Assimilation of SEVIRI cloud-top parameters in the Met Office regional forecast model

Size: px
Start display at page:

Download "Assimilation of SEVIRI cloud-top parameters in the Met Office regional forecast model"

Transcription

1 Assimilation of SEVIRI cloud-top parameters in the Met Office regional forecast model Ruth B.E. Taylor, Richard J. Renshaw, Roger W. Saunders & Peter N. Francis Met Office, Exeter, U.K. Abstract A system of assimilating SEVIRI cloud products directly into the Met Office NAE forecast model via four-dimensional variational assimilation has been developed. This has been trialled over both Summer and Winter seasons. Forecast impact in Summer is generally slightly positive overall, due to improved precipitation and surface temperature. The impact on forecasts during the Winter period is slightly negative, however, mainly due to poorer verification scores for cloud fraction and visibility. INTRODUCTION For regional numerical weather prediction models, one of the critical variables to forecast correctly is the cloud field, in terms of both its coverage and its vertical distribution. The correct diagnosis of the initialised cloud field is crucial to the performance of these models, since deficiencies in the determination of the cloud coverage, or of its height, can lead to significant errors in the time-evolution of the cloud through the forecast period, in turn causing serious inaccuracies in important forecast quantities such as precipitation, temperature and visibility. The Met Office s regional North Atlantic/European (NAE) model currently makes use of observed cloud-cover and cloud-top height (CTH) fields derived from SEVIRI as part of its cloud analysis, although the methods by which this is accomplished are now rather outdated when compared with the rest of the Met Office s data assimilation system, relying as they do on an intermediate step involving the Office s nowcasting system Nimrod, and the use of an Analysis Correction (AC) scheme to do the assimilation itself. This paper gives a brief overview of this existing cloud assimilation system, and also presents the latest results from attempts to assimilate the SEVIRI cloud products directly into the NAE model via the four-dimensional variational (4D-Var) scheme. INFORMATION ON CLOUD FROM SEVIRI DATA The SEVIRI imager on the Meteosat Second Generation satellites provides 15 minute imagery of the cloud field over the North Atlantic and European areas at a resolution of about 5km. This imagery contains a wealth of valuable information about the cloud, including information on cloud fraction, cloud-top height, cloud-top temperature and cloud phase, which should improve our forecasts significantly were we able to assimilate the information well enough. The Met Office Autosat processor routinely generates many of these cloud products from the SEVIRI imagery (Saunders et al. 2006, Francis et al. 2008). Figure 1 below shows an example of some of these products from the 1430 UTC slot on 8th August 2007, in this case the cloud-top height in Figure 1(a) and the effective cloud amount (ECA) in Figure 1. The ECA is a dimensionless quantity defined as the product of the true cloud-fraction and the cloud emissivity, and varies between 0 and 1.

2 (a) Figure 1: Derived cloud products for the North Atlantic/European area from the slot ending 1430 UTC on 8th August (a) Cloud-top height (metres). Effective cloud amount. CURRENT CLOUD ASSIMILATION IN THE MET OFFICE REGIONAL MODEL SEVIRI cloud parameters have already been provided indirectly to the regional model assimilation for several years via the Met Office s Nimrod nowcasting system (Golding, 1998). Figure 2 shows a schematic diagram of this assimilation route. An MSG-derived cloud mask and cloud-top height product are derived on the Autosat system (see above) and sent to Nimrod, where they are processed, together with surface cloud observations and background model data, to produce a threedimensional cloud fraction analysis. This is then interpolated onto the NAE model grid by the Moisture Observational Preprocessing System, MOPS (Macpherson et al., 1996), before it is assimilated into the model via the Analysis Correction (AC) scheme (Lorenc et al., 1991). For convenience, we shall refer to the cloud data being assimilated via this route as MOPS cloud data for the remainder of this report.

3 (a) (e) NIMROD area (c) (d) Figure 2: Schematic diagram of the current assimilation of SEVIRI cloud data into the NAE model. (a) SEVIRI cloud mask. SEVIRI cloud-top height. (c) Nimrod nowcasting system. (d) MOPS cloud data maximum cloud fraction in column. (e) Met Office North Atlantic/European model domain, with Nimrod domain overlaid. There are many reasons why it is desirable to improve this system: It is rather cumbersome and convoluted, with several intermediate steps between the original data and the assimilation step. It only uses cloud data over UK area, whilst satellite data are available over whole NAE domain. It uses an outdated Analysis Correction scheme, whereas the rest of the data assimilation system uses a 4-dimensional variational (4D-Var) scheme. For these reasons, we are investigating the assimilation of the Autosat cloud products directly into the NAE model via 4D-Var, work that will be described in the following section. DIRECT ASSIMILATION OF SEVIRI CLOUD PRODUCTS VIA 4D-VAR A schematic diagram summarising this more simplified process is given in Figure 3, i.e. we are attempting to assimilate the SEVIRI cloud-top height (CTH) and effective cloud amount (ECA) fields directly into the NAE model, bypassing the need for intermediate steps through the Nimrod and MOPS systems. Note that one drawback of this new approach is that we are no longer making use of the information from surface cloud observations which are available to the Nimrod cloud analysis in the existing route. For convenience, we shall refer to the cloud data being assimilated via this new route as GeoCloud data for the remainder of this report.

4 (a) (c) Figure 3: Schematic diagram of the direct assimilation of SEVIRI cloud data into the NAE model. (a) SEVIRI cloud-top height. SEVIRI effective cloud amount. (c) Met Office North Atlantic/European model domain. The cloud top height and effective cloud amount from the Autosat system are converted into column cloud by specifying a cloud amount on each model level (see Figure 4). Below the cloud top it is assumed that nothing is known about cloud amount. At present we use a single moisture control variable within 4D-Var, so a diagnostic relationship based on Smith (1990) is then used to convert cloud amount into relative humidity information. The difference between observed and model cloud fraction is interpreted as a difference in humidity and assimilated as a humidity observation. Data assimilation produces increments to the humidity which are added to the model humidity field, which via the model cloud scheme will then alter the model cloud field itself. Figure 4: Schematic diagram showing how the SEVIRI cloud retrieval is converted into a column observation of cloud fraction.

