TRANSFER FUNCTION MODEL FOR GLOSS PREDICTION OF COATED ALUMINUM USING THE ARIMA PROCEDURE

Size: px
Start display at page:

Download "TRANSFER FUNCTION MODEL FOR GLOSS PREDICTION OF COATED ALUMINUM USING THE ARIMA PROCEDURE"

Transcription

1 TRANSFER FUNCTION MODEL FOR GLOSS PREDICTION OF COATED ALUMINUM USING THE ARIMA PROCEDURE Mozammel H. Khan Kuwait Institute for Scientific Research Introduction The objective of this work was to investigate methods for using available test data to predict the percentage gloss values of coated aluminum exposed to open environment. Because of the uncertainty of the weathering data and a lack of consensus over the reliability of the predictive value of the accelerated testing carried out in the laboratory, suitable mathematical model techniques were sought which would fit the existing test data and would make prediction of the gloss value at any specified fu ture time. A model in this case, is an algebraic statement telling how the gloss value is statistically related to time and the other pertinent weathering variables such as temperature and relative humidity. There exists two distinctive modeling techniques: namely, 1. Regression Analysis 2. Time Series Analysis Regression method expresses the dependence of one variable on another at the same time. On the other hand, time series modeling expresses the dependence of variable on itself at different times. Also regression model requires that the value of the independent variable be independent. Aluminum coating degradation data do not fall into this category, since the gloss value at the present time step is also dependent on the gloss values of the previous time steps. The principal difference between two systems stem form the fact that the regression system is static where as the time series system is dynamic. A disturbance t entering a regression system at time t affects only Y t but not Y t + 1 By the time the system response proceeds from t to t+ 1, the disturbance E t is forgotten; thus the system has no memory or dynamics. In time series system, on the other hand, a disturbance at affecting the system is remembered and continues to affect the system at subsequent times. In this paper, first the univariate time series analysis was applied to the gloss degradation data and then the Box-Jenkins transfer function methodology was applied to forecast the gloss value. A multiple input transfer function was specified to explicitly account for the effect of weather conditions on the gloss value. Univariate Time Series Analysis Time series data refers to observations on a variable that occurs in a time sequence. The phrase "time series analysis" is used in several ways. Sometimes it refers to any kind of analysis involving time series data. At other times it is used more narrowly to describe attempts to explain behavior of time series data using only past observations of the variable in question. This activity is referred to as single series or univariate analysis. The underlying assumptions is that the time sequenced observations in a data series may be statistically dependent as opposed to traditional regression analysis where the various observations within a single data series are assumed to be statistically independent. The most widely used univariate time series analysis is popularly known as Box-Jenkins model so named after Box and Jenkins who are responsible for the development of this strategy. Box-Jenkins models are also often referred to as Auto-Regressive Integrated Moving Average (ARIMA) models. It deals only with data measured at equally spaced, discrete time intervals. The model could be an Auto Regressive CAR), or Moving Average (MA) or the integration of both. One of the most stringent requirement of ARIMA modeling is that the data series should be stationary. A stationary time series has a 517

2 mean 9 variance, and autocorrelation function that are essentially constant through time. The stationary requirement may seem quite restrictive. However, most nonstationary series that arise in practice can be transformed into stationary series through an appropriate degree of differencing. First differences are the value at t minus the value at t-l. If the first differences do not have a constant mean, second differencing is done, which is the difference of the first differences. After a differenced series has been modeled it is integrated d times to return the data to the appropriate model. A generalized Box-Jenkins model is then represented as ARIMA(p, d, q), where p is the order of the auto-regressive contribution, q is the moving average part and d is the degree of differencing. Univariate Gloss Performance The measurements for aluminum gloss retention were taken monthly since January Gloss values as percentage were recorded at the end of every month while the maximum and minimum temperatures and relative humidities were recorded daily. Subsequently. the monthly average maximum and minimum temperatures and relative humidities were calculated. To develop univariate time series model. only the gloss values and the time of exposure in terms of uniform time step (month) were considered. Although it is obvious that the mean of the series is not stationary, the autocorrelation function (acf) and partial autocorrelation function (pacf) of the undifferenced data are estimated using the SAS/ETSTM ARIMA procedure. The estimated autocorrelations decay slowly. they do not cross the zero line even by tenth lag. This supports the observation that the series is nonstationary. A check of this is to estimate an autoregressive model of order 1. AR(I). This model is implied by the decaying acf and the single significant pacf spike at lag 1. Estimation. although unstable, results a ci> value of 1 that confirms the nonstationary characteristics of the data. First differencing of the series is clearly needed. Table 1 shows the estimated acf and pacf of the first differences. The estimated acf clearly suggests that the first differences are stationary and they can be represented by an AR(I) model: the spikes tail off toward zero in the estimated acf says an AR model is appropriate. The estimated pacf is consistent with AR(I) model: pure AR model of order one are typically associated with pacrs that 518 cut off to zero after lag 1; the estimated pacf in Ta1;>le 1 displays this behavior. From the preceding analysis an ARIMA(I.I.0) model is tentatively selected. Estimation results and the residuals acf appear in Table 1. The univariate model. in back shift notation. then can be represented as follows: (1-O.597B) (I-B) GWSS = at All indications are that the AR(I) is satisfactory. Both /J- and ci>t are significant judging by their large absolute t-values. and the stationary condition kf>tk1 is satisfied. The residual acf of Table 1. confirms the hypothesis that the shocks at of the univariate model are independent. There are no absolute correlation values in the residual acf exceeding any of the relevant practical warning levels (twice the standard error) and the chi-squared statistics is insignificant even at more than 10% level. Transfer Function Model Univariate model uses a single dependent or output variable as a function of its own histo- ry and previous errors. Transfer function model, on the other hand, may have single or multiple inputs that may possibly affect the system. The dynamic characteristics of a system are fully understood explicitly only through a transfer function model. The dynamic nature of the transfer function relationship lies in its ability to account for the instantaneous and lagged effects of an input variable on the output variable. This relationship can be used to improve the forecast of the output variable as well as provide the capability of using the model for simulation analysis by plugging in alternate forecasts of the input series. When simultaneous pairs of observations (XtX t ). (X 2 Y 2 )... (X N X N ) of the input and output variables are available at discrete equispaced times N a discrete linear transfer function model can be written as (1-ll t B-... -ll r B r ) Y t = (wo-wtb-... -wsb S ) X t _ b or Il (B) Y t = w (B) Xt-b where B is backshift operator and b is the delay parameter. This

