CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random Variables

Size: px
Start display at page:

Download "CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random Variables"

Transcription

1 CDA6530: Performance Models of Computers and Networks Chapter 2: Review of Practical Random Variables

2 Two Classes of R.V. Discrete R.V. Bernoulli Binomial Geometric Poisson Continuous R.V. Uniform Exponential, Erlang Normal Closely related Exponential Geometric Normal Binomial, Poisson 2

3 Definition Random variable (R.V.) X: A function on sample space X: S! R Cumulative distribution function (CDF): Probability distribution function (PDF) Distribution function F X (x) = P(X x) Can be used for both continuous and discrete random variables 3

4 Probability density function (pdf): Used for continuous R.V. F X (x) = R x 1 f X (t)dt Probability mass function (pmf): Used for discrete R.V. Probability of the variable exactly equals to a value f X (x) = P (X = x) f X (x) = df X(x) dx 4

5 Bernoulli A trial/experiment, outcome is either success or failure. X=1 if success, X=0 if failure P(X=1)=p, P(X=0)=1-p Bernoulli Trials A series of independent repetition of Bernoulli trial. 5

6 Binomial A Bernoulli trials with n repetitions Binomial: X = No. of successes in n trails X» B(n, p) P (X = k) f(k; n; p) =! = n! (n k)!k! where à n k à n k! p k (1 p) n k 6

7 Binomial Example (1) A communication channel with (1-p) being the probability of successful transmission of a bit. Assume we design a code that can tolerate up to e bit errors with n bit word code. Q: Probability of successful word transmission? Model: sequence of bits trans. follows a Bernoulli Trails Assumption: each bit error or not is independent P(Q) = P(e or fewer errors in n trails) = P e i=0 f(i; n; p) = P e i=0 Ã n i! p i (1 p) n i 7

8 Binomial Example (2) ---- Packet switching versus circuit switching Packet switching allows more users to use network! 1 Mb/s link each user: 100 kb/s when active active 10% of time circuit-switching: 10 users packet switching: with 35 users, prob. of > 10 active less than.0004 N users 1 Mbps link Q: how did we know ? Introduction 1-8

9 Geometric Still about Bernoulli Trails, but from a different angle. X: No. of trials until the first success Y: No. of failures until the first success P(X=k) = (1-p) k-1 p P(Y=k)=(1-p) k p X Y 9

10 Poisson Limiting case for Binomial when: n is large and p is small n>20 and p<0.05 would be good approximation Reference: wiki =np is fixed, success rate X: No. of successes in a time interval (n time units) P (X = k) = e k k! Many natural systems have this distribution The number of phone calls at a call center per minute. The number of times a web server is accessed per minute. The number of mutations in a given stretch of DNA after a certain amount of radiation. 10

11 Continous R.V - Uniform X: is a uniform r.v. on (, ) if f(x) = 8 < 1 ; : if < x < 0 otherwise Uniform r.v. is the basis for simulation other distributions Introduce later 11

12 Exponential r.v. X: f(x) = F X (x)= 1-e - x 8 < : e x ; if x 0 0 if x < 0 Very important distribution Memoryless property Corresponding to geometric distr. 12

13 r.v. X (k-th Erlang): Erlang K-th Erlang is the sum of k Exponential distr. 13

14 Normal r.v. X: f(x) = 1 ¾ p 2¼ e (x ¹)2 =(2¾ 2) ; 1 < x < 1 Corresponding to Binomial and Poisson distributions 14

15 If X~N(¹, ¾ 2 ), then Normal r.v. Z=(X-¹)/¾ follows standard normal N(0,1) P(Z<x) is denoted as (x) (x) value can be obtained from standard normal distribution table (next slide) Used to calculate the distribution value of a normal random variable X~N(¹, ¾ 2 ) P(X< ) = P(Z < ( -¹)/¾) = ( ( -¹)/¾ ) 15

16 Standard Normal Distr. Table P(X<x) = (x) (-x) = 1- (x) why? About 68% of the area under the curve falls within 1 standard deviation of the mean. About 95% of the area under the curve falls within 2 standard deviations of the mean. About 99.7% of the area under the curve falls within 3 standard deviations of the mean. 16

17 Normal Distr. Example An average light bulb manufactured by Acme Corporation lasts 300 days, 68% of light bulbs lasts within 300+/- 50 days. Assuming that bulb life is normally distributed. Q1: What is the probability that an Acme light bulb will last at most 365 days? Q2: If we installed 100 new bulbs on a street exactly one year ago, how many bulbs still work now on average? What is the distribution of the number of remaining bulbs? Step 1: Modeling X~N(300, 50 2 ) ¹=300, ¾=50. Q1 is P(X 365) define Z = (X-300)/50, then Z is standard normal For Q2, # of remaining bulbs, Y, is a Bernoulli trial with 100 repetitions with small prob. p = [1- P(X 365)] Y follows Poisson distribution (approximated from Binomial distr.) E[Y] = λ= np = 100 * [1- P(X 365)] 17