5 Figure 5 shows the impact of assimilating the GeoCloud data in a single-cycle test for 1200 UTC on 19th December 2006, with (a) showing the background T+6 hour column cloud fraction from the 0600 model run, showing the effect of assimilating the existing MOPS cloud data on the 1200 analysis, and (c) showing the 1200 analysis having assimilated the GeoCloud data instead. Both analysed fields tend to have slightly less cloud than the background on average see for example the cloud field over northern France. The GeoCloud assimilation tends to remove slightly more cloud than MOPS in general e.g. to the east of Denmark and in the north-west of the domain but there are also areas where the GeoCloud field has more cloud than MOPS e.g. the sea areas to the west of France. (a) (c) ( Figure 5: Column cloud fraction for 1200 UTC on 19th December (a) T+6 hour background from 0600 run analysis using MOPS assimilation. (c) 1200 analysis using GeoCloud assimilation. IMPACT TRIAL RESULTS The new scheme has been trialled for both Summer and Winter periods. In both cases, the control used was a baseline version of the operational suite proposed for implementation in the Autumn of 2008, and included surface observations, radiosonde and aircraft data, atmospheric motion vectors, scatterometer winds, ATOVS and SSMI radiances, GPS radio occultation data and ground-based GPS observations, together with the existing MOPS cloud data described above. For the trials, we have removed the MOPS cloud data and assimilated the GeoCloud data via 4D-Var. Although the GeoCloud data are available for the whole NAE domain, we have only used the data for the UK area in this study, enabling a more meaningful comparison with the existing MOPS cloud assimilation to be made. Figure 6 summarises the overall impact of the GeoCloud assimilation relative to the control for the Summer period, 06/08/ /09/2008. Verification has used all available observations over the NAE domain, and the scores quoted are a weighted sum of the difference in skill between the GeoCloud trial and the control, for six different variables (see Figures 6 and 7) with forecast lead times varying between T+6 and T+48 hours at 6-hourly intervals.

6 Figure 6: Summary of the impact of introducing GeoCloud into the NAE assimilation, relative to a control experiment where the existing SEVIRI cloud assimilation was applied (see Figure 2), for a 42-day period during August and September The y-axis represents a weighted sum of skill difference between GeoCloud experiment and control (see text for more details). We see that overall there is a slight positive impact of %, with the majority of this impact coming from improvements to the six-hour precipitation accumulation and the surface (2 metre) temperature. Also note, however, the slight degradation to the surface visibility and total cloud amount skill scores. Figure 7 summarises the impact of the GeoCloud assimilation relative to the control for the Winter period, 16/12/ /01/2008. Overall, there is a slight negative impact for this trial (-0.10 %). We see that the positive impact observed in the Summer trial for the six-hour precipitation accumulation is retained, but also note that there is now a stronger negative impact for the surface visibility and for verification against surface cloud observations, both in terms of the total cloud amount and the cloudbase height. Figure 7: As Figure 6, but for a 31-day period during December 2007 and January 2008.

7 (a) Figure 8: Verification of the forecast fractional cloud cover from surface observations for (a) the Summer trial, and the Winter trial. The RMS error of the forecast cloud cover is plotted against the forecast range for the GeoCloud experiment (blue line) and the control (red line). This degraded cloud verification is shown in more detail in Figure 8, which plots the RMS error in fractional cloud amount against forecast lead time for both Summer and Winter periods. We see that, in both cases, the GeoCloud forecasts verify significantly more poorly than the control for the shorter forecast ranges, this being particularly true for the Winter trial where it is seen that, on average, the T+6 hour forecasts actually verify better against surface observations than do the T+0 analyses. CONCLUSIONS AND FURTHER WORK A system of assimilating SEVIRI cloud products directly into the Met Office NAE model via 4D-Var has been developed, which removes the necessity of having to go through intermediate pre-processing steps involving the Nimrod and MOPS systems. The new assimilation method has been trialled over both Summer and Winter seasons. It shows a slightly positive impact overall for the Summer trial, due mainly to improved precipitation and surface temperature. However, the Winter forecast impact is slightly negative overall, due to poorer skill scores for surface visibility and for cloud cover and cloudbase height. For this reason, it has been decided that the GeoCloud data will not be assimilated into the Met Office NAE model for the time being, and more research will be carried out with a view to establishing a consistently positive impact on forecasts from these data.

8 REFERENCES Francis, P.N., J.A. Hocking and R.W. Saunders, Improved diagnosis of low-level cloud from MSG SEVIRI data for assimilation into Met Office limited area models. Proceedings of the 2008 EUMETSAT Meteorological Satellite Conference, Darmstadt, Germany. Golding, B.W., Nimrod: A system for generating automated very short range forecasts. Meteorol. Appl., 5, Lorenc, A.C., R.S. Bell and B. Macpherson, 1991, The Met Office Analysis Correction data assimilation scheme. Quart. J. Roy. Meteorol. Soc., 117, Macpherson, B., B.J. Wright, W.H. Hand and A.J. Maycock, The impact of MOPS moisture data in the UK Meteorological Office mesoscale data assimilation scheme. Mon. Wea. Rev., 124, Moseley, S., 2003: Changes to the Nimrod cloud top height diagnosis. Met Office Forecasting Research Technical Report no Saunders, R.W., M. Matricardi and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteorol. Soc., 125, Saunders, R.W., R.A. Francis, P.N. Francis, J. Crawford, A.J. Smith, I.D. Brown, R.B.E. Taylor, M. Forsythe, M. Doutriaux-Boucher and S.C. Millington, The exploitation of Meteosat Second Generation Data in the Met Office. Proceedings of the 2006 EUMETSAT Meteorological Satellite Conference, Helsinki, Finland. Smith, R.N.B., A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteorol. Soc., 116,

Assimilation of IASI data at the Met Office. Fiona Hilton Nigel Atkinson ITSC-XVI, Angra dos Reis, Brazil 07/05/08

Assimilation of IASI data at the Met Office. Fiona Hilton Nigel Atkinson ITSC-XVI, Angra dos Reis, Brazil 07/05/08 Assimilation of IASI data at the Met Office Fiona Hilton Nigel Atkinson ITSC-XVI, Angra dos Reis, Brazil 07/05/08 Thanks to my other colleagues! Andrew Collard (ECMWF) Brett Candy, Steve English, James

More information

Use of AMSU data in the Met Office UK Mesoscale Model

Use of AMSU data in the Met Office UK Mesoscale Model Use of AMSU data in the Met Office UK Mesoscale Model 1. Introduction Brett Candy, Stephen English, Richard Renshaw & Bruce Macpherson The Met Office, Exeter, United Kingdom In common with other global

More information

Convective-scale data assimilation at the UK Met Office

Convective-scale data assimilation at the UK Met Office Convective-scale data assimilation at the UK Met Office DAOS meeting, Exeter 25 April 2016 Rick Rawlins Hd(DAE) Acknowledgments: Bruce Macpherson and team Contents This presentation covers the following

More information

ASSIMILATION OF CLOUDY AMSU-A MICROWAVE RADIANCES IN 4D-VAR 1. Stephen English, Una O Keeffe and Martin Sharpe

ASSIMILATION OF CLOUDY AMSU-A MICROWAVE RADIANCES IN 4D-VAR 1. Stephen English, Una O Keeffe and Martin Sharpe ASSIMILATION OF CLOUDY AMSU-A MICROWAVE RADIANCES IN 4D-VAR 1 Stephen English, Una O Keeffe and Martin Sharpe Met Office, FitzRoy Road, Exeter, EX1 3PB Abstract The assimilation of cloud-affected satellite