3 equation is referred to.. as transfer function model of order (r, s). If the system is infected by noise Nt, then the combined transfer,function-noise model may be written as Y t = 11-1 (B)w (B) Xt-h + Nt The objective of the identification stage is to obtain some idea of the order rand s of the transfer function model and to derive initial guesses for the parameter ll, wand the delay parameter b. In the same way that the autocorrelation function is used to identify p, d, q parameters of the univariate model, the r, s and b parameters for the transfer function models are identified by the cross correlation between the input and the output. Following Box-Jenkins the whole process of identification, estimation and diagnostic and forecasting can be outlined as follows: A univariate model is identified for each of the input variables being used. The output series is next prewhitened using the univariate model for each mput series. The cross correlation between the prewhitened output series and each corresponding input series is calculated. Based on the values and pattern of the cross correlation function (as acf in univariate model), the r, sand b parameters are tentatively identified and estimated for the transfer function between each in pu t series and the ou tpu t series. The transfer functions for all the input series are then combined into a single model and the transfer function parameters are estimated. 9. If the fitted model proves to be inadequate then the identification and estimation stages must be repeated for either the transfer function model, the noise model or both. 10. If, however, the fitted model is found to be adequate based on the diagnostic checking, then it can be used in forecasting. Transfer Function Model Resufts The temperature and humidity data were used for the construction of the univariate models for each of the inputs. To reduce the variance, temperature and humidity data were subjected to logarithmic transformation as follows: Temperature Effect TE=ln(Tman Tmin)12 Humidity Effect HE~ln(RHmax+RHmin)/2 where Tmox=monthly mean maximum temperature, Tmin=monthly mean minimum temperature, RHmox=monthly mean maximum relative humidity and RHmin=monthly mean minimum relative humidity. Univariate model building for both TE and HE were carried out following the procedures outlined earlier in the univariate time series analysis. Both the series needed first degree seasonal differencing in order to remove seasonal nonstationarity. Based on the acf and pacf of differenced series, the following autoregressive models were selected for TE and HE respectively: The transfer function parameters estimate can be checked for significance and if' necessary re-specified and re-estimated. After the form of the transfer function has been determined, the residuals are examined to identify an appropriate stochastic model for the noise component. The parameters function-noise estimated. of the com plete transfer model are then re- Diagnostic checks may be performed on the full model to determine its adequacy. 519 The diagnostic checkings were done and the above models were found to be the adequate representation of the temperature and humidity data. FollOWing the steps outlined for the building of transfer function model, the transfer function parameters were identified from the cross correlation functions for each input series.

4 There was no overall delay for either of the inputs, since the gloss measurements were taken at the end of the month during which the temperature and humidity measurements were recorded. The single cross correlation at lag zero for both the input series also suggested a single overall regression factor with no lag effects of either of the input series or the output series. The transfer function parameters for the model with combined inputs were estimated. The residuals from this models were investigated and a first order autoregressive model was identified for the noise portion of the model. The two models were then combined and the parameters were re-estimated and are given as (I-B) GWSS = (I_B 12 ) TE All the parameters are significant judging from their large absolute t-values. The residuals of the final models were examined and none of the residual autocorrelation had an absolute value even approaching significant level and the chi-squared statistics were quite insignificant. Forecasting Results The residuals values for both univariate and transfer function models are shown in Figure 1. The transfer function residuals are slightly lower than those of the univariate model almost all along the range of the observed values. The adjusted Root Mean Square Error (RMSE) in transfer function model is 0.87 as compared to 1.01 in univariate model which indicates that the transfer function model fits the data more closely although both the models are equally parsimonious. Moreover, model with the smaller RMSE tends to have a smaller forecast-error variance. Likewise, the Mean Absolute Percent Error (MAPE) for the transfer function model is 0.62 as opposed to 0.77 for the univariate model. Forecast for the twelve months lead period for which the actual data is already available is shown in Table 2. In this case also, the transfer function model slightly outperforms the univariate model. The adjusted RMSE for transfer function model is 1.01 as compared to 1.10 for the univariate model and the MAPE for the former is 0.71 as opposed to 0.77 for the latter. Also as expected from the value of adjusted RMSE, the standard (SID) error for individual forecast is consistently lower in the transfer function model all through the forecasting range. Several points deserve emphasis regarding the forecast for lead times of more than one. After the first forecast, bootstrap forecasts are produced since they are based at least partly on forecast gloss values and forecast input values rather than the observed ones. The last eleven forecasts in Table 2 are bootstrap forecasts. Under this situation, the transfer function model offers a distinct advantage over the univariate model. The errors in the transfer function model can be decomposed into two components, namely, model error and the error in the input forecasts. The input forecast error can be reduced or eliminated if the transfer function model is used as a simulation model based on alternative or actual inputs. Thus no error is attributed to the inputs, it is all part of the model errors. Conclusions The applications of Box-Jenkins univariate time series approach and transfer function methodology to gloss degradation data have been found to be suitable. Temperature and humidity effects were the inputs to the transfer function model. Both the models fit the observed data with reasonable accuracy, although the transfer function model has a slight edge over the univariate model in both fitting and forecasting accuracy. The forecast can be done for any number of lead periods, although it is more reliable for short term forecasting. This limitation can be, however, relaxed for the transfer function model since this model could be used for the simulation analysis with alternate input forecast or actual inputs. This aspect of the transfer function model offers a remarkable advantage for gloss prediction if the actual values of temperature and humidity are known or alternate forecast for these variables could be made for environment with distinctly different weather conditions. SAS/ETS is a registered trademark of SAS Institu te Inc., Cary, NC, USA. 520

