Beam energy scan using a viscous hydro+cascade model

Size: px
Start display at page:

Download "Beam energy scan using a viscous hydro+cascade model"

Transcription

1 Beam energy scan using a viscous hydro+cascade model Iurii KARPENKO INFN sezione Firenze In collaboration with Marcus Bleicher, Pasi Huovinen and Hannah Petersen Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT 6-3 / 9

2 (cascade+)hydro+cascade framework for the Beam Energy Scan Hybrid model: initial state + hydrodynamic phase + hadronic cascade thermalization particlization Initial state: thick pancakes boost ivariance is not a good approximation need for 3 dimensional evolution CGC picture loses its applicability CGC picture needs revision Baryon and electric charges obtained from the initial state included in hydro phase taken into account at particlization Fluctuations in initial state, viscosity, afterburner Pictures taken from: Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT 6-3 / 9

3 The model Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT 6-3 / 9

4 Initial stage Pre-thermal evolution: UrQMD cascade, which involves PYTHIA for s GeV scatterings The scatterings are allowed until τ = t z = τ (red curve) The minimal value of τ is τ = R γv z, when two nuclei completely pass through each other. t cascade (UrQMD) minimal hydro starting time vs collision energy hydro phase incoming nuclei pre-thermal phase (UrQMD) τ [fm/c].5 z.5.5 s NN [GeV] Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT / 9

5 Thermalization (fluidization) The pre-thermal evolution does not lead to a thermalized state at τ. Therefore, τ = τ the energy, momentum and charges of initial state particles are mapped to hydro grid: (avic) Averaged initial state from many pre-thermal UrQMD evolutions + single-shot hydrodynamics 8 6 UrQMD, epsilon(x,y) r_y [fm] r_x [fm] y [fm] (fic) A single pre-thermal UrQMD event + Gaussian smearing + event-by-event hydrodynamics: energy density [GeV/fm 3 ] x [fm] y [fm/c] energy density [GeV/fm 3 ] x [fm/c] y [fm/c] energy density [GeV/fm 3 ] x [fm/c] Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT / 9

6 Hydrodynamic stage The hydrodynamic equations: local energy-momentum and charge conservation ;ν T µν = ν T µν + Γ µ νλ T νλ + Γ ν νλ T µλ =, ;ν N ν = () where (we choose Landau definition of velocity) T µν = εu µ u ν (p + Π)(g µν u µ u ν ) + π µν () Evolutionary equations for shear/bulk, coming from Israel-Stewart formalism: < u γ ;γ π µν > = π µν π µν NS τ π 4 3 π µν ;γ u γ (3a) * Bulk viscosity ζ =, charge diffusion= vhlle code: free and open source. Comput. Phys. Commun. 85 (4), Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT / 9

7 Equations of state in the fluid stage Chiral model J. Steinheimer, et al, J. Phys. G 38, 35 () good agreement with lattice QCD at µ B = crossover type PT between confined and deconfined phases at all µ B Hadron resonance gas + Bag Model P.F. Kolb, et al, Phys.Rev. C 6, 5499 () (a.k.a. EoS Q) hadron resonance gas made of u, d quarks including repulsive meanfield Maxwell construction resulting in st order PT p(, n ) Chiral EoS B p(, n ) HRG+Bag Model EoS B Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT / 9

8 Fluid particle transition and hadronic phase ε = ε sw =.5 GeV/fm 3 (blue curve), when the system is in hadronic phase: {T µ,n b,n q } of hadron-resonance gas = {T µ,n b,n q } of fluid t Momentum distribution from Landau/Cooper-Frye prescription: cascade (UrQMD) hydro phase p d3 n i d 3 p = (fl.eq. (x,p) + δf (x,p) ) p µ dσ µ incoming nuclei pre-thermal phase (UrQMD) z Cornelius subroutine is used to compute σ i on transition hypersurface. Hadron gas phase: UrQMD cascade is employed after particlization surface. Huovinen and Petersen, Eur.Phys.J. A 48 (), 7 Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT / 9

9 Results Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT / 9

10 T Averaged initial state + non-ebe hydro Parameters fixed to: η/s = or. ε sw =.5 GeV/fm 3 8 the model, ideal the model, η/s=. the model, η/s=. NA49, 4GeV π- NA49, 4GeV, K+ NA49, 4GeV, K- dn/dy 6 dn/dy and p are nicely reproduced for SPS energies (E lab = 3 58 GeV), but p -integrated v is not y dy) dm T 3 = 4 A GeV E lab ideal + UrQMD η/s=. + UrQMD η/s=. + UrQMD NA49 π- NA49 K- NA49 K+ v p -integrated v T, c=-3% N/(m.4 d.3.. STAR v {4} ideal + UrQMD η/s=. + UrQMD m T -m [GeV] s NN [GeV] Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT / 9

11 Fluctuating initial state + EbE hydro Gaussian smearing of energy, momentum and charges at fluidization: ( ) Pijk α = Pα C exp ( xi + yj )/R η k γ ητ /R η ( ) Nijk = N C exp ( xi + yj )/R η k γ ητ /R η R = R η = fm ε sw =.5 GeV/fm 3 v p -integrated v {EP} vs T s STAR v {EP} avic ideal + UrQMD avic η/s=. + UrQMD fic, ideal + UrQMD fic, η/s=. + UrQMD dashed: average IC solid: fluctuating IC s [GeV] v ( s NN ) trend is reproduced with fic! Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT / 9

