARPENKO Frankfurt Institute for Advanced Studies/ Bogolyubov Institute for heoretical Physics ransport group meeting, December 17,

More information

Investigation of high energy nuclear collisions using Q-entropy

Investigation of high energy nuclear collisions using Q-entropy Investigation of high energy nuclear collisions using Q-entropy Gábor Bíró Wigner RCP of the HAS, Heavy Ion Research Group Gergely Gábor Barnaföldi Ta m á s S á n d o r B i r ó Á d á m Ta k á c s International

More information

arxiv: v1 [hep-ex] 18 May 2015

arxiv: v1 [hep-ex] 18 May 2015 ALICE summary of light flavour results at intermediate and high p arxiv:55.477v [hep-ex] 8 May 5 uva Richert, on behalf of the ALICE collaboration Lund University, Department of Physics, Div. of Particle

More information

Hadron Resonance Gas Model

Hadron Resonance Gas Model Hadron Resonance Gas Model Valentina Mantovani Sarti QGP lectures-torino 2016 6 April 2016 V.Mantovani Sarti Hadron Resonance Gas Model 6 April 2016 1 / 6 References Particle production in heavy ion collisions,

More information

Lattice QCD at non-zero temperature and density

Lattice QCD at non-zero temperature and density Lattice QCD at non-zero temperature and density Frithjof Karsch Bielefeld University & Brookhaven National Laboratory QCD in a nutshell, non-perturbative physics, lattice-regularized QCD, Monte Carlo simulations

More information