5 References (1) Box, G.E.P. and G.M. Jenkins. Time Series Analysis: Forecasting and Control, Revised Edition. San Francisco: Holden-Day, (2) Davis, S. Predicting Prison Population Using the SASIETS Product. Proc. of the 9th SUGJ conference. Cary, NC: SAS Institute Inc pp. (3) Jacob, M.F. Residential Energy Forecasting: a Pragmatic Application of Box-Jenkins. Proc. of the 9th SUGJ conference. Cary, NC: SAS Institute Inc pp. (4) Pandit, S.M. and S.M. Wu. Time Serles and System Analysis with Applications. New York: Wiley, (5) Pankratz, A. Forecasting with Univariate Box-Jenkins Model, Concept and Cases. New York: Wiley, (6) Rehfeldt, T K. Evaluotion of Degradation Data by Time Series Analysis. Progress in Organic Coating, 15(1987) (7) SAS Institute Inc. SASI ETS User's Guide, Version 5 Edition. Cary, NC: SAS Institute Inc., pp. TABLE 1. IDENTIFICATION AND ESTIMATION FOR DIFFERENCED GLOSS DATA n 1 2 ~ 4 ~ , ARIMA: CONDITIONAL LEAST LAG ~ 1 91~ ~ ~Z~~1, 1, 1,,,, 1, 521

6 i,gure 1. M o o E L R E S I o U A L s 0., " " TIME STEPS IN MONTH '".. MOOEL TRANSFER <> <> <> UN1U~1I1ATE Table 2. Prediction Performance of Univariate and Transfer Function Models TIME ACTUAL UNIVARIATE TRANSFER UNIVARIATE TRANSFER UNIVARIATE TRANSFER STEP GLOSS FORECAST FUNCTION RESIDUAL FUNCTION STD ERROR FUNCTION VALUE FORECAST RESIDUAL STD ERROR B ADJUSTED RMSE(Transfer)=l.01 ADJUSTED RMSE(Univarlate)=l.10 MAPE(Transfer)=0.71 MAPE(Univariate)=0.77 The author may be contacted at: Computer Center Kuwait Institute for Scientific Research P.O. BOX: A Safat Safat KUW IT BITNET: TES258@KUKISROO 522

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA CHAPTER 6 TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA 6.1. Introduction A time series is a sequence of observations ordered in time. A basic assumption in the time series analysis

More information

The ARIMA Procedure: The ARIMA Procedure

The ARIMA Procedure: The ARIMA Procedure Page 1 of 120 Overview: ARIMA Procedure Getting Started: ARIMA Procedure The Three Stages of ARIMA Modeling Identification Stage Estimation and Diagnostic Checking Stage Forecasting Stage Using ARIMA Procedure

More information

arxiv: v1 [stat.me] 5 Nov 2008

arxiv: v1 [stat.me] 5 Nov 2008 arxiv:0811.0659v1 [stat.me] 5 Nov 2008 Estimation of missing data by using the filtering process in a time series modeling Ahmad Mahir R. and Al-khazaleh A. M. H. School of Mathematical Sciences Faculty

More information

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo

MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH. I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo Vol.4, No.2, pp.2-27, April 216 MODELING INFLATION RATES IN NIGERIA: BOX-JENKINS APPROACH I. U. Moffat and A. E. David Department of Mathematics & Statistics, University of Uyo, Uyo ABSTRACT: This study

More information

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

SAS/ETS 14.1 User s Guide. The ARIMA Procedure

SAS/ETS 14.1 User s Guide. The ARIMA Procedure SAS/ETS 14.1 User s Guide The ARIMA Procedure This document is an individual chapter from SAS/ETS 14.1 User s Guide. The correct bibliographic citation for this manual is as follows: SAS Institute Inc.

More information

5 Autoregressive-Moving-Average Modeling

5 Autoregressive-Moving-Average Modeling 5 Autoregressive-Moving-Average Modeling 5. Purpose. Autoregressive-moving-average (ARMA models are mathematical models of the persistence, or autocorrelation, in a time series. ARMA models are widely

More information

Ross Bettinger, Analytical Consultant, Seattle, WA

Ross Bettinger, Analytical Consultant, Seattle, WA ABSTRACT USING PROC ARIMA TO MODEL TRENDS IN US HOME PRICES Ross Bettinger, Analytical Consultant, Seattle, WA We demonstrate the use of the Box-Jenkins time series modeling methodology to analyze US home

More information

Investigating Seasonality in BLS Data Using PROC ARIMA Joseph Earley, Loyola Marymount University Los Angeles, California

Investigating Seasonality in BLS Data Using PROC ARIMA Joseph Earley, Loyola Marymount University Los Angeles, California nvestigating Seasonality in BLS Data Using PROC ARMA Joseph Earley, Loyola Marymount University Los Angeles, California Abstract This paper illustrates how the SAS System statistical procedure PROC ARMA

More information

Univariate ARIMA Models

Univariate ARIMA Models Univariate ARIMA Models ARIMA Model Building Steps: Identification: Using graphs, statistics, ACFs and PACFs, transformations, etc. to achieve stationary and tentatively identify patterns and model components.