12 Fluctuating initial state + EbE hydro: extending to full BES range } R = R η = fm, τ = max{ R γvz,fm/c, ε sw =.5 GeV/fm dn ch /dη (b)..8.6 v n {EP}, -3% central STAR v STAR v {EP} 3 {EP} ideal η/s=. pure UrQMD dn ch /dη 4 3 η/s=. ideal PHOBOS -6%: s= GeV s=6.4 GeV s=9.6 GeV η s= GeV s=6.4 GeV s=9.6 GeV v n.4. s NN [GeV] v v 3 Parameter tuning needed? Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT 6-3 / 9

13 Smearing matters energy density [GeV/fm^3] energy density [GeV/fm^3].5 "<awk R_eta=.7 '{if($==.) fm print $}' outd.dat" u :3:6 S = "<awk R_eta=. '{if($==.) fm print $}' outd.dat" u :3:6 S = eta eta x [fm] x [fm] energy density [GeV/fm^3] eta.5.5 "<awk R_eta=.4 '{if($==.) fm print $}' outd.dat" u :3:6 S = Same total energy: E = 473 GeV x [fm] Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT 6-3 / 9

14 Learning parameter dependence Response of the observables: T eff, inverse slope of p T spectrum dn/dy at midrapidity p T integrated v {EP} to the change of every parameter with respect to its default value. v v {EP}, s=9.6 GeV, -3% central STAR v {EP} change of R change of R η change of sw change of τ relative change of the parameter [GeV] T eff.34 T change of R eff change of R η.3 p change of sw.3 change of τ K π relative change of the parameter (b) dn/dy y= dn/dy y= change of R change of R η change of sw change of τ relative change of the parameter (a) Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT 6-3 / 9

15 Learning parameter dependence () par. R R z η/s τ ε crit T eff dn/dy v Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT / 9

16 Parameter values used to approach the data EoS: Chiral model, ε sw =.5 GeV/fm 3. s τ R R z η/s [GeV] [fm/c] [fm] [fm] * * *...8 *here we increase τ as compared to τ = γv R z. η/s effective η/s vs collision energy s NN [GeV] Green band: same v and ±5% change in T eff.! Actual error bar would require a proper χ fitting of the model parameters (and enormous amount of CPU time). Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT / 9

17 T A GeV PbPb SPS ( s = 8.8 and 7.3 GeV) 8 η/s=. NA49, π- NA49, K+ NA49, K- E lab =4 A GeV -5% central (c) dy) 3 η/s=. NA49, π- NA49, K- NA49, K+ NA49, p dn/dy 6 4 dm T T N/(m d (c) y - E lab =4 A GeV, -5% central m T -m [GeV] dn/dy η/s=.5 - NA49, π + NA49, K - NA49, K E lab =58 A GeV -5% central -4-4 y (b) dy) dm T N/(m d 3 - E lab =58 A GeV, -5% central η/s=.5 NA49, π- NA49, K- NA49, K+ NA49, p m T -m [GeV] (b) Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT / 9

18 T T RHIC BES + top RHIC dy) dp p N/( π d η/s=.8 - PHOBOS, π - PHOBOS, K PHOBOS, p (a) dy) T dp d N/( π p T 3 η/s=.8 PHENIX, π- PHENIX, K- PHENIX, p - s=6.4 GeV, -5% central - p spectra, s= GeV, -5% central T p [GeV] T p [GeV] T 7 dn ch /dη 6 dn ch /dη s= GeV s=6.4 GeV s=39 GeV s=9.6 GeV -6% PHOBOS η The rapidity/pseudorapidity and p T distributions from SPS/NA49 together with RHIC are reasonably reproduced. Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT / 9

19 Elliptic and triangular flows at RHIC BES + top RHIC v,v 3 vs collision energy v,v 3 vs centrality v n STAR v {EP} STAR v 3 {EP} v, η/s( s) and R( s) v 3, η/s( s) and R( s) s NN [GeV] v n {EP}, -3% central v v v {EP} and v 3 {EP}, s=39 GeV STAR v {EP} η/s=.8 ideal centrality percentage v v 3 EoS dependence, hyperon polarization and HBT: in my Workshop talk Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT / 9

20 Summary 3+D EbE UrQMD + viscous hydro + UrQMD model: pre-termal stage: UrQMD 3+D viscous hydrodynamics EoS at finite µ B : Chiral model, EoS Q Conclusions: The model is applied for Au+Au + Observables do depend on the way the initial state is constructed, and parameters of the fluidization procedure. Eyeball parameter adjustment results in a reasonable reproduction of basic hadronic observables. Much more rigorous analysis of the parameter space: see next talk by Jussi Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT / 9

21 Outlook: At lower end of the BES, pre-hydro stage in a sandwich approach is too long: UrQMD 3.4, J. Auvinen, H. Petersen, Phys.Rev.C 88:6498,3 a) Charged hadrons, b = fm Charged hadrons, b = fm.3.8 Integrated v Event plane analysis Before hydro After hydro After hadronic rescattering s NN [GeV] b) Integrated v Event plane analysis Before hydro After hydro After hadronic rescattering s NN [GeV] This can be overcome with multi-fluid dynamics (with cold nuclear matter IC), or with an IC model allowing for dynamical fluidization. Iurii Karpenko (INFN) BES in a viscous hydro+cascade INT / 9

Beam energy scan using a viscous hydro+cascade model: an update

Beam energy scan using a viscous hydro+cascade model: an update Beam energy scan using a viscous hydro+cascade model: an update Iurii KARPENKO Frankfurt Institute for Advanced Studies/ Bogolyubov Institute for heoretical Physics ransport group meeting, December 17,

More information

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach Quantifying the Properties of Hot and Dense QCD Matter, Seattle, 04.06.10 Hannah Petersen Thanks to: Jan Steinheimer,