18 Memoryless Property Memoryless for Geometric and Exponential Easy to understand for Geometric Each trial is independent how many trials before hit does not depend on how many times I have missed before. X: Geometric r.v., P X (k)=(1-p) k-1 p; Y: Y=X-n No. of trials given we failed first n times P Y (k) = P(Y=k X>n)=P(X=k+n X>n) = P (X=k+n;X>n) P (X>n) = (1 p)k+n 1 p (1 p) n = P (X=k+n) P (X>n) = p(1 p) k 1 = P X (k) 18

19 pdf: probability density function Continuous r.v. f X (x) pmf: probability mass function Discrete r.v. X: P X (x)=p(x=x) Also denoted as P X (x) or simply P(x) 19

20 Discrete r.v. X E[X] = kp X (k) Continous r.v. X E[X] = Mean (Expectation) Z 1 1 kf(k)dk Bernoulli: E[X] = 0(1-p) + 1 p = p Binomial: E[X]=np (intuitive meaning?) Geometric: E[X]=1/p (intuitive meaning?) Poisson: E[X]= (remember =np) 20

21 Mean Continuous r.v. Uniform: E[X]= ( + )/2 Exponential: E[X]= 1/ K-th Erlang E[X] = k/ Normal: E[X]=¹ 21

22 Function of Random Variables R.V. X, R.V. Y=g(X) Discrete r.v. X: E[g(X)] = g(x)p(x) Continuous r.v. X: E[g(X)] = Z 1 1 g(x)f(x)dx Variance: Var(X) = E[ (X-E[X]) 2 ] = E[X 2 ] (E[X]) 2 22

23 Joint Distributed Random Variables F XY (x,y)=p(x x, Y y) F XY (x,y)=f X (x)f Y (y) if X and Y are independent F X Y (x y) = F XY (x,y)/f Y (y) E[ X + Y]= E[X]+ E[Y] If X, Y independent E[g(X)h(Y)]=E[g(X)] E[h(Y)] Covariance Measure of how much two variables change together Cov(X,Y)=E[ (X-E[X])(Y-E[Y]) ] = E[XY] E[X]E[Y] If X and Y independent, Cov(X,Y)=0 23

24 Limit Theorems - Inequality Markov s Inequality r.v. X 0: 8 >0, P(X ) E[X]/ Chebyshev s Inequality r.v. X, E[X]=¹, Var(X)=¾ 2 8 k>0, P( X-¹ k) ¾ 2 /k 2 Provide bounds when only mean and variance known The bounds may be more conservative than derived bounds if we know the distribution 24

25 Inequality Examples If =2E[X], then P(X ) 0.5 A pool of articles from a publisher. Assume we know that the articles are on average 1000 characters long with a standard deviation of 200 characters. Q: what is the prob. a given article is between 600 and 1400 characters? Model: r.v. X: ¹=1000, ¾=200, k=400 in Chebyshev s P(Q) = 1- P( X-¹ k) 1- (¾/k) 2 =0.75 If we know X follows normal distr.: The bound will be tigher 75% chance of an article being between 760 and 1240 characters long 25

26 Strong Law of Large Number i.i.d. (independent and identically-distributed) X i : i.i.d. random variables, E[X i ]=¹ With probability 1, (X 1 +X 2 + +X n )/n ¹, as n1 Foundation for using large number of simulations to obtain average results 26

27 Central Limit Theorem X i : i.i.d. random variables, E[X i ]=¹ Var(X i )=¾ 2 X Y= 1 + X X n n¹ ¾ p n Then, Y» N(0,1) as n1 The reason for why normal distribution is everywhere Sample mean is also normal distributed Sample mean ¹X ¹X = nx i=1 X i =n E[ ¹X] = ¹ V ar( ¹X) = ¾ 2 =n What does this mean? 27

28 Example Let X i, i=1,2,, 10 be i.i.d., X i is uniform X10 distr. (0,1). Calculate E[X i ]=0.5, Var(X i )=1/12 P ( 10 X i=1 P ( i=1 X i > 7) P 10 X X i > 7) = P ( q i=1 i 5 10(1=12) > 7 5 q10(1=12) ) ¼ 1 (2:2) = 0:0139 (x): prob. standard normal distr. P(X< x) 28