More information

Ross Bettinger, Analytical Consultant, Seattle, WA

Ross Bettinger, Analytical Consultant, Seattle, WA ABSTRACT DYNAMIC REGRESSION IN ARIMA MODELING Ross Bettinger, Analytical Consultant, Seattle, WA Box-Jenkins time series models that contain exogenous predictor variables are called dynamic regression

More information

Design of Time Series Model for Road Accident Fatal Death in Tamilnadu

Design of Time Series Model for Road Accident Fatal Death in Tamilnadu Volume 109 No. 8 2016, 225-232 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Design of Time Series Model for Road Accident Fatal Death in Tamilnadu

More information

Empirical Approach to Modelling and Forecasting Inflation in Ghana

Empirical Approach to Modelling and Forecasting Inflation in Ghana Current Research Journal of Economic Theory 4(3): 83-87, 2012 ISSN: 2042-485X Maxwell Scientific Organization, 2012 Submitted: April 13, 2012 Accepted: May 06, 2012 Published: June 30, 2012 Empirical Approach

More information

Basics: Definitions and Notation. Stationarity. A More Formal Definition

Basics: Definitions and Notation. Stationarity. A More Formal Definition Basics: Definitions and Notation A Univariate is a sequence of measurements of the same variable collected over (usually regular intervals of) time. Usual assumption in many time series techniques is that

More information

Using PROC ARIMA in Forecasting the Demand and Utilization of Inpatient Hospital Services

Using PROC ARIMA in Forecasting the Demand and Utilization of Inpatient Hospital Services Using PROC ARIMA in Forecasting the Demand and Utilization of Inpatient Hospital Services John J. Hisnanick* U.S. Department of Health and Human Services Introduction In the course of any normal day, we

More information

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL B. N. MANDAL Abstract: Yearly sugarcane production data for the period of - to - of India were analyzed by time-series methods. Autocorrelation

More information

Suan Sunandha Rajabhat University

Suan Sunandha Rajabhat University Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis Kunya Bowornchockchai Suan Sunandha Rajabhat University INTRODUCTION The objective of this research is to forecast

More information

Time Series I Time Domain Methods

Time Series I Time Domain Methods Astrostatistics Summer School Penn State University University Park, PA 16802 May 21, 2007 Overview Filtering and the Likelihood Function Time series is the study of data consisting of a sequence of DEPENDENT

More information

Sugarcane Productivity in Bihar- A Forecast through ARIMA Model

Sugarcane Productivity in Bihar- A Forecast through ARIMA Model Available online at www.ijpab.com Kumar et al Int. J. Pure App. Biosci. 5 (6): 1042-1051 (2017) ISSN: 2320 7051 DOI: http://dx.doi.org/10.18782/2320-7051.5838 ISSN: 2320 7051 Int. J. Pure App. Biosci.

More information

Minitab Project Report - Assignment 6

Minitab Project Report - Assignment 6 .. Sunspot data Minitab Project Report - Assignment Time Series Plot of y Time Series Plot of X y X 7 9 7 9 The data have a wavy pattern. However, they do not show any seasonality. There seem to be an

More information

Forecasting Area, Production and Yield of Cotton in India using ARIMA Model

Forecasting Area, Production and Yield of Cotton in India using ARIMA Model Forecasting Area, Production and Yield of Cotton in India using ARIMA Model M. K. Debnath 1, Kartic Bera 2 *, P. Mishra 1 1 Department of Agricultural Statistics, Bidhan Chanda Krishi Vishwavidyalaya,

More information

Implementation of ARIMA Model for Ghee Production in Tamilnadu

Implementation of ARIMA Model for Ghee Production in Tamilnadu Inter national Journal of Pure and Applied Mathematics Volume 113 No. 6 2017, 56 64 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Implementation

More information

Dynamic Time Series Regression: A Panacea for Spurious Correlations

Dynamic Time Series Regression: A Panacea for Spurious Correlations International Journal of Scientific and Research Publications, Volume 6, Issue 10, October 2016 337 Dynamic Time Series Regression: A Panacea for Spurious Correlations Emmanuel Alphonsus Akpan *, Imoh

More information

Univariate, Nonstationary Processes

Univariate, Nonstationary Processes Univariate, Nonstationary Processes Jamie Monogan University of Georgia March 20, 2018 Jamie Monogan (UGA) Univariate, Nonstationary Processes March 20, 2018 1 / 14 Objectives By the end of this meeting,

More information

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis Chapter 12: An introduction to Time Series Analysis Introduction In this chapter, we will discuss forecasting with single-series (univariate) Box-Jenkins models. The common name of the models is Auto-Regressive

More information

ARIMA modeling to forecast area and production of rice in West Bengal

ARIMA modeling to forecast area and production of rice in West Bengal Journal of Crop and Weed, 9(2):26-31(2013) ARIMA modeling to forecast area and production of rice in West Bengal R. BISWAS AND B. BHATTACHARYYA Department of Agricultural Statistics Bidhan Chandra Krishi

More information

Short-Term Load Forecasting Using ARIMA Model For Karnataka State Electrical Load

Short-Term Load Forecasting Using ARIMA Model For Karnataka State Electrical Load International Journal of Engineering Research and Development e-issn: 2278-67X, p-issn: 2278-8X, www.ijerd.com Volume 13, Issue 7 (July 217), PP.75-79 Short-Term Load Forecasting Using ARIMA Model For

More information

FORECASTING OF COTTON PRODUCTION IN INDIA USING ARIMA MODEL

FORECASTING OF COTTON PRODUCTION IN INDIA USING ARIMA MODEL FORECASTING OF COTTON PRODUCTION IN INDIA USING ARIMA MODEL S.Poyyamozhi 1, Dr. A. Kachi Mohideen 2. 1 Assistant Professor and Head, Department of Statistics, Government Arts College (Autonomous), Kumbakonam