More information

Hadronic equation of state and relativistic heavy-ion collisions

Hadronic equation of state and relativistic heavy-ion collisions Hadronic equation of state and relativistic heavy-ion collisions Pasi Huovinen J. W. Goethe Universität Workshop on Excited Hadronic States and the Deconfinement Transition Feb 23, 2011, Thomas Jefferson

More information

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Hydrodynamical description of ultrarelativistic heavy-ion collisions Frankfurt Institute for Advanced Studies June 27, 2011 with G. Denicol, E. Molnar, P. Huovinen, D. H. Rischke 1 Fluid dynamics (Navier-Stokes equations) Conservation laws momentum conservation Thermal

More information

Current Status of QGP hydro + hadron cascade approach

Current Status of QGP hydro + hadron cascade approach Current Status of QGP hydro + hadron cascade approach Tetsufumi Hirano the Univ. of Tokyo/LBNL 6/14/2010 @ INT Introduction Outline Motivation A short history of hybrid approaches Importance of hadronic

More information

Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering. Hannah Petersen May 11, 2018, ECT*, Trento, Italy

Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering. Hannah Petersen May 11, 2018, ECT*, Trento, Italy Conservation Laws on the Cooper-Frye Surface and Hadronic Rescattering Hannah Petersen May 11, 2018, ECT*, Trento, Italy Motivation and Outline Hybrid transport+hydrodynamics approaches are successfully

More information

Collective and non-flow correlations in event-by-event hydrodynamics

Collective and non-flow correlations in event-by-event hydrodynamics Collective and non-flow correlations in event-by-event hydrodynamics Institute of Nuclear Physics Kraków WPCF 22-2.9.22 3 -D viscous hydrodynamics T T h /- v 3 [%] 25 2 5 5 2 5 5 2 5 5 ideal, e-b-e η/s=.8,

More information

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Equation of state Pasi Huovinen Uniwersytet Wroc lawski Collective Flows and Hydrodynamics in High Energy Nuclear Collisions Dec 14, 2016, University of Science and Technology of China, Hefei, China The

More information

Further development of the hydrokinetic model and description of the RHIC and LHC A+A femtoscopic data

Further development of the hydrokinetic model and description of the RHIC and LHC A+A femtoscopic data and description of the RHIC and LHC A+A femtoscopic data Iu.A. Karpenko Bogolyubov Institute for heoretical Physics, 1-b, Metrolohichna str., Kiev, 080, Ukraine E-mail: karpenko@bitp.kiev.ua Bogolyubov

More information

Lattice QCD based equation of state at finite baryon density

Lattice QCD based equation of state at finite baryon density Lattice QCD based equation of state at finite baryon density Pasi Huovinen J. W. Goethe Universität & Frankfurt Institute for Advanced Studies Hydrodynamics for Strongly Coupled Fluids May 12, 214, ECT*,

More information

The Core Corona Model

The Core Corona Model The Core Corona Model or Is the Centrality Dependence of Observables more than a Core-Corona Effect? inspired by the first multiplicity results in CuCu then used to extract the physics of EPOS simulations

More information

Heavy Ions at the LHC: First Results

Heavy Ions at the LHC: First Results Heavy Ions at the LHC: First Results Thomas Schaefer North Carolina State University Heavy ion collision: Geometry R Au /γ y R Au x b z rapidity : y = 1 2 log ( E + pz E p z ) transverse momentum : p 2

More information

arxiv: v1 [nucl-th] 9 Jun 2008

arxiv: v1 [nucl-th] 9 Jun 2008 Dissipative effects from transport and viscous hydrodynamics arxiv:0806.1367v1 [nucl-th] 9 Jun 2008 1. Introduction Denes Molnar 1,2 and Pasi Huovinen 1 1 Purdue University, Physics Department, 525 Northwestern

More information

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Pasi Huovinen J. W. Goethe Universität, Frankfurt Quantifying the properties of Hot QCD matter June 11, 1, Institute

More information

Outline: Introduction and Motivation

Outline: Introduction and Motivation Heavy ion collisions at lower energies: challenges and opportunities Beam Energy Scan (BES I and II) from RHIC Lijuan Ruan (Brookhaven National Laboratory) Outline: Introduction and Motivation Results

More information

Anisotropic Flow: from RHIC to the LHC

Anisotropic Flow: from RHIC to the LHC Anisotropic Flow: from RHIC to the LHC Raimond Snellings The 2 nd Asian Triangle Heavy Ion Conference 13 th - 15 th October, 28 University of Tsukuba, Tsukuba, Japan arxiv:89.2949 [nucl-ex] 2 Elliptic

More information

Uncertainties in the underlying e-by-e viscous fluid simulation

Uncertainties in the underlying e-by-e viscous fluid simulation Uncertainties in the underlying e-by-e viscous fluid simulation Ulrich Heinz (The Ohio State University) Jet Workfest, Wayne State University, 24-25 August 213 Supported by the U.S. Department of Energy

More information

Constraining the QCD equation of state in hadron colliders

Constraining the QCD equation of state in hadron colliders Constraining the QCD equation of state in hadron colliders Akihiko Monnai (KEK, Japan) with Jean-Yves Ollitrault (IPhT Saclay, France) AM and J.-Y. Ollitrault, Phys. Rev. C 96, 044902 (2017) New Frontiers

More information

Quantifying the Sensitivity of Experimental Data to Variations in the QGP Equation of State

Quantifying the Sensitivity of Experimental Data to Variations in the QGP Equation of State Quantifying the Sensitivity of Experimental Data to Variations in the QGP Equation of State Lawrence Livermore National Laboratory E-mail: soltz@llnl.gov We have developed a framework, the Comprehensive