29 Conditional Probability Suppose r.v. X and Y have joint pmf p(x,y) p(1,1)=0.5, p(1,2)=0.1, p(2,1)=0.1, p(2,2)=0.3 Q: Calculate the pmf of X given that Y=1 p Y (1)=p(1,1)+p(2,1)=0.6 X sample space {1,2} p X Y (1 1) =P(X=1 Y=1) = P(X=1, Y=1)/P(Y=1) = p(1,1)/p Y (1) = 5/6 Similarly, p X Y (2,1) = 1/6 29

30 Expectation by Conditioning r.v. X and Y. then E[X Y] is also a r.v. Formula: E[X]=E[E[X Y]] Make it clearer, E X [X]= E Y [ E X [X Y] ] It corresponds to the law of total probability E X [X]= E X [X Y=y] P(Y=y) Used in the same situation where you use the law of total probability 30

31 Example r.v. X and N, independent Y=X 1 +X 2 + +X N Q: compute E[Y]? 31

32 Example 1 A company s network has a design problem on its routing algorithm for its core router. For a given packet, it forwards correctly with prob. 1/3 where the packet takes 2 seconds to reach the target; forwards it to a wrong path with prob. 1/3, where the packet comes back after 3 seconds; forwards it to another wrong with prob. 1/3, where the packet comes back after 5 seconds. Q: What is the expected time delay for the packet reach the target? Memoryless Expectation by condition 32

33 Example 2 Suppose a spam filter gives each incoming an overall score. A higher score means the is more likely to be spam. By running the filter on training set of (known normal + known spam), we know that 80% of normal s have scores of 1.5 ± 0.4; 68% of spam s have scores of 4 ± 1. Assume the score of normal or spam follows normal distr. Q1: If we want spam detection rate of 95%, what threshold should we configure the filter? Q2: What is the false positive rate under this configuration? 33

34 Example 3 A ball is drawn from an bottle containing three white and two black balls. After each ball is drawn, it is then placed back. This goes on indefinitely. Q: What is the probability that among the first four drawn balls, exactly two are white? P (X = k) f(k; n; p) = Ã n k! p k (1 p) n k 34

35 Example 4 A type of battery has a lifetime with ¹=40 hours and ¾=20 hours. A battery is used until it fails, at which point it is replaced by a new one. Q: If we have 25 batteries, what s the probability that over 1100 hours of use can be achieved? Approximate by central limit theorem 35

36 Example 5 If the prob. of a person suffer bad reaction from the injection of a given serum is 0.1%, determine the probability that out of 2000 individuals (a). exactly 3 (b). More than 2 individuals suffer a bad reaction? (c). If we inject one person per minute, what is the average time between two bad reaction injections? Poisson distribution (for rare event in a large number of independent event series) Can use Binomial, but too much computation Geometric 36

37 Example 6 A group of n camping people work on assembling their individual tent individually. The time for a person finishes is modeled by r.v. X. Q1: what is the PDF for the time when the first tent is ready? Q2: what is the PDF for the time when all tents are ready? Suppose X i are i.i.d., i=1, 2,, n Q: compute PDF of r.v. Y and Z where Y= max(x 1, X 2,, X n ) Z= min(x 1, X 2,, X n ) Y, Z can be used for modeling many phenomenon 37

38 Example 7 A coin having probability p of coming up heads is flipped until two of the most recent three flips are heads. Let N denote the number of heads. Find E[N] P(N=n) = P(Y 2 3,, Y n-1 3, Y n 2) 38

CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random

CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random CDA6530: Performance Models of Computers and Networks Chapter 2: Review of Practical Random Variables Definition Random variable (RV)X (R.V.) X: A function on sample space X: S R Cumulative distribution

More information

CDA5530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random Variables

CDA5530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random Variables CDA5530: Performance Models of Computers and Networks Chapter 2: Review of Practical Random Variables Definition Random variable (R.V.) X: A function on sample space X: S R Cumulative distribution function

More information

Basic concepts of probability theory

Basic concepts of probability theory Basic concepts of probability theory Random variable discrete/continuous random variable Transform Z transform, Laplace transform Distribution Geometric, mixed-geometric, Binomial, Poisson, exponential,

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

Basic concepts of probability theory

Basic concepts of probability theory Basic concepts of probability theory Random variable discrete/continuous random variable Transform Z transform, Laplace transform Distribution Geometric, mixed-geometric, Binomial, Poisson, exponential,

More information

Basic concepts of probability theory

Basic concepts of probability theory Basic concepts of probability theory Random variable discrete/continuous random variable Transform Z transform, Laplace transform Distribution Geometric, mixed-geometric, Binomial, Poisson, exponential,

More information

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University Chapter 3, 4 Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 The Notion of a Random Variable A random variable X is a function that assigns a real