More information

Study on Modeling and Forecasting of the GDP of Manufacturing Industries in Bangladesh

Study on Modeling and Forecasting of the GDP of Manufacturing Industries in Bangladesh CHIANG MAI UNIVERSITY JOURNAL OF SOCIAL SCIENCE AND HUMANITIES M. N. A. Bhuiyan 1*, Kazi Saleh Ahmed 2 and Roushan Jahan 1 Study on Modeling and Forecasting of the GDP of Manufacturing Industries in Bangladesh

More information

A stochastic modeling for paddy production in Tamilnadu

A stochastic modeling for paddy production in Tamilnadu 2017; 2(5): 14-21 ISSN: 2456-1452 Maths 2017; 2(5): 14-21 2017 Stats & Maths www.mathsjournal.com Received: 04-07-2017 Accepted: 05-08-2017 M Saranyadevi Assistant Professor (GUEST), Department of Statistics,

More information

Forecasting the Prices of Indian Natural Rubber using ARIMA Model

Forecasting the Prices of Indian Natural Rubber using ARIMA Model Available online at www.ijpab.com Rani and Krishnan Int. J. Pure App. Biosci. 6 (2): 217-221 (2018) ISSN: 2320 7051 DOI: http://dx.doi.org/10.18782/2320-7051.5464 ISSN: 2320 7051 Int. J. Pure App. Biosci.

More information

AE International Journal of Multi Disciplinary Research - Vol 2 - Issue -1 - January 2014

AE International Journal of Multi Disciplinary Research - Vol 2 - Issue -1 - January 2014 Time Series Model to Forecast Production of Cotton from India: An Application of Arima Model *Sundar rajan *Palanivel *Research Scholar, Department of Statistics, Govt Arts College, Udumalpet, Tamilnadu,

More information

Paper SA-08. Are Sales Figures in Line With Expectations? Using PROC ARIMA in SAS to Forecast Company Revenue

Paper SA-08. Are Sales Figures in Line With Expectations? Using PROC ARIMA in SAS to Forecast Company Revenue Paper SA-08 Are Sales Figures in Line With Expectations? Using PROC ARIMA in SAS to Forecast Company Revenue Saveth Ho and Brian Van Dorn, Deluxe Corporation, Shoreview, MN ABSTRACT The distribution of

More information

Lecture 19 Box-Jenkins Seasonal Models

Lecture 19 Box-Jenkins Seasonal Models Lecture 19 Box-Jenkins Seasonal Models If the time series is nonstationary with respect to its variance, then we can stabilize the variance of the time series by using a pre-differencing transformation.

More information

FORECASTING YIELD PER HECTARE OF RICE IN ANDHRA PRADESH

FORECASTING YIELD PER HECTARE OF RICE IN ANDHRA PRADESH International Journal of Mathematics and Computer Applications Research (IJMCAR) ISSN 49-6955 Vol. 3, Issue 1, Mar 013, 9-14 TJPRC Pvt. Ltd. FORECASTING YIELD PER HECTARE OF RICE IN ANDHRA PRADESH R. RAMAKRISHNA

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA

A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA www.arpapress.com/volumes/vol14issue3/ijrras_14_3_14.pdf A SEASONAL TIME SERIES MODEL FOR NIGERIAN MONTHLY AIR TRAFFIC DATA Ette Harrison Etuk Department of Mathematics/Computer Science, Rivers State University

More information

ISSN Original Article Statistical Models for Forecasting Road Accident Injuries in Ghana.

ISSN Original Article Statistical Models for Forecasting Road Accident Injuries in Ghana. Available online at http://www.urpjournals.com International Journal of Research in Environmental Science and Technology Universal Research Publications. All rights reserved ISSN 2249 9695 Original Article

More information

Acta Universitatis Carolinae. Mathematica et Physica

Acta Universitatis Carolinae. Mathematica et Physica Acta Universitatis Carolinae. Mathematica et Physica Jitka Zichová Some applications of time series models to financial data Acta Universitatis Carolinae. Mathematica et Physica, Vol. 52 (2011), No. 1,

More information

FORECASTING THE INVENTORY LEVEL OF MAGNETIC CARDS IN TOLLING SYSTEM

FORECASTING THE INVENTORY LEVEL OF MAGNETIC CARDS IN TOLLING SYSTEM FORECASTING THE INVENTORY LEVEL OF MAGNETIC CARDS IN TOLLING SYSTEM Bratislav Lazić a, Nebojša Bojović b, Gordana Radivojević b*, Gorana Šormaz a a University of Belgrade, Mihajlo Pupin Institute, Serbia

More information

Estimation and application of best ARIMA model for forecasting the uranium price.

Estimation and application of best ARIMA model for forecasting the uranium price. Estimation and application of best ARIMA model for forecasting the uranium price. Medeu Amangeldi May 13, 2018 Capstone Project Superviser: Dongming Wei Second reader: Zhenisbek Assylbekov Abstract This

More information

TIME SERIES DATA PREDICTION OF NATURAL GAS CONSUMPTION USING ARIMA MODEL

TIME SERIES DATA PREDICTION OF NATURAL GAS CONSUMPTION USING ARIMA MODEL International Journal of Information Technology & Management Information System (IJITMIS) Volume 7, Issue 3, Sep-Dec-2016, pp. 01 07, Article ID: IJITMIS_07_03_001 Available online at http://www.iaeme.com/ijitmis/issues.asp?jtype=ijitmis&vtype=7&itype=3

More information

Modelling Monthly Rainfall Data of Port Harcourt, Nigeria by Seasonal Box-Jenkins Methods