More information

Status of viscous hydrodynamic code development

Status of viscous hydrodynamic code development Status of viscous hydrodynamic code development Yuriy KARPENKO Transport group meeting, Jan 17, 2013 Yuriy Karpenko (FIAS/BITP) Status of viscous hydro code Transport group meeting, Jan 17, 2013 1 / 21

More information

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Bjørn Bäuchle, Marcus Bleicher The UrQMD-Group Based on [arxiv:0810.0488 (nucl-th)] DPG Spring Meeting March

More information

Collectivity in EPOS

Collectivity in EPOS 9-11 May 2017 Niels Bohr Institute Klaus Werner Subatech Nantes 1 Collectivity in EPOS (flow, non-flow, and parton saturation) Klaus Werner in collaboration with T. Pierog, Y. Karpenko, B. Guiot, G. Sophys

More information

arxiv: v1 [hep-ph] 11 Jun 2008

arxiv: v1 [hep-ph] 11 Jun 2008 Proc. 4th Winter Workshop on Nuclear Dynamics (008) 000 000 4th Winter Workshop on Nuclear Dynamics South Padre, Texas, USA April 1, 008 arxiv:0806.180v1 [hep-ph] 11 Jun 008 A fully integrated Boltzmann+hydrodynamics

More information

Hybrid Model of Heavy-Ion Collisions at BES Energies with Dynamical Sources

Hybrid Model of Heavy-Ion Collisions at BES Energies with Dynamical Sources Hybrid Model of Heavy-Ion Collisions at BES Energies with Dynamical Sources Lipei Du In collaboration with Gojko Vujanovic and Ulrich Heinz Department of Physics, The Ohio State University, USA May 14,

More information

Lambda-Lambda correlation from an integrated dynamical model

Lambda-Lambda correlation from an integrated dynamical model ExHIC, March 28, 2016 Lambda-Lambda correlation from an integrated dynamical model Tetsufumi Hirano (Sophia Univ.) Collaborators: Asumi Taniguchi Hiromi Hinohara Koichi Murase References for the model:

More information

In this chapter we will discuss the effect of shear viscosity on evolution of fluid, p T

In this chapter we will discuss the effect of shear viscosity on evolution of fluid, p T Chapter 3 Shear viscous evolution In this chapter we will discuss the effect of shear viscosity on evolution of fluid, p T spectra, and elliptic flow (v ) of pions using a +1D relativistic viscous hydrodynamics

More information

Constraining the bulk viscosity of QCD

Constraining the bulk viscosity of QCD Constraining the bulk viscosity of QCD (with heavy ion collisions) Bwidth Bnorm Jean-François Paquet Tpeak July 21, 2017 Triangle Nuclear Theory Colloquium In collaboration with... Charles Gale Sangyong

More information

arxiv: v2 [hep-ph] 2 Jul 2018

arxiv: v2 [hep-ph] 2 Jul 2018 Particle production at energies available at the CERN Large Hadron Collider within evolutionary model Yu. M. Sinyukov 1 and V. M. Shapoval 1 1 Bogolyubov Institute for Theoretical Physics, Metrolohichna

More information

Lectures on hydrodynamics - Part I: Ideal (Euler) hydrodynamics

Lectures on hydrodynamics - Part I: Ideal (Euler) hydrodynamics Lectures on hydrodynamics - Part I: Ideal (Euler) hydrodynamics Denes Molnar RIKEN/BNL Research Center & Purdue University Goa Summer School September 8-12, 28, International Centre, Dona Paula, Goa, India

More information

Hagedorn States in Relativistic Heavy Ion Collisions

Hagedorn States in Relativistic Heavy Ion Collisions Hagedorn States in Relativistic Heavy Ion Collisions Jacquelyn Noronha-Hostler Frankfurt Institute for Advanced Studies, Frankfurt am Main Excited Hadrons : February 25 th, 211 : Jefferson Lab Newport

More information

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN SEZIONE DI CATANIA

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN SEZIONE DI CATANIA UNIVERSITÀ DEGLI STUDI DI CATANIA INFN SEZIONE DI CATANIA MOMENTUM ANISOTROPIES IN A TRANSPORT APPROACH V. BARAN, M. DI TORO, V. GRECO, S. PLUMARI Transport Theory with a Mean Field at fixed η/s. Effective

More information

arxiv: v1 [nucl-ex] 10 Feb 2012

arxiv: v1 [nucl-ex] 10 Feb 2012 Cent. Eur. J. Phys. 1-5 Author version Central European Journal of Physics Highlights of the Beam Energy Scan from STAR Review Article arxiv:10.389v1 [nucl-ex] 10 Feb 01 A. Schmah for the STAR Collaboration

More information

Modeling Quark Gluon Plasma Using CHIMERA

Modeling Quark Gluon Plasma Using CHIMERA Journal of Physics: Conference Series Modeling Quark Gluon Plasma Using CHIMERA o cite this article: Betty Abelev J. Phys.: Conf. Ser. 6 View the article online for updates and enhancements. Related content

More information

Direct Photon Production from Heavy Ion Collisions

Direct Photon Production from Heavy Ion Collisions Direct Photon Production from Heavy Ion Collisions Bjørn Bäuchle The UrQMD Group (http://urqmd.org) based on PRC 81 (2010) 044904 and ongoing work FIAS Frankfurt Institutt for fysikk og teknologi, Universitetet

More information

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Bjørn Bäuchle, Marcus Bleicher The UrQMD-Group Palaver November 24 th, 2008 Collaborators The UrQMD-Group Marcus