More information

The Nowcasting Demonstration Project for London 2012

The Nowcasting Demonstration Project for London 2012 The Nowcasting Demonstration Project for London 2012 Susan Ballard, Zhihong Li, David Simonin, Jean-Francois Caron, Brian Golding, Met Office, UK Introduction The success of convective-scale NWP is largely

More information

Rosemary Munro*, Graeme Kelly, Michael Rohn* and Roger Saunders

Rosemary Munro*, Graeme Kelly, Michael Rohn* and Roger Saunders ASSIMILATION OF METEOSAT RADIANCE DATA WITHIN THE 4DVAR SYSTEM AT ECMWF Rosemary Munro*, Graeme Kelly, Michael Rohn* and Roger Saunders European Centre for Medium Range Weather Forecasts Shinfield Park,

More information

JP1J.9 ASSIMILATION OF RADAR DATA IN THE MET OFFICE MESOSCALE AND CONVECTIVE SCALE FORECAST SYSTEMS

JP1J.9 ASSIMILATION OF RADAR DATA IN THE MET OFFICE MESOSCALE AND CONVECTIVE SCALE FORECAST SYSTEMS JP1J.9 ASSIMILATION OF RADAR DATA IN THE MET OFFICE MESOSCALE AND CONVECTIVE SCALE FORECAST SYSTEMS S. Ballard *, M. Dixon, S. Swarbrick,, Z. Li,, O.Stiller, H. Lean, F. Rihan 2 and C.Collier 2 Met Office

More information

PRECONVECTIVE SOUNDING ANALYSIS USING IASI AND MSG- SEVIRI

PRECONVECTIVE SOUNDING ANALYSIS USING IASI AND MSG- SEVIRI PRECONVECTIVE SOUNDING ANALYSIS USING IASI AND MSG- SEVIRI Marianne König, Dieter Klaes EUMETSAT, Eumetsat-Allee 1, 64295 Darmstadt, Germany Abstract EUMETSAT operationally generates the Global Instability

More information

TOWARDS IMPROVED HEIGHT ASSIGNMENT AND QUALITY CONTROL OF AMVS IN MET OFFICE NWP

TOWARDS IMPROVED HEIGHT ASSIGNMENT AND QUALITY CONTROL OF AMVS IN MET OFFICE NWP Proceedings for the 13 th International Winds Workshop 27 June - 1 July 2016, Monterey, California, USA TOWARDS IMPROVED HEIGHT ASSIGNMENT AND QUALITY CONTROL OF AMVS IN MET OFFICE NWP James Cotton, Mary

More information

Current Limited Area Applications

Current Limited Area Applications Current Limited Area Applications Nils Gustafsson SMHI Norrköping, Sweden nils.gustafsson@smhi.se Outline of talk (contributions from many HIRLAM staff members) Specific problems of Limited Area Model

More information

Plans for the Assimilation of Cloud-Affected Infrared Soundings at the Met Office

Plans for the Assimilation of Cloud-Affected Infrared Soundings at the Met Office Plans for the Assimilation of Cloud-Affected Infrared Soundings at the Met Office Ed Pavelin and Stephen English Met Office, Exeter, UK Abstract A practical approach to the assimilation of cloud-affected

More information

Use and impact of satellite data in the NZLAM mesoscale model for the New Zealand region

Use and impact of satellite data in the NZLAM mesoscale model for the New Zealand region Use and impact of satellite data in the NZLAM mesoscale model for the New Zealand region V. Sherlock, P. Andrews, H. Oliver, A. Korpela and M. Uddstrom National Institute of Water and Atmospheric Research,

More information

Bias correction of satellite data at Météo-France

Bias correction of satellite data at Météo-France Bias correction of satellite data at Météo-France É. Gérard, F. Rabier, D. Lacroix, P. Moll, T. Montmerle, P. Poli CNRM/GMAP 42 Avenue Coriolis, 31057 Toulouse, France 1. Introduction Bias correction at

More information

B.W.Golding * Met Office, Exeter, UK

B.W.Golding * Met Office, Exeter, UK 7.35 A NEW APPROACH TO NOWCASTING AT THE MET OFFICE B.W.Golding * Met Office, Exeter, UK 1. BACKGROUND * The Nimrod system was introduced into operational use in the Met Office in 1996 (Golding, 1998).

More information

Extending the use of surface-sensitive microwave channels in the ECMWF system

Extending the use of surface-sensitive microwave channels in the ECMWF system Extending the use of surface-sensitive microwave channels in the ECMWF system Enza Di Tomaso and Niels Bormann European Centre for Medium-range Weather Forecasts Shinfield Park, Reading, RG2 9AX, United

More information

Bias correction of satellite data at the Met Office

Bias correction of satellite data at the Met Office Bias correction of satellite data at the Met Office Nigel Atkinson, James Cameron, Brett Candy and Stephen English Met Office, Fitzroy Road, Exeter, EX1 3PB, United Kingdom 1. Introduction At the Met Office,

More information

Assimilation Experiments of One-dimensional Variational Analyses with GPS/MET Refractivity

Assimilation Experiments of One-dimensional Variational Analyses with GPS/MET Refractivity Assimilation Experiments of One-dimensional Variational Analyses with GPS/MET Refractivity Paul Poli 1,3 and Joanna Joiner 2 1 Joint Center for Earth Systems Technology (JCET), University of Maryland Baltimore

More information

Satellite Radiance Data Assimilation at the Met Office

Satellite Radiance Data Assimilation at the Met Office Satellite Radiance Data Assimilation at the Met Office Ed Pavelin, Stephen English, Brett Candy, Fiona Hilton Outline Summary of satellite data used in the Met Office NWP system Processing and quality

More information

Ideas for adding flow-dependence to the Met Office VAR system

Ideas for adding flow-dependence to the Met Office VAR system Ideas for adding flow-dependence to the Met Office VAR system Andrew Lorenc Met Office, Exeter, UK andrew.lorenc@metoffice.gov.uk 1. Introduction The Met Office started developing variational assimilation

More information

AN OBSERVING SYSTEM EXPERIMENT OF MTSAT RAPID SCAN AMV USING JMA MESO-SCALE OPERATIONAL NWP SYSTEM

AN OBSERVING SYSTEM EXPERIMENT OF MTSAT RAPID SCAN AMV USING JMA MESO-SCALE OPERATIONAL NWP SYSTEM AN OBSERVING SYSTEM EXPERIMENT OF MTSAT RAPID SCAN AMV USING JMA MESO-SCALE OPERATIONAL NWP SYSTEM Koji Yamashita Japan Meteorological Agency / Numerical Prediction Division 1-3-4, Otemachi, Chiyoda-ku,

