Administration. Homework 1 on web page, due Feb 11 NSERC summer undergraduate award applications due Feb 5 Some helpful books

Size: px
Start display at page:

Download "Administration. Homework 1 on web page, due Feb 11 NSERC summer undergraduate award applications due Feb 5 Some helpful books"

Transcription

1 STA 44/04 Jan 6, 00 / 5 Administration Homework on web page, due Feb NSERC summer undergraduate award applications due Feb 5 Some helpful books

2 STA 44/04 Jan 6, administration / 5

3 STA 44/04 Jan 6, 00 / 5... administration collection of tools for regression and classification some old (least squares, discriminant analysis) some new (lasso, support vector machines) statistical justifications: loss, likelihood, mean squared error, classification error, posterior probabilities... statistical thinking framework for analysing new tools

4 STA 44/04 Jan 6, 00 4 / 5 Linear regression plus variable selection: forward, backward, stepwise, all possible subsets comparing models: adjusted R, C p vs. p, AIC and variants, K -fold cross-validation shrinkage methods: ridge regression, lasso, Least Angle Regression tuning parameter (amount of shrinkage): validation data, K -fold cross-validation derived variables: principal components regression, partial least squares C p and AIC can be shown to be estimates of expected prediction error

5 STA 44/04 Jan 6, 00 Predictions with smoothing regression on training data: x s are centered and scaled when fitting Lasso, LAR, and ridge regression ˆβ 0 is not included in shrinkage (.4) p p ˆβ ridge = argmin β (yi β 0 x ij β j ) + λ (.5) ˆβ lasso = argmin β (yi β 0 ˆβ 0 = ȳ = ȳ train for predicting a new y 0 = ˆβ 0 + p j= p x ij β j ) + λ j= j= (x j 0 j= β j p β j j= x j ) ˆβ j : use ˆβ 0 = ȳ train, and x j means average for jth feature on the training data see construction of tx and mm in TableR.txt 5 / 5

6 STA 44/04 Jan 6, 00 6 / 5...predictions > options(digits=4) > as.vector(predict.lars(pr.lars,newx=test[,:8],type="fit",s=0.6, mode="fraction")$fit) [] [] [5] > as.vector(tx %*% coef(pr.lars,s=0.6,mode="fraction"))+mean(train$lpsa) [] [] [5]

7 STA 44/04 Jan 6, 00 7 / 5 Derived features.5 replace x,... x p with linear combinations of columns principal components from SVD are natural candidates X = UDV T, U T U = I N, V T V = I p z m = Xv m, m =,..., M < p z m are orthogonal by construction ŷ pcr (M) = ȳ + M m= ˆθ m z m ˆθ m = z m, y n z m, z m = i= z miy i n i= z mi inputs should be scaled first (mean 0, variance ) Angle brackets notation explained at (.5). Exercise: z m = 0??

8 STA 44/04 Jan 6, 00 8 / 5... derived features closely related method Partial least squares also constructs derived variables widely used in chemometrics, where often p > N see.6 for discussion

9

10 STA 44/04 Jan 6, 00 0 / 5 (Chapter 4) Linear methods for classification inputs X = X,..., X p (notation x used on p.0) output Y takes values in one of K classes output G is a group label: values,..., K response Y as needed (Y G), e.g. Y =, 0 as G = blue, orange Fig.; eq. (.7) data (x i, g i ), i =,... N goal to learn a model to predict the correct class for a future output, based on inputs

11 STA 44/04 Jan 6, 00 / 5 Linear methods rule: G = linear function of inputs something, else G = (with extensions for K > ) see Fig.. for a nonlinear method note that boundaries can be curved by including terms like Xj and X j X k : see Fig. 4. types of linear methods: linear regression 4. Y = β 0 + β T X linear discriminant analysis 4. logistic regression 4.4 log separating hyperplanes 4.5 P(Y = ) P(Y = 0) = β 0 + β T X

12 STA 44/04 Jan 6, 00 / 5 Linear regression 4. Y = y... y K y... y K... y N... y NK y i = (y i,..., y ik ) multivariate Bernoulli E(Y X) = XB ˆB = (X T X) X T Y : dimension? new observation (, x0 T ), new prediction (, x0 T )ˆB = (ˆf,...,ˆf K ): find the largest = x T x T X = C.. A xn T

13 STA 44/04 Jan 6, 00 / 5... linear regression if K = this is linear regression of 0/ response will produce predictions larger than, smaller than 0 more natural to consider instead modelling Pr(Y = X) and finding methods that predict in (0, ) but if data supports 0. < Pr(Y = X) < 0.8 results will not be very different Figure 4. targets t k (p. 04): t k = (0,...,,..., 0) }{{} k find the largest {ˆf (x 0 ) t k } ; another way to state the least squares solution

14 STA 44/04 Jan 6, 00 4 / 5 Discriminant analysis ( 4.) G {,,..., K }, f k (x) = f (x G = k) =density of x in class k new ingredient: density of inputs Bayes Theorem: Pr(G = k x) = f (x G = k)π k f (x) k =,..., K associated classification rule: assign a new observation to class k if Pr(G = k x) > Pr(G = k x) (maximize the posterior probability) k k

15 STA 44/04 Jan 6, 00 max{log π k + x T Σ µ k k µt k Σ µ k } 5 / 5 special case - Normal x G = k N p (µ k, Σ k ) Pr(G = k x) π k ( π) p Σ k / exp (x µ k) T Σ k (x µ k) which is maximized by maximizing the log: max{log π k k log Σ k (x µ k) T Σ k (x µ k)} if we further assume Σ k = Σ, then max{log π k k (x µ k) T Σ (x µ k )} max{log π k k (x T Σ x x T Σ µ k µ k Σ x + µ T k Σ µ k )}

16 STA 44/04 Jan 6, 00 6 / 5 Procedure: compute δ k (x) = log π k + x T Σ µ k µt k Σ µ k classify observation x to class k if δ k (x) largest (see Figure 4.5, left) Estimate unknown parameters π k, µ k, Σ: ˆπ k = N k N, ˆµ k = x i N k i:g i =k K Σ = (x i ˆµ k )(x i ˆµ k ) T /(N K ) k= i:g i =k Figure 4.5, 4., 4.