Modelling Monthly Rainfall Data of Port Harcourt, Nigeria by Seasonal Box-Jenkins Methods International Journal of Sciences Research Article (ISSN 2305-3925) Volume 2, Issue July 2013 http://www.ijsciences.com Modelling Monthly Rainfall Data of Port Harcourt, Nigeria by Seasonal Box-Jenkins

More information

Time Series Analysis Model for Rainfall Data in Jordan: Case Study for Using Time Series Analysis

Time Series Analysis Model for Rainfall Data in Jordan: Case Study for Using Time Series Analysis American Journal of Environmental Sciences 5 (5): 599-604, 2009 ISSN 1553-345X 2009 Science Publications Time Series Analysis Model for Rainfall Data in Jordan: Case Study for Using Time Series Analysis

More information

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting)

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) (overshort example) White noise H 0 : Let Z t be the stationary

More information

Asitha Kodippili. Deepthika Senaratne. Department of Mathematics and Computer Science,Fayetteville State University, USA.

Asitha Kodippili. Deepthika Senaratne. Department of Mathematics and Computer Science,Fayetteville State University, USA. Forecasting Tourist Arrivals to Sri Lanka Using Seasonal ARIMA Asitha Kodippili Department of Mathematics and Computer Science,Fayetteville State University, USA. akodippili@uncfsu.edu Deepthika Senaratne

More information

Modeling and forecasting global mean temperature time series

Modeling and forecasting global mean temperature time series Modeling and forecasting global mean temperature time series April 22, 2018 Abstract: An ARIMA time series model was developed to analyze the yearly records of the change in global annual mean surface

More information

Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models

Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models Facoltà di Economia Università dell Aquila umberto.triacca@gmail.com Introduction In this lesson we present a method to construct an ARMA(p,

More information

Estimation of Parameters of Multiplicative Seasonal Autoregressive Integrated Moving Average Model Using Multiple Regression

Estimation of Parameters of Multiplicative Seasonal Autoregressive Integrated Moving Average Model Using Multiple Regression International Journal of Statistics and Applications 2015, 5(2): 91-97 DOI: 10.5923/j.statistics.20150502.07 Estimation of Parameters of Multiplicative Seasonal Autoregressive Integrated Moving Average

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

A MACRO-DRIVEN FORECASTING SYSTEM FOR EVALUATING FORECAST MODEL PERFORMANCE

A MACRO-DRIVEN FORECASTING SYSTEM FOR EVALUATING FORECAST MODEL PERFORMANCE A MACRO-DRIVEN ING SYSTEM FOR EVALUATING MODEL PERFORMANCE Bryan Sellers Ross Laboratories INTRODUCTION A major problem of forecasting aside from obtaining accurate forecasts is choosing among a wide range

More information

Multiplicative Sarima Modelling Of Nigerian Monthly Crude Oil Domestic Production

Multiplicative Sarima Modelling Of Nigerian Monthly Crude Oil Domestic Production Journal of Applied Mathematics & Bioinformatics, vol.3, no.3, 2013, 103-112 ISSN: 1792-6602 (print), 1792-6939 (online) Scienpress Ltd, 2013 Multiplicative Sarima Modelling Of Nigerian Monthly Crude Oil

More information

A Comparison of the Forecast Performance of. Double Seasonal ARIMA and Double Seasonal. ARFIMA Models of Electricity Load Demand

A Comparison of the Forecast Performance of. Double Seasonal ARIMA and Double Seasonal. ARFIMA Models of Electricity Load Demand Applied Mathematical Sciences, Vol. 6, 0, no. 35, 6705-67 A Comparison of the Forecast Performance of Double Seasonal ARIMA and Double Seasonal ARFIMA Models of Electricity Load Demand Siti Normah Hassan

More information

Scenario 5: Internet Usage Solution. θ j

Scenario 5: Internet Usage Solution. θ j Scenario : Internet Usage Solution Some more information would be interesting about the study in order to know if we can generalize possible findings. For example: Does each data point consist of the total

More information

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27 ARIMA Models Jamie Monogan University of Georgia January 16, 2018 Jamie Monogan (UGA) ARIMA Models January 16, 2018 1 / 27 Objectives By the end of this meeting, participants should be able to: Argue why

More information

Seasonal Autoregressive Integrated Moving Average Model for Precipitation Time Series

Seasonal Autoregressive Integrated Moving Average Model for Precipitation Time Series Journal of Mathematics and Statistics 8 (4): 500-505, 2012 ISSN 1549-3644 2012 doi:10.3844/jmssp.2012.500.505 Published Online 8 (4) 2012 (http://www.thescipub.com/jmss.toc) Seasonal Autoregressive Integrated

More information

Analysis. Components of a Time Series

Analysis. Components of a Time Series Module 8: Time Series Analysis 8.2 Components of a Time Series, Detection of Change Points and Trends, Time Series Models Components of a Time Series There can be several things happening simultaneously

More information

Lab: Box-Jenkins Methodology - US Wholesale Price Indicator

Lab: Box-Jenkins Methodology - US Wholesale Price Indicator Lab: Box-Jenkins Methodology - US Wholesale Price Indicator In this lab we explore the Box-Jenkins methodology by applying it to a time-series data set comprising quarterly observations of the US Wholesale

More information

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each)

Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) GROUND RULES: This exam contains two parts: Part 1. Multiple Choice (50 questions, 1 point each) Part 2. Problems/Short Answer (10 questions, 5 points each) The maximum number of points on this exam is

More information

Box-Jenkins ARIMA Advanced Time Series

Box-Jenkins ARIMA Advanced Time Series Box-Jenkins ARIMA Advanced Time Series www.realoptionsvaluation.com ROV Technical Papers Series: Volume 25 Theory In This Issue 1. Learn about Risk Simulator s ARIMA and Auto ARIMA modules. 2. Find out

More information

Firstly, the dataset is cleaned and the years and months are separated to provide better distinction (sample below).