More information

The potential impact of ozone sensitive data from MTG-IRS

The potential impact of ozone sensitive data from MTG-IRS The potential impact of ozone sensitive data from MTG-IRS R. Dragani, C. Lupu, C. Peubey, and T. McNally ECMWF rossana.dragani@ecmwf.int ECMWF May 24, 2017 The MTG IRS Long-Wave InfraRed band O 3 Can the

More information

MET report. The IASI moisture channel impact study in HARMONIE for August-September 2011

MET report. The IASI moisture channel impact study in HARMONIE for August-September 2011 MET report no. 19/2013 Numerical Weather Prediction The IASI moisture channel impact study in HARMONIE for August-September 2011 Trygve Aspelien, Roger Randriamampianina, Harald Schyberg, Frank Thomas

More information

Observing System Experiments (OSE) to estimate the impact of observations in NWP

Observing System Experiments (OSE) to estimate the impact of observations in NWP Observing System Experiments (OSE) to estimate the impact of observations in NWP Peter Bauer European Centre for Medium-Range Weather Forecasts Reading, UK peter.bauer@ecmwf.int Abstract This paper gives

More information

Assimilating AMSU-A over Sea Ice in HIRLAM 3D-Var

Assimilating AMSU-A over Sea Ice in HIRLAM 3D-Var Abstract Assimilating AMSU-A over Sea Ice in HIRLAM 3D-Var Vibeke W. Thyness 1, Leif Toudal Pedersen 2, Harald Schyberg 1, Frank T. Tveter 1 1 Norwegian Meteorological Institute (met.no) Box 43 Blindern,

More information

Observations needed for verification of additional forecast products

Observations needed for verification of additional forecast products Observations needed for verification of additional forecast products Clive Wilson ( & Marion Mittermaier) 12th Workshop on Meteorological Operational Systems, ECMWF, 2-6 November 2009 Additional forecast

More information

Met Office convective-scale 4DVAR system, tests and improvement

Met Office convective-scale 4DVAR system, tests and improvement Met Office convective-scale 4DVAR system, tests and improvement Marco Milan*, Marek Wlasak, Stefano Migliorini, Bruce Macpherson Acknowledgment: Inverarity Gordon, Gareth Dow, Mike Thurlow, Mike Cullen

More information

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager 1 EUMETSAT SAF NETWORK Lothar Schüller, EUMETSAT SAF Network Manager EUMETSAT ground segment overview METEOSAT JASON-2 INITIAL JOINT POLAR SYSTEM METOP NOAA SATELLITES CONTROL AND DATA ACQUISITION FLIGHT

More information

USE, QUALITY CONTROL AND MONITORING OF SATELLITE WINDS AT UKMO. Pauline Butterworth. Meteorological Office, London Rd, Bracknell RG12 2SZ, UK ABSTRACT

USE, QUALITY CONTROL AND MONITORING OF SATELLITE WINDS AT UKMO. Pauline Butterworth. Meteorological Office, London Rd, Bracknell RG12 2SZ, UK ABSTRACT USE, QUALITY CONTROL AND MONITORING OF SATELLITE WINDS AT UKMO Pauline Butterworth Meteorological Office, London Rd, Bracknell RG12 2SZ, UK ABSTRACT Satellite wind fields derived from geostationary imagery

More information

THE ATMOSPHERIC MOTION VECTOR RETRIEVAL SCHEME FOR METEOSAT SECOND GENERATION. Kenneth Holmlund. EUMETSAT Am Kavalleriesand Darmstadt Germany

THE ATMOSPHERIC MOTION VECTOR RETRIEVAL SCHEME FOR METEOSAT SECOND GENERATION. Kenneth Holmlund. EUMETSAT Am Kavalleriesand Darmstadt Germany THE ATMOSPHERIC MOTION VECTOR RETRIEVAL SCHEME FOR METEOSAT SECOND GENERATION Kenneth Holmlund EUMETSAT Am Kavalleriesand 31 64293 Darmstadt Germany ABSTRACT The advent of the Meteosat Second Generation

More information

IMPROVEMENTS IN FORECASTS AT THE MET OFFICE THROUGH REDUCED WEIGHTS FOR SATELLITE WINDS. P. Butterworth, S. English, F. Hilton and K.

IMPROVEMENTS IN FORECASTS AT THE MET OFFICE THROUGH REDUCED WEIGHTS FOR SATELLITE WINDS. P. Butterworth, S. English, F. Hilton and K. IMPROVEMENTS IN FORECASTS AT THE MET OFFICE THROUGH REDUCED WEIGHTS FOR SATELLITE WINDS P. Butterworth, S. English, F. Hilton and K. Whyte Met Office London Road, Bracknell, RG12 2SZ, UK ABSTRACT Following

More information

Scatterometer Wind Assimilation at the Met Office

Scatterometer Wind Assimilation at the Met Office Scatterometer Wind Assimilation at the Met Office James Cotton International Ocean Vector Winds Science Team (IOVWST) meeting, Brest, June 2014 Outline Assimilation status Global updates: Metop-B and spatial

More information

Data Short description Parameters to be used for analysis SYNOP. Surface observations by ships, oil rigs and moored buoys

Data Short description Parameters to be used for analysis SYNOP. Surface observations by ships, oil rigs and moored buoys 3.2 Observational Data 3.2.1 Data used in the analysis Data Short description Parameters to be used for analysis SYNOP Surface observations at fixed stations over land P,, T, Rh SHIP BUOY TEMP PILOT Aircraft

More information

OBSERVING SYSTEM EXPERIMENTS ON ATOVS ORBIT CONSTELLATIONS

OBSERVING SYSTEM EXPERIMENTS ON ATOVS ORBIT CONSTELLATIONS OBSERVING SYSTEM EXPERIMENTS ON ATOVS ORBIT CONSTELLATIONS Enza Di Tomaso and Niels Bormann European Centre for Medium-range Weather Forecasts Shinfield Park, Reading, RG2 9AX, United Kingdom Abstract

More information

INTRODUCTION OF THE RECURSIVE FILTER FUNCTION IN MSG MPEF ENVIRONMENT

INTRODUCTION OF THE RECURSIVE FILTER FUNCTION IN MSG MPEF ENVIRONMENT INTRODUCTION OF THE RECURSIVE FILTER FUNCTION IN MSG MPEF ENVIRONMENT Gregory Dew EUMETSAT Abstract EUMETSAT currently uses its own Quality Index (QI) scheme applied to wind vectors derived from the Meteosat-8

More information

Meteorological product extraction: Making use of MSG imagery

Meteorological product extraction: Making use of MSG imagery Meteorological product extraction: Making use of MSG imagery Kenneth Holmlund, Simon Elliott, Leo van de Berg, Stephen Tjemkes* Meteorological Operations Division *Meteorological Division EUMETSAT Am Kavalleriesand