17 STA 44/04 Jan 6, 00 7 / 5 Special case: classes log ˆπ + x T ˆΣ ˆµ ˆµT ˆΣ ˆµ > (<) log ˆπ + x T ˆΣ ˆµ ˆµT ˆΣ ˆµ, x T ˆΣ (ˆµ ˆµ ) > (<) ˆµ ˆΣ ˆµ ˆµ ˆΣ ˆµ + log(n /N) log(n /N) LHS is a linear combination of the inputs; RHS is the cutpoint If Σ k not all equal, the discriminant function δ k (x) defines a quadratic boundary; see Figure 4.6, left An alternative is to augment the original set of features with quadratic terms and use linear discriminant functions; see Figure 4.6, right

18 STA 44/04 Jan 6, 00 8 / 5 Another description of LDA ( 4.., 4..) Let W = within class covariance matrix K k= i:g i =k (x i x k )(x i x k ) T B = between class covariance matrix K k= N k( x k x)( x k x) T B + W = K (x i x)(x i x) T = T k= i:g i =k linear classification rule a T x equivalently max a a T Ba a T Wa max a T Ba, subject to a T Wa = a

19 STA 44/04 Jan 6, 00 9 / 5... LDA Solution a, say, is the eigenvector of W B corresponding to the largest eigenvalue. This determines a line in R p. continue, finding a, orthogonal (with respect to W) to a, which is the eigenvector corresponding to the second largest eigenvalue, and so on. There are at most min(p, K ) positive eigenvalues. These eigenvectors are the linear discriminants, also called canonical variates. This technique can be useful for visualization of the groups. Figure 4.

20 STA 44/04 Jan 6, 00 0 / 5... LDA ( 4..) write ˆΣ = UDU T, where U T U = I, D is diagonal (see p.09 for ˆΣ) X = D / U T X, with ˆΣ = I classification rule is to choose k if ˆµ k is closest (closest class centroid) only needs the K points ˆµ k, and the K dimension subspace to compute this, since remaining directions are orthogonal (in the X space) if K = can plot the first two variates (cf wine data) Figures 4.4 and 4.8 algorithm on p.4

21 STA 44/04 Jan 6, 00 R code for the wine data > library(mass) > wine.lda <- lda(class alcohol + malic + ash + alcil + mag + totphen + flav + nonflav + proanth + col + hue + dil + proline, data = wine) > wine.lda Call: lda.formula(class alcohol + malic + ash + alcil + mag + totphen + flav + nonflav + proanth + col + hue + dil + proline, data = wine) Prior probabilities of groups: Group means: alcohol malic ash alcil mag totphen flav nonflav proanth col hue dil proline Coefficients of linear discriminants: LD LD alcohol malic ash alcil mag totphen flav nonflav / 5

22 STA 44/04 Jan 6, first linear discriminant second linear discriminant / 5

23 STA 44/04 Jan 6, 00 Logistic regression data (x i, g i ), g i =, ; equivalently (x i, y i ), y i = 0, natural starting point is Bernoulli distribution for y i : y i = with probability p i = p i (β) likelihood function log-likelihood L(β) = N i= p y i i ( p i ) y i l(β) = Σ N i= y i log p i (β) + ( y i ) log{ p i (β)} A common choice for p i (β) is the logistic function p i (β) = exp(βt x i ) + exp(β T x i ) x i is a column vector: the ith row of X is x T i / 5

24 STA 44/04 Jan 6, 00 4 / 5 log-likelihood Likelihood methods l(β) = Σ N i= {y iβ T x i log( + e βt x i )} (constant term included in the set of inputs; β has length p + ) Maximum likelihood estimate of β: l(β) β = 0 Σ N i= y ix ij = Σ N i= p i( ˆβ)x ij, j =,..., p β= ˆβ Fisher information l(β) β β T β= ˆβ = Σ N i= x ix T i ˆp i ( ˆp i ) Fitting: use an iteratively reweighted least squares algorithm; equivalent to Newton-Raphson; p. Asymptotics: ˆβ d N(β, { l ( ˆβ)} )

25 STA 44/04 Jan 6, 00 5 / 5 Inference Component: ˆβ j. N(β j, ˆσ j ) ˆσ j = [{ l ( ˆβ)} ] jj ; gives a t-test (z-test) for each component {l( ˆβ) l(β j, β j )}. χ dimβ j ; in particular for each component get a χ, or equivalently sign( ˆβ j β j ) [{l( ˆβ) l(β j, β j )}. N(0, ) this gives two (asymptotically equivalent) ways to test if an input is statistically significant To compare models M 0 M can use this twice to get {l M ( ˆβ) l M0 ( β q )}. χ p q which provides a test of the adequacy of M 0 LHS is the difference in (residual) deviances; analogous to SS in regression