Firstly, the dataset is cleaned and the years and months are separated to provide better distinction (sample below). Project: Forecasting Sales Step 1: Plan Your Analysis Answer the following questions to help you plan out your analysis: 1. Does the dataset meet the criteria of a time series dataset? Make sure to explore

More information

Decision 411: Class 9. HW#3 issues

Decision 411: Class 9. HW#3 issues Decision 411: Class 9 Presentation/discussion of HW#3 Introduction to ARIMA models Rules for fitting nonseasonal models Differencing and stationarity Reading the tea leaves : : ACF and PACF plots Unit

More information

MULTI-YEAR AVERAGES FROM A ROLLING SAMPLE SURVEY

MULTI-YEAR AVERAGES FROM A ROLLING SAMPLE SURVEY MULTI-YEAR AVERAGES FROM A ROLLING SAMPLE SURVEY Nanak Chand Charles H. Alexander U.S. Bureau of the Census Nanak Chand U.S. Bureau of the Census Washington D.C. 20233 1. Introduction Rolling sample surveys

More information

Circle a single answer for each multiple choice question. Your choice should be made clearly.

Circle a single answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 4, 215 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 31 questions. Circle

More information

Using Analysis of Time Series to Forecast numbers of The Patients with Malignant Tumors in Anbar Provinc

Using Analysis of Time Series to Forecast numbers of The Patients with Malignant Tumors in Anbar Provinc Using Analysis of Time Series to Forecast numbers of The Patients with Malignant Tumors in Anbar Provinc /. ) ( ) / (Box & Jenkins).(.(2010-2006) ARIMA(2,1,0). Abstract: The aim of this research is to

More information

Forecasting Bangladesh's Inflation through Econometric Models

Forecasting Bangladesh's Inflation through Econometric Models American Journal of Economics and Business Administration Original Research Paper Forecasting Bangladesh's Inflation through Econometric Models 1,2 Nazmul Islam 1 Department of Humanities, Bangladesh University

More information

MODELING MAXIMUM MONTHLY TEMPERATURE IN KATUNAYAKE REGION, SRI LANKA: A SARIMA APPROACH

MODELING MAXIMUM MONTHLY TEMPERATURE IN KATUNAYAKE REGION, SRI LANKA: A SARIMA APPROACH MODELING MAXIMUM MONTHLY TEMPERATURE IN KATUNAYAKE REGION, SRI LANKA: A SARIMA APPROACH M.C.Alibuhtto 1 &P.A.H.R.Ariyarathna 2 1 Department of Mathematical Sciences, Faculty of Applied Sciences, South

More information

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design Marcel Dettling Institute for Data Analysis and Process Design Zurich University of Applied Sciences marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling ETH Zürich, March 18, 2013 1 Basics of Modeling

More information

Asian Economic and Financial Review. SEASONAL ARIMA MODELLING OF NIGERIAN MONTHLY CRUDE OIL PRICES Ette Harrison Etuk

Asian Economic and Financial Review. SEASONAL ARIMA MODELLING OF NIGERIAN MONTHLY CRUDE OIL PRICES Ette Harrison Etuk Asian Economic and Financial Review journal homepage: http://aessweb.com/journal-detail.php?id=5002 SEASONAL ARIMA MODELLING OF NIGERIAN MONTHLY CRUDE OIL PRICES Ette Harrison Etuk Department of Mathematics/Computer

More information

Statistical Methods for Forecasting

Statistical Methods for Forecasting Statistical Methods for Forecasting BOVAS ABRAHAM University of Waterloo JOHANNES LEDOLTER University of Iowa John Wiley & Sons New York Chichester Brisbane Toronto Singapore Contents 1 INTRODUCTION AND

More information

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1

Forecasting using R. Rob J Hyndman. 2.4 Non-seasonal ARIMA models. Forecasting using R 1 Forecasting using R Rob J Hyndman 2.4 Non-seasonal ARIMA models Forecasting using R 1 Outline 1 Autoregressive models 2 Moving average models 3 Non-seasonal ARIMA models 4 Partial autocorrelations 5 Estimation

More information

Author: Yesuf M. Awel 1c. Affiliation: 1 PhD, Economist-Consultant; P.O Box , Addis Ababa, Ethiopia. c.

Author: Yesuf M. Awel 1c. Affiliation: 1 PhD, Economist-Consultant; P.O Box , Addis Ababa, Ethiopia. c. ISSN: 2415-0304 (Print) ISSN: 2522-2465 (Online) Indexing/Abstracting Forecasting GDP Growth: Application of Autoregressive Integrated Moving Average Model Author: Yesuf M. Awel 1c Affiliation: 1 PhD,

More information

Modelling Multi Input Transfer Function for Rainfall Forecasting in Batu City

Modelling Multi Input Transfer Function for Rainfall Forecasting in Batu City CAUCHY Jurnal Matematika Murni dan Aplikasi Volume 5()(207), Pages 29-35 p-issn: 2086-0382; e-issn: 2477-3344 Modelling Multi Input Transfer Function for Rainfall Forecasting in Batu City Priska Arindya

More information

Forecasting of Nitrogen Content in the Soil by Hybrid Time Series Model

Forecasting of Nitrogen Content in the Soil by Hybrid Time Series Model International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 07 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.707.191

More information

Modeling climate variables using time series analysis in arid and semi arid regions

Modeling climate variables using time series analysis in arid and semi arid regions Vol. 9(26), pp. 2018-2027, 26 June, 2014 DOI: 10.5897/AJAR11.1128 Article Number: 285C77845733 ISSN 1991-637X Copyright 2014 Author(s) retain the copyright of this article http://www.academicjournals.org/ajar