More information

Recent results from the NA61/SHINE experiment

Recent results from the NA61/SHINE experiment Recent results from the NA6/SHINE experiment Emil Kaptur for the NA6/SHINE collaboration University of Silesia October 7, 5 of 5 Outline NA6/SHINE experiment Selected results from energy scan (,,, 8, 58

More information

The Study of the Critical Point of QCD using Fluctuations. Gary Westfall Terry Tarnowsky Hui Wang Michigan State University

The Study of the Critical Point of QCD using Fluctuations. Gary Westfall Terry Tarnowsky Hui Wang Michigan State University The Study of the Critical Point of QCD using Fluctuations Gary Westfall Terry Tarnowsky Hui Wang Michigan State University 1 Search for QCD Transitions If we pass through a QCD phase transition, we expect

More information

Hadron-string cascade versus hydrodynamics in Cu + Cu collisions at s NN = 200 GeV

Hadron-string cascade versus hydrodynamics in Cu + Cu collisions at s NN = 200 GeV Hadron-string cascade versus hydrodynamics in Cu + Cu collisions at s NN = GeV T. Hirano, 1 M. Isse, Y. Nara, 3 A. Ohnishi, and K. Yoshino 1 Department of Physics, Columbia University, New York, NY 17

More information

Results from the beam energy scan at RHIC: Exploring the QCD phase structure in A+A collisions

Results from the beam energy scan at RHIC: Exploring the QCD phase structure in A+A collisions Results from the beam energy scan at RHIC: Exploring the QCD phase structure in A+A collisions Bedanga Mohanty NaConal InsCtute of Science EducaCon and Research (NISER) Outline: ² Phase diagram of QCD

More information

Three-fluid hydro based event simulation for NICA energy scan & New EoS with 1st order PT

Three-fluid hydro based event simulation for NICA energy scan & New EoS with 1st order PT Three-fluid hydro based event simulation for NICA energy scan & New EoS with 1st order PT David Blaschke & Niels-Uwe Bastian University of Wroclaw, Poland & JINR Dubna & MEPhI Moscow, Russia Theory of

More information

Jet and bulk observables within a partonic transport approach

Jet and bulk observables within a partonic transport approach Jet and bulk observables within a partonic transport approach Florian Senzel with J. Uphoff, O. Fochler, C. Wesp, Z. Xu and C. Greiner based on Phys.Rev.Lett. 4 (25) 23 Transport meeting, 29.4.25 Outline

More information

Hints of incomplete thermalization in RHIC data

Hints of incomplete thermalization in RHIC data Hints of incomplete thermalization in RHIC data Nicolas BORGHINI CERN in collaboration with R.S. BHALERAO Mumbai J.-P. BLAIZOT ECT J.-Y. OLLITRAULT Saclay N. BORGHINI p.1/30 RHIC Au Au results: the fashionable

More information

Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS

Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS P.Seyboth, MPI für Physik, München for the NA49 Collaboration Introduction Search for structure in the energy dependence of Inclusive

More information

Predictions for hadronic observables from. from a simple kinematic model

Predictions for hadronic observables from. from a simple kinematic model Predictions for hadronic observables from Pb + Pb collisions at sqrt(s NN ) = 2.76 TeV from a simple kinematic model Tom Humanic Ohio State University WPCF-Kiev September 14, 2010 Outline Motivation &

More information

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics

Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics HGS-HIRe Helmholtz Graduate School for Hadron and Ion Research Direct Photons in Heavy-Ion Collisions from Microscopic Transport Theory and Fluid Dynamics Bjørn Bäuchle, Marcus Bleicher The UrQMD-Group

More information

First results with heavy-ion collisions at the LHC with ALICE

First results with heavy-ion collisions at the LHC with ALICE First results with heavy-ion collisions at the LHC with ALICE Domenico Elia INFN, Bari (Italy) on behalf of the ALICE Collaboration D. Elia (INFN Bari, Italy) PANIC 011 / Boston, MA (USA) July 4-9, 011

More information

A fresh look at the radiation from the QGP

A fresh look at the radiation from the QGP A fresh look at the radiation from the QGP Wolfgang Cassing (Uni. Giessen) In collaboration with Taesoo Song, Elena Bratkovskaya, Pierre Moreau The Erice School on Nuclear Physics 2018 The Strong Interaction:

More information

Heavy Quarks in Heavy-Ion Collisions

Heavy Quarks in Heavy-Ion Collisions Heavy Quarks in Heavy-Ion Collisions Hendrik van Hees with T. Lang, J. Steinheimer, M. Bleicher Goethe University Frankfurt and FIAS July 18, 213 Hendrik van Hees (GU Frankfurt/FIAS) Heavy Quarks in HICs

More information

INITIAL ENERGY DENSITY IN P+P AND A+A COLLISIONS UNIVERSE 3 (2017) 1, 9 ARXIV: MANUSCRIPT IN PREPARATION

INITIAL ENERGY DENSITY IN P+P AND A+A COLLISIONS UNIVERSE 3 (2017) 1, 9 ARXIV: MANUSCRIPT IN PREPARATION 10th Bolyai-Gauss- Lobachevsky Conference August 21-25, 2017 Eszterházy University, Károly Robert Campus, Gyöngyös, Hungary INITIAL ENERGY DENSITY IN P+P AND A+A COLLISIONS UNIVERSE 3 (2017) 1, 9 ARXIV:1609.07176

More information

Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model

Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model Zi-Wei Lin East Carolina University, Greenville, NC Results are mainly based on G.L. Ma & ZWL, Phys Rev C 93 (2016) /arxiv:1601.08160