26 STA 44/04 Jan 6, 00 Heart Data > library(elemstatlearn) > data(saheart) > hr = SA.heart > pairs(hr[:9],pch=,bg=c("red","green")[codes(factor(hr$chd))]) > hr.glm = glm(chd., data = hr, family=binomial) > summary(hr.glm) Call: glm(formula = chd., family = binomial, data = hr) Deviance Residuals: Min Q Median Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) e-06 *** sbp tobacco ** ldl ** adiposity famhistpresent e-05 *** typea ** obesity alcohol age *** --- Signif. codes: *** 0.00 ** 0.0 * (Dispersion parameter for binomial family taken to be ) Null deviance: 596. on 46 degrees of freedom Residual deviance: 47.4 on 45 degrees of freedom AIC: / 5

27 tobacco sbp adiposity ldl typea famhist alcohol age obesity

28 STA 44/04 Jan 6, 00 8 / 5 extensions E(y i ) = p i, var(y i ) = p i ( p i ) under Bernoulli Often the model is generalized to allow var(y i ) = φp i ( p i ); called over-dispersion Most software provides an estimate of φ based on residuals. if y i Binom(n i, p i ) same model applies E(y i ) = n i p i and var(y i ) = n i p i ( p i ) under Binomial Model selection uses AIC: l( ˆβ) + p In R, use glm to fit logistic regression, step for model selection glm can be used for all exponential family models: uses iteratively reweighted least squares See also 4.4.

29 STA 44/04 Jan 6, 00 9 / 5 step > step(hr.glm) Start: AIC=49.4 chd sbp + tobacco + ldl + adiposity + famhist + typea + obesity + alcohol + age Df Deviance AIC - alcohol adiposity sbp <none> obesity ldl tobacco typea age famhist Step: AIC=490.4 chd sbp + tobacco + ldl + adiposity + famhist + typea + obesity + age Df Deviance AIC - adiposity sbp <none> obesity ldl tobacco typea age famhist

30 STA 44/04 Jan 6, 00 0 / 5... step Step: AIC= chd sbp + tobacco + ldl + famhist + typea + obesity + age Df Deviance AIC - sbp <none> obesity tobacco ldl typea famhist age Step: AIC= chd tobacco + ldl + famhist + typea + obesity + age Df Deviance AIC - obesity <none> tobacco typea ldl famhist age

31 STA 44/04 Jan 6, 00 / 5... step Step: AIC= chd tobacco + ldl + famhist + typea + age Df Deviance AIC <none> ldl typea tobacco famhist age Call: glm(formula = chd tobacco + ldl + famhist + typea + age, family = binomial, data Coefficients: (Intercept) tobacco ldl famhistpresent typea age Degrees of Freedom: 46 Total (i.e. Null); Null Deviance: 596. Residual Deviance: AIC: Residual

32 STA 44/04 Jan 6, 00 / 5 Interpretation of coefficients e.g. tobacco (measured in kg): coeff= 0.08 logit {p i (β)} = β T x i increase in one unit of x ij, say, leads to increase in logit p i of 0.08 increase in p i /( p i ) of exp(0.08) =.084. estimated s.e. 0.06, logit p i ± 0.06, exp( ), exp( )) is (.0,.4). similarly for age: ˆβ j = 0.044; increased odds.045 for year increase prediction of new values to class or 0 according as ˆp > (<)0.5

33 STA 44/04 Jan 6, 00 / 5 L regularization eqn (4.) N [ ] max y β 0,β i (β 0 + β T x i ) log( + e β 0+β T x i ) λ i= note that intercept has been separated out Figure 4. interpretation? recently developed software: glmpath and glmnet p β j j=

34 STA 44/04 Jan 6, 00 4 / 5 Notes how to choose between logistic regression and discriminant analysis? classification error on the training data is overly optimistic logistic regression and generalizations to K classes doesn t assume any distribution for the inputs discriminant analysis more efficient if the assumed distribution is correct warning: in 4. x and x i are p vectors, and we estimate β 0 and β, the latter a p vector in 4.4 they are (p + ) with first element equal to and β is (p + ).

35 STA 44/04 Jan 6, 00 5 / 5 Misclassification > hr.glm.class = predict(hr.glm)>0 > table(hr.glm.class,hr$chd) hr.glm.class 0 FALSE TRUE 46 8 > hr.glm = glm(chd tobacco + ldl + famhist + age, data = hr, family=binomial) > table(predict(hr.glm)>0, hr$chd) 0 FALSE TRUE > hr.lda = lda(chd., data = hr) > table(predict(hr.lda)$class,hr$chd)

STA 450/4000 S: January

STA 450/4000 S: January STA 450/4000 S: January 6 005 Notes Friday tutorial on R programming reminder office hours on - F; -4 R The book Modern Applied Statistics with S by Venables and Ripley is very useful. Make sure you have

More information

Classification. Chapter Introduction. 6.2 The Bayes classifier

Classification. Chapter Introduction. 6.2 The Bayes classifier Chapter 6 Classification 6.1 Introduction Often encountered in applications is the situation where the response variable Y takes values in a finite set of labels. For example, the response Y could encode

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 12: Logistic regression (v1) Ramesh Johari ramesh.johari@stanford.edu Fall 2015 1 / 30 Regression methods for binary outcomes 2 / 30 Binary outcomes For the duration of this

More information

Linear Methods for Prediction

Linear Methods for Prediction Chapter 5 Linear Methods for Prediction 5.1 Introduction We now revisit the classification problem and focus on linear methods. Since our prediction Ĝ(x) will always take values in the discrete set G we