More information

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager

EUMETSAT SAF NETWORK. Lothar Schüller, EUMETSAT SAF Network Manager 1 EUMETSAT SAF NETWORK Lothar Schüller, EUMETSAT SAF Network Manager EUMETSAT ground segment overview METEOSAT JASON-2 INITIAL JOINT POLAR SYSTEM METOP NOAA SATELLITES CONTROL AND DATA ACQUISITION FLIGHT

More information

EUMETSAT PLANS. K. Dieter Klaes EUMETSAT Darmstadt, Germany

EUMETSAT PLANS. K. Dieter Klaes EUMETSAT Darmstadt, Germany EUMETSAT PLANS K. Dieter Klaes EUMETSAT Darmstadt, Germany 1. INTRODUCTION The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), contributes to the World Weather Watch

More information

Assessing the spatial and temporal variation in the skill of precipitation forecasts from an NWP model

Assessing the spatial and temporal variation in the skill of precipitation forecasts from an NWP model METEOROLOGICAL APPLICATIONS Meteorol. Appl. 15: 163 169 (2008) Published online in Wiley InterScience (www.interscience.wiley.com).57 Assessing the spatial and temporal variation in the skill of precipitation

More information

Recent Data Assimilation Activities at Environment Canada

Recent Data Assimilation Activities at Environment Canada Recent Data Assimilation Activities at Environment Canada Major upgrade to global and regional deterministic prediction systems (now in parallel run) Sea ice data assimilation Mark Buehner Data Assimilation

More information

3.23 IMPROVING VERY-SHORT-TERM STORM PREDICTIONS BY ASSIMILATING RADAR AND SATELLITE DATA INTO A MESOSCALE NWP MODEL

3.23 IMPROVING VERY-SHORT-TERM STORM PREDICTIONS BY ASSIMILATING RADAR AND SATELLITE DATA INTO A MESOSCALE NWP MODEL 3.23 IMPROVING VERY-SHORT-TERM STORM PREDICTIONS BY ASSIMILATING RADAR AND SATELLITE DATA INTO A MESOSCALE NWP MODEL Q. Zhao 1*, J. Cook 1, Q. Xu 2, and P. Harasti 3 1 Naval Research Laboratory, Monterey,

More information

remote sensing Article Joanne A. Waller 1, *, Susan P. Ballard 2, Sarah L. Dance 1,3, Graeme Kelly 2, Nancy K. Nichols 1,3 and David Simonin 2

remote sensing Article Joanne A. Waller 1, *, Susan P. Ballard 2, Sarah L. Dance 1,3, Graeme Kelly 2, Nancy K. Nichols 1,3 and David Simonin 2 remote sensing Article Diagnosing Horizontal and Inter-Channel Observation Error Correlations for SEVIRI Observations Using Observation-Minus-Background and Observation-Minus-Analysis Statistics Joanne

More information

5.3 TESTING AND EVALUATION OF THE GSI DATA ASSIMILATION SYSTEM

5.3 TESTING AND EVALUATION OF THE GSI DATA ASSIMILATION SYSTEM 5.3 TESTING AND EVALUATION OF THE GSI DATA ASSIMILATION SYSTEM Kathryn M Newman*, C. Zhou, H. Shao, X.Y. Huang, M. Hu National Center for Atmospheric Research, Boulder, CO Developmental Testbed Center

More information

Cloud Top Height Product: Product Guide

Cloud Top Height Product: Product Guide Cloud Top Height Product: Product Guide Doc.No. : Issue : v1c e-signed Date : 26 April 2017 WBS : EUM/TSS/MAN/14/786420 EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49

More information

The ECMWF coupled data assimilation system

The ECMWF coupled data assimilation system The ECMWF coupled data assimilation system Patrick Laloyaux Acknowledgments: Magdalena Balmaseda, Kristian Mogensen, Peter Janssen, Dick Dee August 21, 214 Patrick Laloyaux (ECMWF) CERA August 21, 214

More information

Effect of Predictor Choice on the AIRS Bias Correction at the Met Office

Effect of Predictor Choice on the AIRS Bias Correction at the Met Office Effect of Predictor Choice on the AIRS Bias Correction at the Met Office Brett Harris Bureau of Meterorology Research Centre, Melbourne, Australia James Cameron, Andrew Collard and Roger Saunders, Met

More information

Towards the assimilation of AIRS cloudy radiances

Towards the assimilation of AIRS cloudy radiances Towards the assimilation of AIRS cloudy radiances N. FOURRIÉ 1, M. DAHOUI 1 * and F. RABIER 1 1 : National Center for Meteorological Research (CNRM, METEO FRANCE and CNRS) Numerical Weather Prediction

More information

USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM

USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM Mária Putsay, Zsófia Kocsis and Ildikó Szenyán Hungarian Meteorological Service, Kitaibel Pál u. 1, H-1024, Budapest, Hungary Abstract The

More information

MSG system over view

MSG system over view MSG system over view 1 Introduction METEOSAT SECOND GENERATION Overview 2 MSG Missions and Services 3 The SEVIRI Instrument 4 The MSG Ground Segment 5 SAF Network 6 Conclusions METEOSAT SECOND GENERATION

More information

Observation requirements for regional reanalysis

Observation requirements for regional reanalysis Observation requirements for regional reanalysis Richard Renshaw 30 June 2015 Why produce a regional reanalysis? Evidence from operational NWP 25km Global vs 12km NAE ...the benefits of resolution global

More information

Changes in the Arpège 4D-VAR and LAM 3D-VAR. C. Fischer With contributions by P. Brousseau, G. Kerdraon, J.-F. Mahfouf, T.

Changes in the Arpège 4D-VAR and LAM 3D-VAR. C. Fischer With contributions by P. Brousseau, G. Kerdraon, J.-F. Mahfouf, T. Changes in the Arpège 4D-VAR and LAM 3D-VAR C. Fischer With contributions by P. Brousseau, G. Kerdraon, J.-F. Mahfouf, T. Montmerle Content Arpège 4D-VAR Arome-France Other applications: Aladin Overseas,

More information

EUMETSAT PLANS. Dr. K. Dieter Klaes EUMETSAT Am Kavalleriesand 31 D Darmstadt Germany

EUMETSAT PLANS. Dr. K. Dieter Klaes EUMETSAT Am Kavalleriesand 31 D Darmstadt Germany EUMETSAT PLANS Dr. K. Dieter Klaes EUMETSAT Am Kavalleriesand 31 D-64295 Darmstadt Germany Page 1 EUMETSAT SATELLITE PROGRAMMES 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 METEOSAT

More information

Direct assimilation of all-sky microwave radiances at ECMWF

Direct assimilation of all-sky microwave radiances at ECMWF Direct assimilation of all-sky microwave radiances at ECMWF Peter Bauer, Alan Geer, Philippe Lopez, Deborah Salmond European Centre for Medium-Range Weather Forecasts Reading, Berkshire, UK Slide 1 17