More information

Dileptons with a coarse-grained transport approach

Dileptons with a coarse-grained transport approach Dileptons with a coarse-grained transport approach Hendrik van Hees Goethe University Frankfurt and FIAS July 19, 017 in collaboration with S. Endres, J. Weil, M. Bleicher Hendrik van Hees (GU Frankfurt/FIAS)

More information

NEW EXACT AND PERTURBTIVE SOLUTIONS OF RELATIVISTIC HYDRO A COLLECTION OF RECENT RESULTS

NEW EXACT AND PERTURBTIVE SOLUTIONS OF RELATIVISTIC HYDRO A COLLECTION OF RECENT RESULTS NEW EXACT AND PERTURBTIVE SOLUTIONS OF RELATIVISTIC HYDRO A COLLECTION OF RECENT RESULTS MÁTÉ CSANÁD (EÖTVÖS U) @ THOR LISBON MEETING, JUNE 13, 2018 +T. CSÖRGŐ, G. KASZA, Z. JIANG, C. YANG, B. KURGYIS,

More information

Perfect-fluid hydrodynamics for RHIC successes and problems

Perfect-fluid hydrodynamics for RHIC successes and problems Title Perfect-fluid hydrodynamics for RHIC successes and problems Wojciech Florkowski with W. Broniowski, M. Chojnacki, A. Kisiel, Institute of Nuclear Physics, Kraków & Jan Kochanowski University, Kielce,

More information

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned: Particle spectral shapes in thermal model ( static medium) are exponential in m T with common slope for all particles.

More information

Event anisotropy at RHIC

Event anisotropy at RHIC Event anisotropy at RHIC Nu Xu - LBNL 1) Introduction 2) Experimental details and 200 GeV results v 2 (m 0, p T, y, b, A) 3) Summary and outlook PHENIX: N. Ajitanand, S. Esumi, R. Lacey, J. Rak PHOBOS:

More information

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC?

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Non-Peturb QCD, IAP Paris, Klaus WERNER, Subatech, Nantes - Quark-Gluon Plasma in Proton-Proton Scattering at the LHC? Klaus Werner in collaboration with Iu. Karpenko, T. Pierog,

More information

Hydrodynamic response to initial state fluctuations

Hydrodynamic response to initial state fluctuations University of Jyväskylä, Department of Physics POETIC Jyväskylä 3.9.203 AA-collisions Initial particle/energy production, followed by Hydrodynamic evolution, followed by Freeze-out/Hadron cascade Goal

More information

Energy scan programs in HIC

Energy scan programs in HIC Energy scan programs in HIC Anar Rustamov a.rustamov@cern.ch Onset of Deconfinement Signals Particle spectra Azimuthal modulations Event-by-Event Fluctuations Critical point Phase Boundaries Confronting

More information

Introduction to Relativistic Heavy Ion Physics

Introduction to Relativistic Heavy Ion Physics 1 Introduction to Relativistic Heavy Ion Physics Lecture 3: Approaching Perfection Columbia University Reminder- From Lecture 2 2 A new state of matter (QGP?) is formed in Au+Au collisions at RHIC Densities

More information

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics Stephan Endres, Hendrik van Hees, and Marcus Bleicher Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Goethe-Universität Frankfurt November 9, 211 Hendrik van Hees (GU Frankfurt) Heavy-Quark Transport November 9, 211 1 / 19 Motivation Fast equilibration

More information

PoS(Confinement8)110. Latest Results on High-p t Data and Baryon Production from NA49

PoS(Confinement8)110. Latest Results on High-p t Data and Baryon Production from NA49 Latest Results on High-p t Data and Baryon Production from NA49 for the NA49 Collaboration Institut für Kernphysik, J.W. Goethe Universität, Frankfurt am Main, Germany E-mail: blume@ikf.uni-frankfurt.de

More information

Soft Physics in Relativistic Heavy Ion Collisions

Soft Physics in Relativistic Heavy Ion Collisions Soft Physics in Relativistic Heavy Ion Collisions Huichao Song 宋慧超 Peking University Hadron and Nuclear Physics in 2017 KEK, Tsukuba, Japan, Jan.7-10, 2017 Jan. 09, 2017 QGP QGP Hadrons nuclei atom 3

More information

Flow in p-pb collisions at 5 TeV?

Flow in p-pb collisions at 5 TeV? Rencontres de Moriond QCD 4 Klaus Werner Subatech, Nantes - Flow in p-pb collisions at 5 TeV? K.W. in collaboration with B. Guiot, Iu. Karpenko, T. Pierog Rencontres de Moriond QCD 4 Klaus Werner Subatech,

More information

Relativistic hydrodynamics for heavy ion collisions can a macroscopic approach be applied to a microscopic system?

Relativistic hydrodynamics for heavy ion collisions can a macroscopic approach be applied to a microscopic system? Colloquium at Physics Dept., U. Jyväskylä, Finland, February 19, 2016 1 Relativistic hydrodynamics for heavy ion collisions can a macroscopic approach be applied to a microscopic system? Dirk H. Rischke

More information

Event-by-event distribution of azimuthal asymmetries in ultrarelativistic heavy-ion collisions

Event-by-event distribution of azimuthal asymmetries in ultrarelativistic heavy-ion collisions Event-by-event distribution of azimuthal asymmetries in ultrarelativistic heavy-ion collisions Hannu Holopainen Frankfurt Institute for Advanced Studies in collaboration with G. S. Denicol, P. Huovinen,

More information

Review of Signals of Deconfinement

Review of Signals of Deconfinement Review of Signals of Deconfinement Critical Point and Onset of Deconfinement Florence March 9 2006 Thanks to Burak Alver, Ed Wenger, Siarhei Vaurynovich, Wei LI Gunther Roland Review of Signals of Deconfinement