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 9: Logistic regression (v2) Ramesh Johari ramesh.johari@stanford.edu 1 / 28 Regression methods for binary outcomes 2 / 28 Binary outcomes For the duration of this lecture suppose

More information

Recap. HW due Thursday by 5 pm Next HW coming on Thursday Logistic regression: Pr(G = k X) linear on the logit scale Linear discriminant analysis:

Recap. HW due Thursday by 5 pm Next HW coming on Thursday Logistic regression: Pr(G = k X) linear on the logit scale Linear discriminant analysis: 1 / 23 Recap HW due Thursday by 5 pm Next HW coming on Thursday Logistic regression: Pr(G = k X) linear on the logit scale Linear discriminant analysis: Pr(G = k X) Pr(X G = k)pr(g = k) Theory: LDA more

More information

Logistic Regression and Generalized Linear Models

Logistic Regression and Generalized Linear Models Logistic Regression and Generalized Linear Models Sridhar Mahadevan mahadeva@cs.umass.edu University of Massachusetts Sridhar Mahadevan: CMPSCI 689 p. 1/2 Topics Generative vs. Discriminative models In

More information

Lecture 5: LDA and Logistic Regression

Lecture 5: LDA and Logistic Regression Lecture 5: and Logistic Regression Hao Helen Zhang Hao Helen Zhang Lecture 5: and Logistic Regression 1 / 39 Outline Linear Classification Methods Two Popular Linear Models for Classification Linear Discriminant

More information

Lecture 6: Methods for high-dimensional problems

Lecture 6: Methods for high-dimensional problems Lecture 6: Methods for high-dimensional problems Hector Corrada Bravo and Rafael A. Irizarry March, 2010 In this Section we will discuss methods where data lies on high-dimensional spaces. In particular,

More information

Linear Regression Models P8111

Linear Regression Models P8111 Linear Regression Models P8111 Lecture 25 Jeff Goldsmith April 26, 2016 1 of 37 Today s Lecture Logistic regression / GLMs Model framework Interpretation Estimation 2 of 37 Linear regression Course started

More information

ECLT 5810 Linear Regression and Logistic Regression for Classification. Prof. Wai Lam

ECLT 5810 Linear Regression and Logistic Regression for Classification. Prof. Wai Lam ECLT 5810 Linear Regression and Logistic Regression for Classification Prof. Wai Lam Linear Regression Models Least Squares Input vectors is an attribute / feature / predictor (independent variable) The

More information

1. Hypothesis testing through analysis of deviance. 3. Model & variable selection - stepwise aproaches

1. Hypothesis testing through analysis of deviance. 3. Model & variable selection - stepwise aproaches Sta 216, Lecture 4 Last Time: Logistic regression example, existence/uniqueness of MLEs Today s Class: 1. Hypothesis testing through analysis of deviance 2. Standard errors & confidence intervals 3. Model

More information

Classification 2: Linear discriminant analysis (continued); logistic regression

Classification 2: Linear discriminant analysis (continued); logistic regression Classification 2: Linear discriminant analysis (continued); logistic regression Ryan Tibshirani Data Mining: 36-462/36-662 April 4 2013 Optional reading: ISL 4.4, ESL 4.3; ISL 4.3, ESL 4.4 1 Reminder:

More information

Linear Methods for Prediction

Linear Methods for Prediction This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

ECLT 5810 Linear Regression and Logistic Regression for Classification. Prof. Wai Lam

ECLT 5810 Linear Regression and Logistic Regression for Classification. Prof. Wai Lam ECLT 5810 Linear Regression and Logistic Regression for Classification Prof. Wai Lam Linear Regression Models Least Squares Input vectors is an attribute / feature / predictor (independent variable) The

More information

Chap 2. Linear Classifiers (FTH, ) Yongdai Kim Seoul National University

Chap 2. Linear Classifiers (FTH, ) Yongdai Kim Seoul National University Chap 2. Linear Classifiers (FTH, 4.1-4.4) Yongdai Kim Seoul National University Linear methods for classification 1. Linear classifiers For simplicity, we only consider two-class classification problems

More information

Statistical Data Mining and Machine Learning Hilary Term 2016

Statistical Data Mining and Machine Learning Hilary Term 2016 Statistical Data Mining and Machine Learning Hilary Term 2016 Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/sdmml Naïve Bayes

More information

Applied Statistics. J. Blanchet and J. Wadsworth. Institute of Mathematics, Analysis, and Applications EPF Lausanne

Applied Statistics. J. Blanchet and J. Wadsworth. Institute of Mathematics, Analysis, and Applications EPF Lausanne Applied Statistics J. Blanchet and J. Wadsworth Institute of Mathematics, Analysis, and Applications EPF Lausanne An MSc Course for Applied Mathematicians, Fall 2012 Outline 1 Motivation: Why Applied Statistics?