More information

STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC

STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC Daisaku Uesawa Meteorological Satellite Center, Japan Meteorological Agency Abstract MTSAT-1R is the current operational Japanese

More information

Using satellite-derived snow cover data to implement a snow analysis in the Met Office global NWP model

Using satellite-derived snow cover data to implement a snow analysis in the Met Office global NWP model Using satellite-derived snow cover data to implement a snow analysis in the Met Office global NWP model Pullen, C Jones, and G Rooney Met Office, Exeter, UK amantha.pullen@metoffice.gov.uk 1. Introduction

More information

Wind tracing from SEVIRI clear and overcast radiance assimilation

Wind tracing from SEVIRI clear and overcast radiance assimilation Wind tracing from SEVIRI clear and overcast radiance assimilation Cristina Lupu and Tony McNally ECMWF, Reading, UK Slide 1 Outline Motivation & Objective Analysis impact of SEVIRI radiances and cloudy

More information

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre)

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre) WORLD METEOROLOGICAL ORGANIZATION Distr.: RESTRICTED CBS/OPAG-IOS (ODRRGOS-5)/Doc.5, Add.5 (11.VI.2002) COMMISSION FOR BASIC SYSTEMS OPEN PROGRAMME AREA GROUP ON INTEGRATED OBSERVING SYSTEMS ITEM: 4 EXPERT

More information

Does the ATOVS RARS Network Matter for Global NWP? Brett Candy, Nigel Atkinson & Stephen English

Does the ATOVS RARS Network Matter for Global NWP? Brett Candy, Nigel Atkinson & Stephen English Does the ATOVS RARS Network Matter for Global NWP? Brett Candy, Nigel Atkinson & Stephen English Met Office, Exeter, United Kingdom 1. Introduction Along with other global numerical weather prediction

More information

SEVIRI - Cloud Top Height Factsheet

SEVIRI - Cloud Top Height Factsheet Doc.No. : EUM/OPS/DOC/11/4199 Issue : v2a Date : 28 December 2011 WBS : EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 http://www.eumetsat.int EUMETSAT

More information

EVALUATION OF TWO AMV POLAR WINDS RETRIEVAL ALGORITHMS USING FIVE YEARS OF REPROCESSED DATA

EVALUATION OF TWO AMV POLAR WINDS RETRIEVAL ALGORITHMS USING FIVE YEARS OF REPROCESSED DATA EVALUATION OF TWO AMV POLAR WINDS RETRIEVAL ALGORITHMS USING FIVE YEARS OF REPROCESSED DATA Roger Huckle, Marie Doutriaux-Boucher, Rob Roebeling, and Jörg Schulz EUMETSAT, Eumetsat-Allee 1, Darmstadt,

More information

EXPERIMENTAL ASSIMILATION OF SPACE-BORNE CLOUD RADAR AND LIDAR OBSERVATIONS AT ECMWF

EXPERIMENTAL ASSIMILATION OF SPACE-BORNE CLOUD RADAR AND LIDAR OBSERVATIONS AT ECMWF EXPERIMENTAL ASSIMILATION OF SPACE-BORNE CLOUD RADAR AND LIDAR OBSERVATIONS AT ECMWF Marta Janisková, Sabatino Di Michele, Edouard Martins ECMWF, Shinfield Park, Reading, U.K. Abstract Space-borne active

More information

Derivation of AMVs from single-level retrieved MTG-IRS moisture fields

Derivation of AMVs from single-level retrieved MTG-IRS moisture fields Derivation of AMVs from single-level retrieved MTG-IRS moisture fields Laura Stewart MetOffice Reading, Meteorology Building, University of Reading, Reading, RG6 6BB Abstract The potential to derive AMVs

More information

AMVs in the ECMWF system:

AMVs in the ECMWF system: AMVs in the ECMWF system: Overview of the recent operational and research activities Kirsti Salonen and Niels Bormann Slide 1 AMV sample coverage: monitored GOES-15 GOES-13 MET-10 MET-7 MTSAT-2 NOAA-15

More information

Assimilation of hyperspectral infrared sounder radiances in the French global numerical weather prediction ARPEGE model

Assimilation of hyperspectral infrared sounder radiances in the French global numerical weather prediction ARPEGE model Assimilation of hyperspectral infrared sounder radiances in the French global numerical weather prediction ARPEGE model N. Fourrié, V. Guidard, M. Dahoui, T. Pangaud, P. Poli and F. Rabier CNRM-GAME, Météo-France

More information

Assimilation of Geostationary WV Radiances within the 4DVAR at ECMWF

Assimilation of Geostationary WV Radiances within the 4DVAR at ECMWF Assimilation of Geostationary WV Radiances within the 4DVAR at ECMWF Christina Köpken Graeme Kelly, Jean-Noël Thépaut ECMWF EUMETSAT Fellowship ITSC-XII Lorne, Australia, 27 February - 5 March 2002 Assimilation

More information

Assimilation of satellite derived soil moisture for weather forecasting

Assimilation of satellite derived soil moisture for weather forecasting Assimilation of satellite derived soil moisture for weather forecasting www.cawcr.gov.au Imtiaz Dharssi and Peter Steinle February 2011 SMOS/SMAP workshop, Monash University Summary In preparation of the

More information

MSG Indian Ocean Data Coverage (IODC) Jochen Grandell & Sauli Joro

MSG Indian Ocean Data Coverage (IODC) Jochen Grandell & Sauli Joro MSG Indian Ocean Data Coverage (IODC) Jochen Grandell & Sauli Joro 1 EUM/STG-SWG/42/17/VWG/03 v1, 7 8 Mach 2017 Topics Introduction MSG-IODC Overall Project Schedule Status Product validation Products

More information

Assimilation of Doppler radar observations for high-resolution numerical weather prediction

Assimilation of Doppler radar observations for high-resolution numerical weather prediction Assimilation of Doppler radar observations for high-resolution numerical weather prediction Susan Rennie, Peter Steinle, Mark Curtis, Yi Xiao, Alan Seed Introduction Numerical Weather Prediction (NWP)

More information

AMVS: PAST PROGRESS, FUTURE CHALLENGES

AMVS: PAST PROGRESS, FUTURE CHALLENGES Proceedings for the 13 th International Winds Workshop 27 June - 1 July 2016, Monterey, California, USA AMVS: PAST PROGRESS, FUTURE CHALLENGES Mary Forsythe, James Cotton, Francis Warrick Met Office, FitzRoy

More information

Assimilation of cloud and precipitation affected microwave radiances at ECMWF

Assimilation of cloud and precipitation affected microwave radiances at ECMWF Assimilation of cloud and precipitation affected microwave radiances at ECMWF Abstract Alan Geer, Peter Bauer and Philippe Lopez European Centre for Medium-range Weather Forecasts Cloud and precipitation