More information

3 Multiple Discrete Random Variables

3 Multiple Discrete Random Variables 3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f

More information

Discrete Random Variables

Discrete Random Variables CPSC 53 Systems Modeling and Simulation Discrete Random Variables Dr. Anirban Mahanti Department of Computer Science University of Calgary mahanti@cpsc.ucalgary.ca Random Variables A random variable is

More information

Northwestern University Department of Electrical Engineering and Computer Science

Northwestern University Department of Electrical Engineering and Computer Science Northwestern University Department of Electrical Engineering and Computer Science EECS 454: Modeling and Analysis of Communication Networks Spring 2008 Probability Review As discussed in Lecture 1, probability

More information

Tom Salisbury

Tom Salisbury MATH 2030 3.00MW Elementary Probability Course Notes Part V: Independence of Random Variables, Law of Large Numbers, Central Limit Theorem, Poisson distribution Geometric & Exponential distributions Tom

More information

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators.

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. IE 230 Seat # Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. Score Exam #3a, Spring 2002 Schmeiser Closed book and notes. 60 minutes. 1. True or false. (for each,

More information

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline.

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline. Random Variables Amappingthattransformstheeventstotherealline. Example 1. Toss a fair coin. Define a random variable X where X is 1 if head appears and X is if tail appears. P (X =)=1/2 P (X =1)=1/2 Example

More information

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows.

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows. Chapter 5 Two Random Variables In a practical engineering problem, there is almost always causal relationship between different events. Some relationships are determined by physical laws, e.g., voltage

More information

Mathematical Statistics 1 Math A 6330

Mathematical Statistics 1 Math A 6330 Mathematical Statistics 1 Math A 6330 Chapter 3 Common Families of Distributions Mohamed I. Riffi Department of Mathematics Islamic University of Gaza September 28, 2015 Outline 1 Subjects of Lecture 04

More information

Stochastic Models of Manufacturing Systems

Stochastic Models of Manufacturing Systems Stochastic Models of Manufacturing Systems Ivo Adan Organization 2/47 7 lectures (lecture of May 12 is canceled) Studyguide available (with notes, slides, assignments, references), see http://www.win.tue.nl/

More information

2. Suppose (X, Y ) is a pair of random variables uniformly distributed over the triangle with vertices (0, 0), (2, 0), (2, 1).

2. Suppose (X, Y ) is a pair of random variables uniformly distributed over the triangle with vertices (0, 0), (2, 0), (2, 1). Name M362K Final Exam Instructions: Show all of your work. You do not have to simplify your answers. No calculators allowed. There is a table of formulae on the last page. 1. Suppose X 1,..., X 1 are independent

More information

Basics on Probability. Jingrui He 09/11/2007

Basics on Probability. Jingrui He 09/11/2007 Basics on Probability Jingrui He 09/11/2007 Coin Flips You flip a coin Head with probability 0.5 You flip 100 coins How many heads would you expect Coin Flips cont. You flip a coin Head with probability

More information

a zoo of (discrete) random variables

a zoo of (discrete) random variables a zoo of (discrete) random variables 42 uniform random variable Takes each possible value, say {1..n} with equal probability. Say random variable uniform on S Recall envelopes problem on homework... Randomization

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Tobias Neckel, Ionuț-Gabriel Farcaș Lehrstuhl Informatik V Summer Semester 2017 Lecture 2: Repetition of probability theory and statistics Example: coin flip Example

More information

Lecture 4: Sampling, Tail Inequalities

Lecture 4: Sampling, Tail Inequalities Lecture 4: Sampling, Tail Inequalities Variance and Covariance Moment and Deviation Concentration and Tail Inequalities Sampling and Estimation c Hung Q. Ngo (SUNY at Buffalo) CSE 694 A Fun Course 1 /

More information

Review of Probability. CS1538: Introduction to Simulations

Review of Probability. CS1538: Introduction to Simulations Review of Probability CS1538: Introduction to Simulations Probability and Statistics in Simulation Why do we need probability and statistics in simulation? Needed to validate the simulation model Needed

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

ACM 116: Lecture 2. Agenda. Independence. Bayes rule. Discrete random variables Bernoulli distribution Binomial distribution

ACM 116: Lecture 2. Agenda. Independence. Bayes rule. Discrete random variables Bernoulli distribution Binomial distribution 1 ACM 116: Lecture 2 Agenda Independence Bayes rule Discrete random variables Bernoulli distribution Binomial distribution Continuous Random variables The Normal distribution Expected value of a random

More information

Midterm Exam 1 Solution

Midterm Exam 1 Solution EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2015 Kannan Ramchandran September 22, 2015 Midterm Exam 1 Solution Last name First name SID Name of student on your left:

More information

1 Random Variable: Topics

1 Random Variable: Topics Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel. 1 Random Variable: Topics Chap 2, 2.1-2.4 and Chap 3, 3.1-3.3 What is a random variable?