More information

Outline of GLMs. Definitions

Outline of GLMs. Definitions Outline of GLMs Definitions This is a short outline of GLM details, adapted from the book Nonparametric Regression and Generalized Linear Models, by Green and Silverman. The responses Y i have density

More information

Logistic Regressions. Stat 430

Logistic Regressions. Stat 430 Logistic Regressions Stat 430 Final Project Final Project is, again, team based You will decide on a project - only constraint is: you are supposed to use techniques for a solution that are related to

More information

CMSC858P Supervised Learning Methods

CMSC858P Supervised Learning Methods CMSC858P Supervised Learning Methods Hector Corrada Bravo March, 2010 Introduction Today we discuss the classification setting in detail. Our setting is that we observe for each subject i a set of p predictors

More information

A Generalized Linear Model for Binomial Response Data. Copyright c 2017 Dan Nettleton (Iowa State University) Statistics / 46

A Generalized Linear Model for Binomial Response Data. Copyright c 2017 Dan Nettleton (Iowa State University) Statistics / 46 A Generalized Linear Model for Binomial Response Data Copyright c 2017 Dan Nettleton (Iowa State University) Statistics 510 1 / 46 Now suppose that instead of a Bernoulli response, we have a binomial response

More information

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models SCHOOL OF MATHEMATICS AND STATISTICS Linear and Generalised Linear Models Autumn Semester 2017 18 2 hours Attempt all the questions. The allocation of marks is shown in brackets. RESTRICTED OPEN BOOK EXAMINATION

More information

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II)

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II) Contents Lecture Lecture Linear Discriminant Analysis Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University Email: fredriklindsten@ituuse Summary of lecture

More information

R Hints for Chapter 10

R Hints for Chapter 10 R Hints for Chapter 10 The multiple logistic regression model assumes that the success probability p for a binomial random variable depends on independent variables or design variables x 1, x 2,, x k.

More information

Logistic Regression. James H. Steiger. Department of Psychology and Human Development Vanderbilt University

Logistic Regression. James H. Steiger. Department of Psychology and Human Development Vanderbilt University Logistic Regression James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) Logistic Regression 1 / 38 Logistic Regression 1 Introduction

More information

Topics in this module. Learning material for this module: Move to: James et al (2013): An Introduction to Statistical Learning. Chapter 2.2.3, 4.

Topics in this module. Learning material for this module: Move to: James et al (2013): An Introduction to Statistical Learning. Chapter 2.2.3, 4. Module 4: CLASSIFICATION TMA4268 Statistical Learning V2018 Mette Langaas and Julia Debik, Department of Mathematical Sciences, NTNU week 5 2018 (Version 31.01.2018) Learning material for this module:

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

LINEAR MODELS FOR CLASSIFICATION. J. Elder CSE 6390/PSYC 6225 Computational Modeling of Visual Perception LINEAR MODELS FOR CLASSIFICATION Classification: Problem Statement 2 In regression, we are modeling the relationship between a continuous input variable x and a continuous target variable t. In classification,

More information

Linear Regression. Data Model. β, σ 2. Process Model. ,V β. ,s 2. s 1. Parameter Model

Linear Regression. Data Model. β, σ 2. Process Model. ,V β. ,s 2. s 1. Parameter Model Regression: Part II Linear Regression y~n X, 2 X Y Data Model β, σ 2 Process Model Β 0,V β s 1,s 2 Parameter Model Assumptions of Linear Model Homoskedasticity No error in X variables Error in Y variables

More information

Lecture 9: Classification, LDA

Lecture 9: Classification, LDA Lecture 9: Classification, LDA Reading: Chapter 4 STATS 202: Data mining and analysis October 13, 2017 1 / 21 Review: Main strategy in Chapter 4 Find an estimate ˆP (Y X). Then, given an input x 0, we

More information

Logistic Regression - problem 6.14

Logistic Regression - problem 6.14 Logistic Regression - problem 6.14 Let x 1, x 2,, x m be given values of an input variable x and let Y 1,, Y m be independent binomial random variables whose distributions depend on the corresponding values

More information

Lecture 9: Classification, LDA

Lecture 9: Classification, LDA Lecture 9: Classification, LDA Reading: Chapter 4 STATS 202: Data mining and analysis October 13, 2017 1 / 21 Review: Main strategy in Chapter 4 Find an estimate ˆP (Y X). Then, given an input x 0, we

More information

Regularized Discriminant Analysis and Reduced-Rank LDA

Regularized Discriminant Analysis and Reduced-Rank LDA Regularized Discriminant Analysis and Reduced-Rank LDA Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Regularized Discriminant Analysis A compromise between LDA and

More information

Logistic Regression 21/05

Logistic Regression 21/05 Logistic Regression 21/05 Recall that we are trying to solve a classification problem in which features x i can be continuous or discrete (coded as 0/1) and the response y is discrete (0/1). Logistic regression

More information

Lecture 5: Classification

Lecture 5: Classification Lecture 5: Classification Advanced Applied Multivariate Analysis STAT 2221, Spring 2015 Sungkyu Jung Department of Statistics, University of Pittsburgh Xingye Qiao Department of Mathematical Sciences Binghamton

More information

Classification 1: Linear regression of indicators, linear discriminant analysis

Classification 1: Linear regression of indicators, linear discriminant analysis Classification 1: Linear regression of indicators, linear discriminant analysis Ryan Tibshirani Data Mining: 36-462/36-662 April 2 2013 Optional reading: ISL 4.1, 4.2, 4.4, ESL 4.1 4.3 1 Classification

More information

Classification Methods II: Linear and Quadratic Discrimminant Analysis

Classification Methods II: Linear and Quadratic Discrimminant Analysis Classification Methods II: Linear and Quadratic Discrimminant Analysis Rebecca C. Steorts, Duke University STA 325, Chapter 4 ISL Agenda Linear Discrimminant Analysis (LDA) Classification Recall that linear

More information

STATS216v Introduction to Statistical Learning Stanford University, Summer Midterm Exam (Solutions) Duration: 1 hours