More information

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider

A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider A NEARLY PERFECT INK: The quest for the quark-gluon plasma at the Relativistic Heavy Ion Collider Berndt Mueller (Duke University) LANL Theory Colloquium 2 June 2005 The Road to the Quark-Gluon Plasma

More information

Effects of resonance widths on EoS and particle distributions

Effects of resonance widths on EoS and particle distributions Effects of resonance widths on EoS and particle distributions Pasi Huovinen Uniwersytet Wroc lawski Phase diagram of strongly interacting matter: From Lattice QCD to Heavy-Ion Collision Experiments November

More information

Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter

Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter Some Comments on Relativistic Hydrodynamics, Fuzzy Bag Models for the Pressure, and Early Space-Time Evolution of the QCD Matter Oleg Andreev Landau Institute, Moscow & ASC, München Based on Int.J.Mod.Phys.

More information

Strongly interacting quantum fluids: Experimental status

Strongly interacting quantum fluids: Experimental status Strongly interacting quantum fluids: Experimental status Thomas Schaefer North Carolina State University Perfect fluids: The contenders QGP (T=180 MeV) Liquid Helium (T=0.1 mev) Trapped Atoms (T=0.1 nev)

More information

The Quark-Gluon Plasma and the ALICE Experiment

The Quark-Gluon Plasma and the ALICE Experiment The Quark-Gluon Plasma and the ALICE Experiment David Evans The University of Birmingham IoP Nuclear Physics Conference 7 th April 2009 David Evans IoP Nuclear Physics Conference 2009 1 Outline of Talk

More information

Quark Gluon Plasma Recent Advances

Quark Gluon Plasma Recent Advances Quark Gluon Plasma Recent Advances Lawrence Berkeley National Laboratory LP01, Rome, July 2001 Introduction P.C. Sereno et al. Science, Nov. 13, 1298(1998). (Spinosaurid) We may not see the entire body

More information

Ideal Hydrodynamics. Pasi Huovinen. JET Summer School. J. W. Goethe Universität. June 16, 2012, McGill University, Montreal, Canada

Ideal Hydrodynamics. Pasi Huovinen. JET Summer School. J. W. Goethe Universität. June 16, 2012, McGill University, Montreal, Canada Ideal Hydrodynamics Pasi Huovinen J. W. Goethe Universität JET Summer School June 16, 2012, McGill University, Montreal, Canada Transient matter lifetime t 10fm/c 10 23 seconds small size r 10fm 10 14

More information

Dileptons in NN and AA collisions

Dileptons in NN and AA collisions Dileptons in NN and AA collisions Hendrik van Hees Goethe-Universität Frankfurt November 28, 2011 Hendrik van Hees (GU Frankfurt) The Dilepton Probe November 28, 2011 1 / 24 Outline 1 Electromagnetic probes

More information

Inclusive distributions at the LHC as predicted from the DPMJET-III model with chain fusion

Inclusive distributions at the LHC as predicted from the DPMJET-III model with chain fusion Inclusive distributions at the LHC as predicted from the DPMJET-III model with chain fusion F.Bopp, R.Engel, J.Ranft and S.Roesler () DPMJET III () Chain fusion in DPMJET III (3) dn/dη cm distributions

More information

The QGP phase in relativistic heavy-ion collisions

The QGP phase in relativistic heavy-ion collisions The QGP phase in relativistic heavy-ion collisions Elena Bratkovskaya Institut für Theoretische Physik & FIAS, Uni. Frankfurt Conference on Exciting Physics Makutsi-Range Range, South Africa,, 13-20 November,

More information

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP Heavy-Quark Transport in the QGP Hendrik van Hees Justus-Liebig Universität Gießen October 13, 29 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) Heavy-Quark

More information

Collective Dynamics of the p+pb Collisions

Collective Dynamics of the p+pb Collisions Collective Dynamics of the p+pb Collisions Wojciech Broniowski CEA Saclay & UJK Kielce & IFJ PAN Cracow th Workshop on Non-Perturbative QCD Paris, - June [Piotr Bo»ek & WB, PLB 78 () 557, 7 () 5, arxiv:.]

More information

arxiv: v3 [nucl-th] 11 Jul 2014

arxiv: v3 [nucl-th] 11 Jul 2014 Evolution of transverse flow and effective temperatures in the parton phase from a multi-phase transport model Zi-Wei Lin Department of Physics, East Carolina University, C-209 Howell Science Complex,

More information

Effects of QCD cri/cal point on electromagne/c probes

Effects of QCD cri/cal point on electromagne/c probes Effects of QCD cri/cal point on electromagne/c probes Akihiko Monnai (IPhT, CNRS/CEA Saclay) with Swagato Mukherjee (BNL), Yi Yin (MIT) + Björn Schenke (BNL) + Jean-Yves Ollitrault (IPhT) Phase diagram

More information

arxiv:nucl-th/ v2 6 Dec 2001

arxiv:nucl-th/ v2 6 Dec 2001 A Hydrodynamic Description of Heavy Ion Collisions at the SPS and RHIC D. Teaney,, 2 J. Lauret, 2 and E.V. Shuryak Department of Physics and Astronomy, State University of New York, Stony Brook, NY 794

More information

Relativistic hydrodynamics for heavy ion collisions can a macroscopic approach be applied to a microscopic system? Dirk H. Rischke

Relativistic hydrodynamics for heavy ion collisions can a macroscopic approach be applied to a microscopic system? Dirk H. Rischke Theoretical Physics Colloquium, USTC, Hefei, China, Nov. 9, 2018 1 Relativistic hydrodynamics for heavy ion collisions can a macroscopic approach be applied to a microscopic system? Dirk H. Rischke CRC