More information

Expectation of Random Variables

Expectation of Random Variables 1 / 19 Expectation of Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 13, 2015 2 / 19 Expectation of Discrete

More information

STAT 430/510: Lecture 16

STAT 430/510: Lecture 16 STAT 430/510: Lecture 16 James Piette June 24, 2010 Updates HW4 is up on my website. It is due next Mon. (June 28th). Starting today back at section 6.7 and will begin Ch. 7. Joint Distribution of Functions

More information

The Binomial distribution. Probability theory 2. Example. The Binomial distribution

The Binomial distribution. Probability theory 2. Example. The Binomial distribution Probability theory Tron Anders Moger September th 7 The Binomial distribution Bernoulli distribution: One experiment X i with two possible outcomes, probability of success P. If the experiment is repeated

More information

Joint Probability Distributions, Correlations

Joint Probability Distributions, Correlations Joint Probability Distributions, Correlations What we learned so far Events: Working with events as sets: union, intersection, etc. Some events are simple: Head vs Tails, Cancer vs Healthy Some are more

More information

p. 4-1 Random Variables

p. 4-1 Random Variables Random Variables A Motivating Example Experiment: Sample k students without replacement from the population of all n students (labeled as 1, 2,, n, respectively) in our class. = {all combinations} = {{i

More information

Chapter 2: Random Variables

Chapter 2: Random Variables ECE54: Stochastic Signals and Systems Fall 28 Lecture 2 - September 3, 28 Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter 2: Random Variables Example. Tossing a fair coin twice:

More information

Queueing Theory and Simulation. Introduction

Queueing Theory and Simulation. Introduction Queueing Theory and Simulation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Hiroyuki Ohsaki Graduate School of Information Science & Technology, Osaka University, Japan

More information

HW7 Solutions. f(x) = 0 otherwise. 0 otherwise. The density function looks like this: = 20 if x [10, 90) if x [90, 100]

HW7 Solutions. f(x) = 0 otherwise. 0 otherwise. The density function looks like this: = 20 if x [10, 90) if x [90, 100] HW7 Solutions. 5 pts.) James Bond James Bond, my favorite hero, has again jumped off a plane. The plane is traveling from from base A to base B, distance km apart. Now suppose the plane takes off from

More information

BMIR Lecture Series on Probability and Statistics Fall, 2015 Uniform Distribution

BMIR Lecture Series on Probability and Statistics Fall, 2015 Uniform Distribution Lecture #5 BMIR Lecture Series on Probability and Statistics Fall, 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University s 5.1 Definition ( ) A continuous random

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

Notes for Math 324, Part 17

Notes for Math 324, Part 17 126 Notes for Math 324, Part 17 Chapter 17 Common discrete distributions 17.1 Binomial Consider an experiment consisting by a series of trials. The only possible outcomes of the trials are success and

More information

Chapter 5 Joint Probability Distributions

Chapter 5 Joint Probability Distributions Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger Chapter 5 Joint Probability Distributions 5 Joint Probability Distributions CHAPTER OUTLINE 5-1 Two

More information

Math Spring Practice for the final Exam.

Math Spring Practice for the final Exam. Math 4 - Spring 8 - Practice for the final Exam.. Let X, Y, Z be three independnet random variables uniformly distributed on [, ]. Let W := X + Y. Compute P(W t) for t. Honors: Compute the CDF function

More information

Fundamental Tools - Probability Theory II

Fundamental Tools - Probability Theory II Fundamental Tools - Probability Theory II MSc Financial Mathematics The University of Warwick September 29, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory II 1 / 22 Measurable random

More information

Continuous Probability Distributions. Uniform Distribution

Continuous Probability Distributions. Uniform Distribution Continuous Probability Distributions Uniform Distribution Important Terms & Concepts Learned Probability Mass Function (PMF) Cumulative Distribution Function (CDF) Complementary Cumulative Distribution

More information

Topic 3: The Expectation of a Random Variable

Topic 3: The Expectation of a Random Variable Topic 3: The Expectation of a Random Variable Course 003, 2017 Page 0 Expectation of a discrete random variable Definition (Expectation of a discrete r.v.): The expected value (also called the expectation

More information

3. Probability and Statistics

3. Probability and Statistics FE661 - Statistical Methods for Financial Engineering 3. Probability and Statistics Jitkomut Songsiri definitions, probability measures conditional expectations correlation and covariance some important

More information

Quick Tour of Basic Probability Theory and Linear Algebra

Quick Tour of Basic Probability Theory and Linear Algebra Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra CS224w: Social and Information Network Analysis Fall 2011 Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra Outline Definitions