STATS216v Introduction to Statistical Learning Stanford University, Summer Midterm Exam (Solutions) Duration: 1 hours Instructions: STATS216v Introduction to Statistical Learning Stanford University, Summer 2017 Remember the university honor code. Midterm Exam (Solutions) Duration: 1 hours Write your name and SUNet ID

More information

High-dimensional regression modeling

High-dimensional regression modeling High-dimensional regression modeling David Causeur Department of Statistics and Computer Science Agrocampus Ouest IRMAR CNRS UMR 6625 http://www.agrocampus-ouest.fr/math/causeur/ Course objectives Making

More information

Generalized Linear Models. Kurt Hornik

Generalized Linear Models. Kurt Hornik Generalized Linear Models Kurt Hornik Motivation Assuming normality, the linear model y = Xβ + e has y = β + ε, ε N(0, σ 2 ) such that y N(μ, σ 2 ), E(y ) = μ = β. Various generalizations, including general

More information

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator

UNIVERSITY OF TORONTO. Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS. Duration - 3 hours. Aids Allowed: Calculator UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2010 EXAMINATIONS STA 303 H1S / STA 1002 HS Duration - 3 hours Aids Allowed: Calculator LAST NAME: FIRST NAME: STUDENT NUMBER: There are 27 pages

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: August 30, 2018, 14.00 19.00 RESPONSIBLE TEACHER: Niklas Wahlström NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

STAC51: Categorical data Analysis

STAC51: Categorical data Analysis STAC51: Categorical data Analysis Mahinda Samarakoon April 6, 2016 Mahinda Samarakoon STAC51: Categorical data Analysis 1 / 25 Table of contents 1 Building and applying logistic regression models (Chap

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science

UNIVERSITY OF TORONTO Faculty of Arts and Science UNIVERSITY OF TORONTO Faculty of Arts and Science December 2013 Final Examination STA442H1F/2101HF Methods of Applied Statistics Jerry Brunner Duration - 3 hours Aids: Calculator Model(s): Any calculator

More information

Generalized linear models for binary data. A better graphical exploratory data analysis. The simple linear logistic regression model

Generalized linear models for binary data. A better graphical exploratory data analysis. The simple linear logistic regression model Stat 3302 (Spring 2017) Peter F. Craigmile Simple linear logistic regression (part 1) [Dobson and Barnett, 2008, Sections 7.1 7.3] Generalized linear models for binary data Beetles dose-response example

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Generalized Linear Models. Last time: Background & motivation for moving beyond linear

Generalized Linear Models. Last time: Background & motivation for moving beyond linear Generalized Linear Models Last time: Background & motivation for moving beyond linear regression - non-normal/non-linear cases, binary, categorical data Today s class: 1. Examples of count and ordered

More information

Applied Multivariate and Longitudinal Data Analysis

Applied Multivariate and Longitudinal Data Analysis Applied Multivariate and Longitudinal Data Analysis Discriminant analysis and classification Ana-Maria Staicu SAS Hall 5220; 919-515-0644; astaicu@ncsu.edu 1 Consider the examples: An online banking service

More information

On the Inference of the Logistic Regression Model

On the Inference of the Logistic Regression Model On the Inference of the Logistic Regression Model 1. Model ln =(; ), i.e. = representing false. The linear form of (;) is entertained, i.e. ((;)) ((;)), where ==1 ;, with 1 representing true, 0 ;= 1+ +

More information

Today. HW 1: due February 4, pm. Aspects of Design CD Chapter 2. Continue with Chapter 2 of ELM. In the News:

Today. HW 1: due February 4, pm. Aspects of Design CD Chapter 2. Continue with Chapter 2 of ELM. In the News: Today HW 1: due February 4, 11.59 pm. Aspects of Design CD Chapter 2 Continue with Chapter 2 of ELM In the News: STA 2201: Applied Statistics II January 14, 2015 1/35 Recap: data on proportions data: y

More information

Linear Decision Boundaries

Linear Decision Boundaries Linear Decision Boundaries A basic approach to classification is to find a decision boundary in the space of the predictor variables. The decision boundary is often a curve formed by a regression model:

More information

Introduction to Machine Learning

Introduction to Machine Learning 1, DATA11002 Introduction to Machine Learning Lecturer: Teemu Roos TAs: Ville Hyvönen and Janne Leppä-aho Department of Computer Science University of Helsinki (based in part on material by Patrik Hoyer

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) T In 2 2 tables, statistical independence is equivalent to a population

More information

22s:152 Applied Linear Regression. Example: Study on lead levels in children. Ch. 14 (sec. 1) and Ch. 15 (sec. 1 & 4): Logistic Regression

22s:152 Applied Linear Regression. Example: Study on lead levels in children. Ch. 14 (sec. 1) and Ch. 15 (sec. 1 & 4): Logistic Regression 22s:52 Applied Linear Regression Ch. 4 (sec. and Ch. 5 (sec. & 4: Logistic Regression Logistic Regression When the response variable is a binary variable, such as 0 or live or die fail or succeed then

More information

NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION (SOLUTIONS) ST3241 Categorical Data Analysis. (Semester II: )

NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION (SOLUTIONS) ST3241 Categorical Data Analysis. (Semester II: ) NATIONAL UNIVERSITY OF SINGAPORE EXAMINATION (SOLUTIONS) Categorical Data Analysis (Semester II: 2010 2011) April/May, 2011 Time Allowed : 2 Hours Matriculation No: Seat No: Grade Table Question 1 2 3

More information

Lecture 9: Classification, LDA

Lecture 9: Classification, LDA Lecture 9: Classification, LDA Reading: Chapter 4 STATS 202: Data mining and analysis Jonathan Taylor, 10/12 Slide credits: Sergio Bacallado 1 / 1 Review: Main strategy in Chapter 4 Find an estimate ˆP