More information

Ultra-Relativistic Heavy Ion Collision Results

Ultra-Relativistic Heavy Ion Collision Results Ultra-Relativistic Heavy Ion Collision Results I. Overview of Effects Observed in Large Nucleus-Nucleus Collision Systems (Au+Au, Pb+Pb) High p T Hadrons Are Suppressed at LHC & RHIC Central Pb-Pb and

More information

arxiv: v1 [hep-ph] 12 Jan 2019

arxiv: v1 [hep-ph] 12 Jan 2019 First results of EPOS-HQ model for open heavy flavor production in A-A collission at RHIC and LHC E-mail: gossiaux@subatech.in2p3.fr arxiv:1901.03856v1 [hep-ph] 12 Jan 2019 Joerg Aichelin E-mail: aichelin@subatech.in2p3.fr

More information

J/Ψ-suppression in the hadron resonance gas

J/Ψ-suppression in the hadron resonance gas J/Ψ-suppression in the hadron resonance gas Dariusz Prorok Institute of Theoretical Physics University of Wroc law Wroc law, 17 February 2014 HECOLS workshop and XXXII Max-Born Symposium Dariusz Prorok

More information

Space-time evolution of the Quark Gluon Plasma. Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg

Space-time evolution of the Quark Gluon Plasma. Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg Space-time evolution of the Quark Gluon Plasma Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg High-energy nucleus-nucleus Collisions High-Energy Nuclear Collisions Time à

More information

Studies of QCD Matter From E178 at NAL to CMS at LHC

Studies of QCD Matter From E178 at NAL to CMS at LHC Studies of QCD Matter From E178 at NAL to CMS at LHC Wit Busza MIT Wit Busza Fermilab Colloquium, May 2012 1 The Study of the Condensed Matter of QCD, more commonly known as Relativistic Heavy Ion Physics

More information

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s Quark matter probed by dileptons Olena Linnyk July 02, 2010 Information from photons and dileptons 14 12 10 ε/t 4 8 6 4 2 Lattice QCD: µ B =0 µ B =530 MeV 0 0.5 1.0 1.5 2.0 2.5 3.0 T/T c But what are the

More information

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape Outline: Non-central collision of spherical nuclei or central collision of deformed nuclei Overlapping zone is of almond shape Co ordinate space anisotropy is converted into momentum space anisotropy via

More information

PoS(WPCF2011)012. New results on event-by-event fluctuations in A+A collisions at the CERN SPS. Grzegorz Stefanek for the NA49 Collaboration

PoS(WPCF2011)012. New results on event-by-event fluctuations in A+A collisions at the CERN SPS. Grzegorz Stefanek for the NA49 Collaboration New results on eventbyevent fluctuations in AA collisions at the CERN SPS for the NA9 Collaboration Jan Kochanowski University, Kielce, Poland Email: grzegorz.stefanek@pu.kielce.pl The study of central

More information

A Senior Honors Thesis

A Senior Honors Thesis A Study Using Relativistic Hydrodynamics for Ultrarelativistic Heavy-Ion Collisions: The Quark-Gluon-Plasma to Hadron Phase Transition and LHC Predictions A Senior Honors Thesis Presented in Partial Fulfillment

More information

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Recent Results from RHIC: On the trail of the Quark-Gluon Plasma Single Au+Au Collision seen by STAR@RHIC Gunther Roland Gunther Roland/MIT July 15 2003 MPI Munich 15/7/2003 Gunther Roland/MIT www.spiegel.de

More information

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions The ALICE experiment at LHC Experimental conditions at LHC The ALICE detector Some physics observables Conclusions ALICE @ LHC PbPb collisions at 1150 TeV = 0.18 mj Experimental conditions @LHC 2007 start

More information

Thermal dileptons as fireball probes at SIS energies

Thermal dileptons as fireball probes at SIS energies Thermal dileptons as fireball probes at SIS energies Critical Point and Onset of Deconfinement 2016, Wrocław. Florian Seck TU Darmstadt in collaboration with T. Galatyuk, P. M. Hohler, R. Rapp & J. Stroth

More information

Resonances in Hadronic Transport

Resonances in Hadronic Transport Resonances in Hadronic Transport Steffen A. Bass Duke University The UrQMD Transport Model Infinite Matter Resonances out of Equilibrium Transport Coefficients: η/s work supported through grants by 1 The

More information

Rapidity Dependence of Transverse Momentum Correlations from Fluctuating Hydrodynamics

Rapidity Dependence of Transverse Momentum Correlations from Fluctuating Hydrodynamics Rapidity Dependence of Transverse Momentum Correlations from Fluctuating Hydrodynamics Rajendra Pokharel a, Sean Gavin a and George Moschelli b a)wayne State University, 666 W Hancock, Detroit MI 48084,

More information

Space-time Evolution of A+A collision

Space-time Evolution of A+A collision Time Space-time Evolution of A+A collision Jets Fluctuations p p K K0* f g e m Hadronization (Freeze-out) + Expansion Mixed phase? QGP phase Thermalization Space (z) A Pre-equilibrium A Hadrons reflect

More information

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks Thomas Schaefer, North Carolina State University RHIC serves the perfect fluid Experiments at RHIC are consistent with the idea that a thermalized

More information

QGP Hydrodynamics. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad

QGP Hydrodynamics. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad QGP Hydrodynamics Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad First School on LHC Physics, NCP, Islamabad Oct 28, 2009 1 Outline QGP Evolution Centrality Why Hydrodynamics? What is a flow? Percolation

More information