More information

SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416)

SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416) SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416) D. ARAPURA This is a summary of the essential material covered so far. The final will be cumulative. I ve also included some review problems

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

Ching-Han Hsu, BMES, National Tsing Hua University c 2015 by Ching-Han Hsu, Ph.D., BMIR Lab. = a + b 2. b a. x a b a = 12

Ching-Han Hsu, BMES, National Tsing Hua University c 2015 by Ching-Han Hsu, Ph.D., BMIR Lab. = a + b 2. b a. x a b a = 12 Lecture 5 Continuous Random Variables BMIR Lecture Series in Probability and Statistics Ching-Han Hsu, BMES, National Tsing Hua University c 215 by Ching-Han Hsu, Ph.D., BMIR Lab 5.1 1 Uniform Distribution

More information

Continuous-Valued Probability Review

Continuous-Valued Probability Review CS 6323 Continuous-Valued Probability Review Prof. Gregory Provan Department of Computer Science University College Cork 2 Overview Review of discrete distributions Continuous distributions 3 Discrete

More information

1 Review of Probability and Distributions

1 Review of Probability and Distributions Random variables. A numerically valued function X of an outcome ω from a sample space Ω X : Ω R : ω X(ω) is called a random variable (r.v.), and usually determined by an experiment. We conventionally denote

More information

Chapter 2 Random Variables

Chapter 2 Random Variables Stochastic Processes Chapter 2 Random Variables Prof. Jernan Juang Dept. of Engineering Science National Cheng Kung University Prof. Chun-Hung Liu Dept. of Electrical and Computer Eng. National Chiao Tung

More information

Guidelines for Solving Probability Problems

Guidelines for Solving Probability Problems Guidelines for Solving Probability Problems CS 1538: Introduction to Simulation 1 Steps for Problem Solving Suggested steps for approaching a problem: 1. Identify the distribution What distribution does

More information

continuous random variables

continuous random variables continuous random variables continuous random variables Discrete random variable: takes values in a finite or countable set, e.g. X {1,2,..., 6} with equal probability X is positive integer i with probability

More information

5. Random Vectors. probabilities. characteristic function. cross correlation, cross covariance. Gaussian random vectors. functions of random vectors

5. Random Vectors. probabilities. characteristic function. cross correlation, cross covariance. Gaussian random vectors. functions of random vectors EE401 (Semester 1) 5. Random Vectors Jitkomut Songsiri probabilities characteristic function cross correlation, cross covariance Gaussian random vectors functions of random vectors 5-1 Random vectors we

More information

Class 8 Review Problems solutions, 18.05, Spring 2014

Class 8 Review Problems solutions, 18.05, Spring 2014 Class 8 Review Problems solutions, 8.5, Spring 4 Counting and Probability. (a) Create an arrangement in stages and count the number of possibilities at each stage: ( ) Stage : Choose three of the slots

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 20, 2012 Introduction Introduction The world of the model-builder

More information

Lecture 4: Random Variables and Distributions

Lecture 4: Random Variables and Distributions Lecture 4: Random Variables and Distributions Goals Random Variables Overview of discrete and continuous distributions important in genetics/genomics Working with distributions in R Random Variables A

More information

1 Basic continuous random variable problems

1 Basic continuous random variable problems Name M362K Final Here are problems concerning material from Chapters 5 and 6. To review the other chapters, look over previous practice sheets for the two exams, previous quizzes, previous homeworks and

More information

More than one variable

More than one variable Chapter More than one variable.1 Bivariate discrete distributions Suppose that the r.v. s X and Y are discrete and take on the values x j and y j, j 1, respectively. Then the joint p.d.f. of X and Y, to

More information

It can be shown that if X 1 ;X 2 ;:::;X n are independent r.v. s with

It can be shown that if X 1 ;X 2 ;:::;X n are independent r.v. s with Example: Alternative calculation of mean and variance of binomial distribution A r.v. X has the Bernoulli distribution if it takes the values 1 ( success ) or 0 ( failure ) with probabilities p and (1

More information

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p).