More information

Atmospheric Motion Vectors: Product Guide

Atmospheric Motion Vectors: Product Guide Atmospheric Motion Vectors: Product Guide Doc.No. Issue : : EUM/TSS/MAN/14/786435 v1a EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 9 April 2015

More information

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING

VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING VALIDATION RESULTS OF THE OPERATIONAL LSA-SAF SNOW COVER MAPPING Niilo Siljamo, Otto Hyvärinen Finnish Meteorological Institute, Erik Palménin aukio 1, P.O.Box 503, FI-00101 HELSINKI Abstract Hydrological

More information

OBJECTIVE USE OF HIGH RESOLUTION WINDS PRODUCT FROM HRV MSG CHANNEL FOR NOWCASTING PURPOSES

OBJECTIVE USE OF HIGH RESOLUTION WINDS PRODUCT FROM HRV MSG CHANNEL FOR NOWCASTING PURPOSES OBJECTIVE USE OF HIGH RESOLUTION WINDS PRODUCT FROM HRV MSG CHANNEL FOR NOWCASTING PURPOSES José Miguel Fernández Serdán, Javier García Pereda Servicio de Técnicas de Análisis y Predicción, Servicio de

More information

OSSE to infer the impact of Arctic AMVs extracted from highly elliptical orbit imagery

OSSE to infer the impact of Arctic AMVs extracted from highly elliptical orbit imagery OSSE to infer the impact of Arctic AMVs extracted from highly elliptical orbit imagery L. Garand 1 Y. Rochon 1, S. Heilliette 1, J. Feng 1, A.P. Trishchenko 2 1 Environment Canada, 2 Canada Center for

More information

IMPORTANCE OF SATELLITE DATA (FOR REANALYSIS AND BEYOND) Jörg Schulz EUMETSAT

IMPORTANCE OF SATELLITE DATA (FOR REANALYSIS AND BEYOND) Jörg Schulz EUMETSAT IMPORTANCE OF SATELLITE DATA (FOR REANALYSIS AND BEYOND) Jörg Schulz EUMETSAT Why satellite data for climate monitoring? Global coverage Global consistency, sometimes also temporal consistency High spatial

More information

Cloud Top Height Product: Product Guide

Cloud Top Height Product: Product Guide Cloud Top Height Product: Product Guide Doc.No. Issue : : EUM/TSS/MAN/14/786420 v1a EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 21 August 2015

More information

JMA s ATMOSPHERIC MOTION VECTORS In response to Action 40.22

JMA s ATMOSPHERIC MOTION VECTORS In response to Action 40.22 5 July 2013 Prepared by JMA Agenda Item: II/6 Discussed in WG II JMA s ATMOSPHERIC MOTION VECTORS In response to Action 40.22 This paper reports on the recent status of JMA's AMVs from MTSAT-2 and MTSAT-1R,

More information

MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY

MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY Eszter Lábó OMSZ-Hungarian Meteorological Service, Budapest, Hungary labo.e@met.hu

More information

Improved assimilation of IASI land surface temperature data over continents in the convective scale AROME France model

Improved assimilation of IASI land surface temperature data over continents in the convective scale AROME France model Improved assimilation of IASI land surface temperature data over continents in the convective scale AROME France model Niama Boukachaba, Vincent Guidard, Nadia Fourrié CNRM-GAME, Météo-France and CNRS,

More information

DIAGNOSING OBSERVATION ERROR STATISTICS FOR NUMERICAL WEATHER PREDICTION

DIAGNOSING OBSERVATION ERROR STATISTICS FOR NUMERICAL WEATHER PREDICTION DIAGNOSING OBSERVATION ERROR STATISTICS FOR NUMERICAL WEATHER PREDICTION J. Waller, S. Dance, N. Nichols (University of Reading) D. Simonin, S. Ballard, G. Kelly (Met Office) 1 AIMS 2 OBSERVATION ERRORS

More information

ERA5 and the use of ERA data

ERA5 and the use of ERA data ERA5 and the use of ERA data Hans Hersbach, and many colleagues European Centre for Medium-Range Weather Forecasts Overview Overview of Reanalysis products at ECMWF ERA5, the follow up of ERA-Interim,

More information

Applications of Data Assimilation in Earth System Science. Alan O Neill University of Reading, UK

Applications of Data Assimilation in Earth System Science. Alan O Neill University of Reading, UK Applications of Data Assimilation in Earth System Science Alan O Neill University of Reading, UK NCEO Early Career Science Conference 16th 18th April 2012 Introduction to data assimilation Page 2 of 20

More information

Assimilation of Himawari-8 data into JMA s NWP systems

Assimilation of Himawari-8 data into JMA s NWP systems Assimilation of Himawari-8 data into JMA s NWP systems Masahiro Kazumori, Koji Yamashita and Yuki Honda Numerical Prediction Division, Japan Meteorological Agency 1. Introduction The new-generation Himawari-8

More information

Evaluation of a non-local observation operator in assimilation of. CHAMP radio occultation refractivity with WRF

Evaluation of a non-local observation operator in assimilation of. CHAMP radio occultation refractivity with WRF Evaluation of a non-local observation operator in assimilation of CHAMP radio occultation refractivity with WRF Hui Liu, Jeffrey Anderson, Ying-Hwa Kuo, Chris Snyder, and Alain Caya National Center for

More information

Using HIRS Observations to Construct Long-Term Global Temperature and Water Vapor Profile Time Series

Using HIRS Observations to Construct Long-Term Global Temperature and Water Vapor Profile Time Series Using HIRS Observations to Construct Long-Term Global Temperature and Water Vapor Profile Time Series Lei Shi and John J. Bates National Climatic Data Center, National Oceanic and Atmospheric Administration

More information

HIGH SPATIAL AND TEMPORAL RESOLUTION ATMOSPHERIC MOTION VECTORS GENERATION, ERROR CHARACTERIZATION AND ASSIMILATION

HIGH SPATIAL AND TEMPORAL RESOLUTION ATMOSPHERIC MOTION VECTORS GENERATION, ERROR CHARACTERIZATION AND ASSIMILATION HIGH SPATIAL AND TEMPORAL RESOLUTION ATMOSPHERIC MOTION VECTORS GENERATION, ERROR CHARACTERIZATION AND ASSIMILATION John Le Marshall Director, JCSDA 2004-2007 CAWCR 2007-2010 John Le Marshall 1,2, Rolf

More information

UPDATES IN THE ASSIMILATION OF GEOSTATIONARY RADIANCES AT ECMWF

UPDATES IN THE ASSIMILATION OF GEOSTATIONARY RADIANCES AT ECMWF UPDATES IN THE ASSIMILATION OF GEOSTATIONARY RADIANCES AT ECMWF Carole Peubey, Tony McNally, Jean-Noël Thépaut, Sakari Uppala and Dick Dee ECMWF, UK Abstract Currently, ECMWF assimilates clear sky radiances