More information

Model Selection in GLMs. (should be able to implement frequentist GLM analyses!) Today: standard frequentist methods for model selection

Model Selection in GLMs. (should be able to implement frequentist GLM analyses!) Today: standard frequentist methods for model selection Model Selection in GLMs Last class: estimability/identifiability, analysis of deviance, standard errors & confidence intervals (should be able to implement frequentist GLM analyses!) Today: standard frequentist

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 9: Basis Expansions Department of Statistics & Biostatistics Rutgers University Nov 01, 2011 Regression and Classification Linear Regression. E(Y X) = f(x) We want to learn

More information

MSG500/MVE190 Linear Models - Lecture 15

MSG500/MVE190 Linear Models - Lecture 15 MSG500/MVE190 Linear Models - Lecture 15 Rebecka Jörnsten Mathematical Statistics University of Gothenburg/Chalmers University of Technology December 13, 2012 1 Regularized regression In ordinary least

More information

Biostatistics-Lecture 16 Model Selection. Ruibin Xi Peking University School of Mathematical Sciences

Biostatistics-Lecture 16 Model Selection. Ruibin Xi Peking University School of Mathematical Sciences Biostatistics-Lecture 16 Model Selection Ruibin Xi Peking University School of Mathematical Sciences Motivating example1 Interested in factors related to the life expectancy (50 US states,1969-71 ) Per

More information

Math for Machine Learning Open Doors to Data Science and Artificial Intelligence. Richard Han

Math for Machine Learning Open Doors to Data Science and Artificial Intelligence. Richard Han Math for Machine Learning Open Doors to Data Science and Artificial Intelligence Richard Han Copyright 05 Richard Han All rights reserved. CONTENTS PREFACE... - INTRODUCTION... LINEAR REGRESSION... 4 LINEAR

More information

Course in Data Science

Course in Data Science Course in Data Science About the Course: In this course you will get an introduction to the main tools and ideas which are required for Data Scientist/Business Analyst/Data Analyst. The course gives an

More information

Introduction to the Logistic Regression Model

Introduction to the Logistic Regression Model CHAPTER 1 Introduction to the Logistic Regression Model 1.1 INTRODUCTION Regression methods have become an integral component of any data analysis concerned with describing the relationship between a response

More information

Generalized linear models

Generalized linear models Generalized linear models Douglas Bates November 01, 2010 Contents 1 Definition 1 2 Links 2 3 Estimating parameters 5 4 Example 6 5 Model building 8 6 Conclusions 8 7 Summary 9 1 Generalized Linear Models

More information

Log-linear Models for Contingency Tables

Log-linear Models for Contingency Tables Log-linear Models for Contingency Tables Statistics 149 Spring 2006 Copyright 2006 by Mark E. Irwin Log-linear Models for Two-way Contingency Tables Example: Business Administration Majors and Gender A

More information

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 26 May :00 16:00

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 26 May :00 16:00 Two Hours MATH38052 Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER GENERALISED LINEAR MODELS 26 May 2016 14:00 16:00 Answer ALL TWO questions in Section

More information

12 Modelling Binomial Response Data

12 Modelling Binomial Response Data c 2005, Anthony C. Brooms Statistical Modelling and Data Analysis 12 Modelling Binomial Response Data 12.1 Examples of Binary Response Data Binary response data arise when an observation on an individual

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

Lecture 16 Solving GLMs via IRWLS

Lecture 16 Solving GLMs via IRWLS Lecture 16 Solving GLMs via IRWLS 09 November 2015 Taylor B. Arnold Yale Statistics STAT 312/612 Notes problem set 5 posted; due next class problem set 6, November 18th Goals for today fixed PCA example

More information

Supervised Learning. Regression Example: Boston Housing. Regression Example: Boston Housing

Supervised Learning. Regression Example: Boston Housing. Regression Example: Boston Housing Supervised Learning Unsupervised learning: To extract structure and postulate hypotheses about data generating process from observations x 1,...,x n. Visualize, summarize and compress data. We have seen

More information

Standard Errors & Confidence Intervals. N(0, I( β) 1 ), I( β) = [ 2 l(β, φ; y) β i β β= β j

Standard Errors & Confidence Intervals. N(0, I( β) 1 ), I( β) = [ 2 l(β, φ; y) β i β β= β j Standard Errors & Confidence Intervals β β asy N(0, I( β) 1 ), where I( β) = [ 2 l(β, φ; y) ] β i β β= β j We can obtain asymptotic 100(1 α)% confidence intervals for β j using: β j ± Z 1 α/2 se( β j )

More information

Various Issues in Fitting Contingency Tables

Various Issues in Fitting Contingency Tables Various Issues in Fitting Contingency Tables Statistics 149 Spring 2006 Copyright 2006 by Mark E. Irwin Complete Tables with Zero Entries In contingency tables, it is possible to have zero entries in a

More information

Answer Key for STAT 200B HW No. 8

Answer Key for STAT 200B HW No. 8 Answer Key for STAT 200B HW No. 8 May 8, 2007 Problem 3.42 p. 708 The values of Ȳ for x 00, 0, 20, 30 are 5/40, 0, 20/50, and, respectively. From Corollary 3.5 it follows that MLE exists i G is identiable

More information

Neural networks (not in book)

Neural networks (not in book) (not in book) Another approach to classification is neural networks. were developed in the 1980s as a way to model how learning occurs in the brain. There was therefore wide interest in neural networks