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p). Sect 3.4: Binomial RV Special Discrete RV s 1. Assumptions and definition i. Experiment consists of n repeated trials ii. iii. iv. There are only two possible outcomes on each trial: success (S) or failure

More information

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO QUESTION BOOKLET EE 26 Spring 2006 Final Exam Wednesday, May 7, 8am am DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO You have 80 minutes to complete the final. The final consists of five

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 3 October 29, 2012 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline Reminder: Probability density function Cumulative

More information

Probability reminders

Probability reminders CS246 Winter 204 Mining Massive Data Sets Probability reminders Sammy El Ghazzal selghazz@stanfordedu Disclaimer These notes may contain typos, mistakes or confusing points Please contact the author so

More information

Math/Stat 352 Lecture 8

Math/Stat 352 Lecture 8 Math/Stat 352 Lecture 8 Sections 4.3 and 4.4 Commonly Used Distributions: Poisson, hypergeometric, geometric, and negative binomial. 1 The Poisson Distribution Poisson random variable counts the number

More information

Joint Distribution of Two or More Random Variables

Joint Distribution of Two or More Random Variables Joint Distribution of Two or More Random Variables Sometimes more than one measurement in the form of random variable is taken on each member of the sample space. In cases like this there will be a few

More information

An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211)

An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211) An-Najah National University Faculty of Engineering Industrial Engineering Department Course : Quantitative Methods (65211) Instructor: Eng. Tamer Haddad 2 nd Semester 2009/2010 Chapter 3 Discrete Random

More information

CSE 312, 2017 Winter, W.L. Ruzzo. 7. continuous random variables

CSE 312, 2017 Winter, W.L. Ruzzo. 7. continuous random variables CSE 312, 2017 Winter, W.L. Ruzzo 7. continuous random variables The new bit continuous random variables Discrete random variable: values in a finite or countable set, e.g. X {1,2,..., 6} with equal probability

More information

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay 1 / 13 Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay August 8, 2013 2 / 13 Random Variable Definition A real-valued

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Relationship between probability set function and random variable - 2 -

Relationship between probability set function and random variable - 2 - 2.0 Random Variables A rat is selected at random from a cage and its sex is determined. The set of possible outcomes is female and male. Thus outcome space is S = {female, male} = {F, M}. If we let X be

More information

STAT509: Discrete Random Variable

STAT509: Discrete Random Variable University of South Carolina September 16, 2014 Motivation So far, we have already known how to calculate probabilities of events. Suppose we toss a fair coin three times, we know that the probability

More information

Notes for Math 324, Part 19

Notes for Math 324, Part 19 48 Notes for Math 324, Part 9 Chapter 9 Multivariate distributions, covariance Often, we need to consider several random variables at the same time. We have a sample space S and r.v. s X, Y,..., which

More information

Chapter 2 Queueing Theory and Simulation

Chapter 2 Queueing Theory and Simulation Chapter 2 Queueing Theory and Simulation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Hiroyuki Ohsaki Graduate School of Information Science & Technology, Osaka University,

More information

STAT 430/510 Probability Lecture 12: Central Limit Theorem and Exponential Distribution

STAT 430/510 Probability Lecture 12: Central Limit Theorem and Exponential Distribution STAT 430/510 Probability Lecture 12: Central Limit Theorem and Exponential Distribution Pengyuan (Penelope) Wang June 15, 2011 Review Discussed Uniform Distribution and Normal Distribution Normal Approximation

More information

Probability Review. Chao Lan

Probability Review. Chao Lan Probability Review Chao Lan Let s start with a single random variable Random Experiment A random experiment has three elements 1. sample space Ω: set of all possible outcomes e.g.,ω={1,2,3,4,5,6} 2. event

More information

Chapter 2. Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables

Chapter 2. Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables Chapter 2 Some Basic Probability Concepts 2.1 Experiments, Outcomes and Random Variables A random variable is a variable whose value is unknown until it is observed. The value of a random variable results

More information

Raquel Prado. Name: Department of Applied Mathematics and Statistics AMS-131. Spring 2010

Raquel Prado. Name: Department of Applied Mathematics and Statistics AMS-131. Spring 2010 Raquel Prado Name: Department of Applied Mathematics and Statistics AMS-131. Spring 2010 Final Exam (Type B) The midterm is closed-book, you are only allowed to use one page of notes and a calculator.

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

CDA6530: Performance Models of Computers and Networks. Chapter 3: Review of Practical Stochastic Processes

CDA6530: Performance Models of Computers and Networks. Chapter 3: Review of Practical Stochastic Processes CDA6530: Performance Models of Computers and Networks Chapter 3: Review of Practical Stochastic Processes Definition Stochastic process X = {X(t), t2 T} is a collection of random variables (rvs); one rv

More information

Chapter 2. Probability

Chapter 2. Probability 2-1 Chapter 2 Probability 2-2 Section 2.1: Basic Ideas Definition: An experiment is a process that results in an outcome that cannot be predicted in advance with certainty. Examples: rolling a die tossing

More information

EE 505 Introduction. What do we mean by random with respect to variables and signals?