More information

Satellite data assimilation for Numerical Weather Prediction II

Satellite data assimilation for Numerical Weather Prediction II Satellite data assimilation for Numerical Weather Prediction II Niels Bormann European Centre for Medium-range Weather Forecasts (ECMWF) (with contributions from Tony McNally, Jean-Noël Thépaut, Slide

More information

The impact of polar mesoscale storms on northeast Atlantic Ocean circulation

The impact of polar mesoscale storms on northeast Atlantic Ocean circulation The impact of polar mesoscale storms on northeast Atlantic Ocean circulation Influence of polar mesoscale storms on ocean circulation in the Nordic Seas Supplementary Methods and Discussion Atmospheric

More information

Global Instability Index: Product Guide

Global Instability Index: Product Guide Doc.No. Issue : : EUM/TSS/MAN/15/802106 v1c e-signed EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 2 September 2015 http://www.eumetsat.int WBS/DBS

More information

Élisabeth Gérard, Fatima Karbou, Florence Rabier, Jean-Philippe Lafore, Jean-Luc Redelsperger

Élisabeth Gérard, Fatima Karbou, Florence Rabier, Jean-Philippe Lafore, Jean-Luc Redelsperger Land surface emissivity at microwave frequencies: operational implementation in the French global 4DVar system and impact of using surface sensitive channels on the African Monsoon during AMMA Élisabeth

More information

Comparison results: time series Margherita Grossi

Comparison results: time series Margherita Grossi Comparison results: time series Margherita Grossi GOME Evolution Climate Product v2.01 vs. ECMWF ERAInterim GOME Evolution Climate Product v2.01 vs. SSM/I HOAPS4 In order to assess the quality and stability

More information

H. LIU AND X. ZOU AUGUST 2001 LIU AND ZOU. The Florida State University, Tallahassee, Florida

H. LIU AND X. ZOU AUGUST 2001 LIU AND ZOU. The Florida State University, Tallahassee, Florida AUGUST 2001 LIU AND ZOU 1987 The Impact of NORPEX Targeted Dropsondes on the Analysis and 2 3-Day Forecasts of a Landfalling Pacific Winter Storm Using NCEP 3DVAR and 4DVAR Systems H. LIU AND X. ZOU The

More information

ATMOSPHERIC MOTION VECTORS DERIVED FROM MSG RAPID SCANNING SERVICE DATA AT EUMETSAT

ATMOSPHERIC MOTION VECTORS DERIVED FROM MSG RAPID SCANNING SERVICE DATA AT EUMETSAT ATMOSPHERIC MOTION VECTORS DERIVED FROM MSG RAPID SCANNING SERVICE DATA AT EUMETSAT Manuel Carranza 1, Arthur de Smet 2, Jörgen Gustafsson 2 1 GMV Aerospace and Defence S.A. at EUMETSAT, Eumetsat-Allee

More information

NUMERICAL EXPERIMENTS USING CLOUD MOTION WINDS AT ECMWF GRAEME KELLY. ECMWF, Shinfield Park, Reading ABSTRACT

NUMERICAL EXPERIMENTS USING CLOUD MOTION WINDS AT ECMWF GRAEME KELLY. ECMWF, Shinfield Park, Reading ABSTRACT NUMERICAL EXPERIMENTS USING CLOUD MOTION WINDS AT ECMWF GRAEME KELLY ECMWF, Shinfield Park, Reading ABSTRACT Recent monitoring of cloud motion winds (SATOBs) at ECMWF has shown an improvement in quality.

More information

ASSIMILATION OF ATOVS RETRIEVALS AND AMSU-A RADIANCES AT THE ITALIAN WEATHER SERVICE: CURRENT STATUS AND PERSPECTIVES

ASSIMILATION OF ATOVS RETRIEVALS AND AMSU-A RADIANCES AT THE ITALIAN WEATHER SERVICE: CURRENT STATUS AND PERSPECTIVES ASSIMILATION OF ATOVS RETRIEVALS AND AMSU-A RADIANCES AT THE ITALIAN WEATHER SERVICE: CURRENT STATUS AND PERSPECTIVES Massimo Bonavita, Lucio Torrisi and Antonio Vocino CNMCA, Italian Meteorological Service

More information

IMPACT STUDIES OF AMVS AND SCATTEROMETER WINDS IN JMA GLOBAL OPERATIONAL NWP SYSTEM

IMPACT STUDIES OF AMVS AND SCATTEROMETER WINDS IN JMA GLOBAL OPERATIONAL NWP SYSTEM IMPACT STUDIES OF AMVS AND SCATTEROMETER WINDS IN JMA GLOBAL OPERATIONAL NWP SYSTEM Koji Yamashita Japan Meteorological Agency / Numerical Prediction Division 1-3-4, Otemachi, Chiyoda-ku, Tokyo 100-8122,

More information

Recent Changes in the Derivation of Geostationary AMVs at EUMETSAT. Manuel Carranza Régis Borde Marie Doutriaux-Boucher

Recent Changes in the Derivation of Geostationary AMVs at EUMETSAT. Manuel Carranza Régis Borde Marie Doutriaux-Boucher Recent Changes in the Derivation of Geostationary AMVs at EUMETSAT Manuel Carranza Régis Borde Marie Doutriaux-Boucher Summary Introduction to EUMETSAT s geostationary AMVs Recent changes: Cross-Correlation

More information

P3.1 Development of MOS Thunderstorm and Severe Thunderstorm Forecast Equations with Multiple Data Sources

P3.1 Development of MOS Thunderstorm and Severe Thunderstorm Forecast Equations with Multiple Data Sources P3.1 Development of MOS Thunderstorm and Severe Thunderstorm Forecast Equations with Multiple Data Sources Kathryn K. Hughes * Meteorological Development Laboratory Office of Science and Technology National

More information

METEOSAT cloud-cleared radiances for use in three/fourdimensional variational data assimilation

METEOSAT cloud-cleared radiances for use in three/fourdimensional variational data assimilation METEOSAT cloud-cleared radiances for use in three/fourdimensional variational data assimilation G. A. Kelly, M. Tomassini and M. Matricardi European Centre for Medium-Range Weather Forecasts, Reading,

More information

RTMIPAS: A fast radiative transfer model for the assimilation of infrared limb radiances from MIPAS

RTMIPAS: A fast radiative transfer model for the assimilation of infrared limb radiances from MIPAS RTMIPAS: A fast radiative transfer model for the assimilation of infrared limb radiances from MIPAS Niels Bormann, Sean Healy, and Marco Matricardi European Centre for Medium-range Weather Forecasts (ECMWF),

More information