More information

Statistical Machine Learning Hilary Term 2018

Statistical Machine Learning Hilary Term 2018 Statistical Machine Learning Hilary Term 2018 Pier Francesco Palamara Department of Statistics University of Oxford Slide credits and other course material can be found at: http://www.stats.ox.ac.uk/~palamara/sml18.html

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

Introduction to Machine Learning

Introduction to Machine Learning 1, DATA11002 Introduction to Machine Learning Lecturer: Antti Ukkonen TAs: Saska Dönges and Janne Leppä-aho Department of Computer Science University of Helsinki (based in part on material by Patrik Hoyer,

More information

Stat 579: Generalized Linear Models and Extensions

Stat 579: Generalized Linear Models and Extensions Stat 579: Generalized Linear Models and Extensions Yan Lu Jan, 2018, week 3 1 / 67 Hypothesis tests Likelihood ratio tests Wald tests Score tests 2 / 67 Generalized Likelihood ratio tests Let Y = (Y 1,

More information

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method.

STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. STAT 135 Lab 13 (Review) Linear Regression, Multivariate Random Variables, Prediction, Logistic Regression and the δ-method. Rebecca Barter May 5, 2015 Linear Regression Review Linear Regression Review

More information

Single-level Models for Binary Responses

Single-level Models for Binary Responses Single-level Models for Binary Responses Distribution of Binary Data y i response for individual i (i = 1,..., n), coded 0 or 1 Denote by r the number in the sample with y = 1 Mean and variance E(y) =

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) (b) (c) (d) (e) In 2 2 tables, statistical independence is equivalent

More information

FSAN815/ELEG815: Foundations of Statistical Learning

FSAN815/ELEG815: Foundations of Statistical Learning FSAN815/ELEG815: Foundations of Statistical Learning Gonzalo R. Arce Chapter 14: Logistic Regression Fall 2014 Course Objectives & Structure Course Objectives & Structure The course provides an introduction

More information

10702/36702 Statistical Machine Learning, Spring 2008: Homework 3 Solutions

10702/36702 Statistical Machine Learning, Spring 2008: Homework 3 Solutions 10702/36702 Statistical Machine Learning, Spring 2008: Homework 3 Solutions March 24, 2008 1 [25 points], (Jingrui) (a) Generate data as follows. n = 100 p = 1000 X = matrix(rnorm(n p), n, p) beta = c(rep(10,

More information

MATH 829: Introduction to Data Mining and Analysis Logistic regression

MATH 829: Introduction to Data Mining and Analysis Logistic regression 1/11 MATH 829: Introduction to Data Mining and Analysis Logistic regression Dominique Guillot Departments of Mathematical Sciences University of Delaware March 7, 2016 Logistic regression 2/11 Suppose

More information

7/28/15. Review Homework. Overview. Lecture 6: Logistic Regression Analysis

7/28/15. Review Homework. Overview. Lecture 6: Logistic Regression Analysis Lecture 6: Logistic Regression Analysis Christopher S. Hollenbeak, PhD Jane R. Schubart, PhD The Outcomes Research Toolbox Review Homework 2 Overview Logistic regression model conceptually Logistic regression

More information

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart

Machine Learning. Bayesian Regression & Classification. Marc Toussaint U Stuttgart Machine Learning Bayesian Regression & Classification learning as inference, Bayesian Kernel Ridge regression & Gaussian Processes, Bayesian Kernel Logistic Regression & GP classification, Bayesian Neural

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation Yujin Chung November 29th, 2016 Fall 2016 Yujin Chung Lec13: MLE Fall 2016 1/24 Previous Parametric tests Mean comparisons (normality assumption)

More information

MSH3 Generalized linear model Ch. 6 Count data models

MSH3 Generalized linear model Ch. 6 Count data models Contents MSH3 Generalized linear model Ch. 6 Count data models 6 Count data model 208 6.1 Introduction: The Children Ever Born Data....... 208 6.2 The Poisson Distribution................. 210 6.3 Log-Linear

More information

MSH3 Generalized linear model

MSH3 Generalized linear model Contents MSH3 Generalized linear model 5 Logit Models for Binary Data 173 5.1 The Bernoulli and binomial distributions......... 173 5.1.1 Mean, variance and higher order moments.... 173 5.1.2 Normal limit....................

More information

LDA, QDA, Naive Bayes

LDA, QDA, Naive Bayes LDA, QDA, Naive Bayes Generative Classification Models Marek Petrik 2/16/2017 Last Class Logistic Regression Maximum Likelihood Principle Logistic Regression Predict probability of a class: p(x) Example:

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression

Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models Generalized Linear Models - part III Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs.

More information

Least Squares Regression

Least Squares Regression E0 70 Machine Learning Lecture 4 Jan 7, 03) Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in the lecture. They are not a substitute

More information

Introduction to the Generalized Linear Model: Logistic regression and Poisson regression

Introduction to the Generalized Linear Model: Logistic regression and Poisson regression Introduction to the Generalized Linear Model: Logistic regression and Poisson regression Statistical modelling: Theory and practice Gilles Guillot gigu@dtu.dk November 4, 2013 Gilles Guillot (gigu@dtu.dk)

More information

Generalized Linear Models 1

Generalized Linear Models 1 Generalized Linear Models 1 STA 2101/442: Fall 2012 1 See last slide for copyright information. 1 / 24 Suggested Reading: Davison s Statistical models Exponential families of distributions Sec. 5.2 Chapter

More information