EE 505 Introduction. What do we mean by random with respect to variables and signals? EE 505 Introduction What do we mean by random with respect to variables and signals? unpredictable from the perspective of the observer information bearing signal (e.g. speech) phenomena that are not under

More information

1. If X has density. cx 3 e x ), 0 x < 0, otherwise. Find the value of c that makes f a probability density. f(x) =

1. If X has density. cx 3 e x ), 0 x < 0, otherwise. Find the value of c that makes f a probability density. f(x) = 1. If X has density f(x) = { cx 3 e x ), 0 x < 0, otherwise. Find the value of c that makes f a probability density. 2. Let X have density f(x) = { xe x, 0 < x < 0, otherwise. (a) Find P (X > 2). (b) Find

More information

Joint Probability Distributions, Correlations

Joint Probability Distributions, Correlations Joint Probability Distributions, Correlations What we learned so far Events: Working with events as sets: union, intersection, etc. Some events are simple: Head vs Tails, Cancer vs Healthy Some are more

More information

1 Review of Probability

1 Review of Probability 1 Review of Probability Random variables are denoted by X, Y, Z, etc. The cumulative distribution function (c.d.f.) of a random variable X is denoted by F (x) = P (X x), < x

More information

STAT 414: Introduction to Probability Theory

STAT 414: Introduction to Probability Theory STAT 414: Introduction to Probability Theory Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical Exercises

More information

1 Bernoulli Distribution: Single Coin Flip

1 Bernoulli Distribution: Single Coin Flip STAT 350 - An Introduction to Statistics Named Discrete Distributions Jeremy Troisi Bernoulli Distribution: Single Coin Flip trial of an experiment that yields either a success or failure. X Bern(p),X

More information

Continuous Distributions

Continuous Distributions Continuous Distributions 1.8-1.9: Continuous Random Variables 1.10.1: Uniform Distribution (Continuous) 1.10.4-5 Exponential and Gamma Distributions: Distance between crossovers Prof. Tesler Math 283 Fall

More information

Lecture 1: Review on Probability and Statistics

Lecture 1: Review on Probability and Statistics STAT 516: Stochastic Modeling of Scientific Data Autumn 2018 Instructor: Yen-Chi Chen Lecture 1: Review on Probability and Statistics These notes are partially based on those of Mathias Drton. 1.1 Motivating

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015.

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015. EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015 Midterm Exam Last name First name SID Rules. You have 80 mins (5:10pm - 6:30pm)

More information

Probability Models. 4. What is the definition of the expectation of a discrete random variable?

Probability Models. 4. What is the definition of the expectation of a discrete random variable? 1 Probability Models The list of questions below is provided in order to help you to prepare for the test and exam. It reflects only the theoretical part of the course. You should expect the questions

More information

(Practice Version) Midterm Exam 2

(Practice Version) Midterm Exam 2 EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 7, 2014 (Practice Version) Midterm Exam 2 Last name First name SID Rules. DO NOT open

More information

8 Laws of large numbers

8 Laws of large numbers 8 Laws of large numbers 8.1 Introduction We first start with the idea of standardizing a random variable. Let X be a random variable with mean µ and variance σ 2. Then Z = (X µ)/σ will be a random variable

More information

STAT 430/510: Lecture 15

STAT 430/510: Lecture 15 STAT 430/510: Lecture 15 James Piette June 23, 2010 Updates HW4 is up on my website. It is due next Mon. (June 28th). Starting today back at section 6.4... Conditional Distribution: Discrete Def: The conditional

More information

ACM 116: Lectures 3 4

ACM 116: Lectures 3 4 1 ACM 116: Lectures 3 4 Joint distributions The multivariate normal distribution Conditional distributions Independent random variables Conditional distributions and Monte Carlo: Rejection sampling Variance

More information

Basics of Stochastic Modeling: Part II

Basics of Stochastic Modeling: Part II Basics of Stochastic Modeling: Part II Continuous Random Variables 1 Sandip Chakraborty Department of Computer Science and Engineering, INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR August 10, 2016 1 Reference

More information

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014 Lecture 13 Text: A Course in Probability by Weiss 5.5 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 13.1 Agenda 1 2 3 13.2 Review So far, we have seen discrete

More information

Twelfth Problem Assignment

Twelfth Problem Assignment EECS 401 Not Graded PROBLEM 1 Let X 1, X 2,... be a sequence of independent random variables that are uniformly distributed between 0 and 1. Consider a sequence defined by (a) Y n = max(x 1, X 2,..., X

More information

Midterm Exam 2 (Solutions)

Midterm Exam 2 (Solutions) EECS 6 Probability and Random Processes University of California, Berkeley: Spring 07 Kannan Ramchandran March, 07 Midterm Exam (Solutions) Last name First name SID Name of student on your left: Name of

More information

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu Home Work: 1 1. Describe the sample space when a coin is tossed (a) once, (b) three times, (c) n times, (d) an infinite number of times. 2. A coin is tossed until for the first time the same result appear

More information