More information

Development of Demand Forecasting Models for Improved Customer Service in Nigeria Soft Drink Industry_ Case of Coca-Cola Company Enugu

Development of Demand Forecasting Models for Improved Customer Service in Nigeria Soft Drink Industry_ Case of Coca-Cola Company Enugu International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 2278 882 Volume 5, Issue 4, April 26 259 Development of Demand Forecasting Models for Improved Customer Service in Nigeria

More information

AN EMPIRICAL COMPARISON OF BLOCK BOOTSTRAP METHODS: TRADITIONAL AND NEWER ONES

AN EMPIRICAL COMPARISON OF BLOCK BOOTSTRAP METHODS: TRADITIONAL AND NEWER ONES Journal of Data Science 14(2016), 641-656 AN EMPIRICAL COMPARISON OF BLOCK BOOTSTRAP METHODS: TRADITIONAL AND NEWER ONES Beste H. Beyaztas a,b, Esin Firuzan b* a Department of Statistics, Istanbul Medeniyet

More information

The Identification of ARIMA Models

The Identification of ARIMA Models APPENDIX 4 The Identification of ARIMA Models As we have established in a previous lecture, there is a one-to-one correspondence between the parameters of an ARMA(p, q) model, including the variance of

More information

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn }

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn } Stochastic processes Time series are an example of a stochastic or random process Models for time series A stochastic process is 'a statistical phenomenon that evolves in time according to probabilistic

More information

BJEST. Function: Usage:

BJEST. Function: Usage: BJEST BJEST (CONSTANT, CUMPLOT, EXACTML, NAR=number of AR parameters, NBACK=number of back-forecasted residuals,ndiff=degree of differencing, NLAG=number of autocorrelations,nma=number of MA parameters,

More information

Time Series Analysis of Currency in Circulation in Nigeria

Time Series Analysis of Currency in Circulation in Nigeria ISSN -3 (Paper) ISSN 5-091 (Online) Time Series Analysis of Currency in Circulation in Nigeria Omekara C.O Okereke O.E. Ire K.I. Irokwe O. Department of Statistics, Michael Okpara University of Agriculture

More information

The Fitting of a SARIMA model to Monthly Naira-Euro Exchange Rates

The Fitting of a SARIMA model to Monthly Naira-Euro Exchange Rates The Fitting of a SARIMA model to Monthly Naira-Euro Exchange Rates Abstract Ette Harrison Etuk (Corresponding author) Department of Mathematics/Computer Science, Rivers State University of Science and

More information

Some Time-Series Models

Some Time-Series Models Some Time-Series Models Outline 1. Stochastic processes and their properties 2. Stationary processes 3. Some properties of the autocorrelation function 4. Some useful models Purely random processes, random

More information

MCMC analysis of classical time series algorithms.

MCMC analysis of classical time series algorithms. MCMC analysis of classical time series algorithms. mbalawata@yahoo.com Lappeenranta University of Technology Lappeenranta, 19.03.2009 Outline Introduction 1 Introduction 2 3 Series generation Box-Jenkins

More information

Multivariate time series modeling using VARMAX

Multivariate time series modeling using VARMAX ABSTRACT Paper 1656-2014 Multivariate time series modeling using VARMAX Anders Milhøj, University of Copenhagen Two examples of Vector Autoregressive Moving Average modeling with exogenous variables are

More information

Time Series Analysis of Monthly Rainfall data for the Gadaref rainfall station, Sudan, by Sarima Methods

Time Series Analysis of Monthly Rainfall data for the Gadaref rainfall station, Sudan, by Sarima Methods International Journal of Scientific Research in Knowledge, 2(7), pp. 320-327, 2014 Available online at http://www.ijsrpub.com/ijsrk ISSN: 2322-4541; 2014 IJSRPUB http://dx.doi.org/10.12983/ijsrk-2014-p0320-0327

More information

Forecasting Precipitation Using SARIMA Model: A Case Study of. Mt. Kenya Region

Forecasting Precipitation Using SARIMA Model: A Case Study of. Mt. Kenya Region Forecasting Precipitation Using SARIMA Model: A Case Study of Mt. Kenya Region Hellen W. Kibunja 1*, John M. Kihoro 1, 2, George O. Orwa 3, Walter O. Yodah 4 1. School of Mathematical Sciences, Jomo Kenyatta

More information

SOME BASICS OF TIME-SERIES ANALYSIS

SOME BASICS OF TIME-SERIES ANALYSIS SOME BASICS OF TIME-SERIES ANALYSIS John E. Floyd University of Toronto December 8, 26 An excellent place to learn about time series analysis is from Walter Enders textbook. For a basic understanding of

More information

Time Series 4. Robert Almgren. Oct. 5, 2009

Time Series 4. Robert Almgren. Oct. 5, 2009 Time Series 4 Robert Almgren Oct. 5, 2009 1 Nonstationarity How should you model a process that has drift? ARMA models are intrinsically stationary, that is, they are mean-reverting: when the value of

More information

UNIVARIATE TIME SERIES ANALYSIS BRIEFING 1970

UNIVARIATE TIME SERIES ANALYSIS BRIEFING 1970 UNIVARIATE TIME SERIES ANALYSIS BRIEFING 1970 Joseph George Caldwell, PhD (Statistics) 1432 N Camino Mateo, Tucson, AZ 85745-3311 USA Tel. (001)(520)222-3446, E-mail jcaldwell9@yahoo.com (File converted

More information

A Beginner s Introduction. Box-Jenkins Models

A Beginner s Introduction. Box-Jenkins Models A Beginner s Introduction To Box-Jenkins Models I. Introduction In their seminal work, Time Series Analysis: Forecasting and Control (1970, Holden Day), Professors Box and Jenkins introduced a set of time

More information

Volume 11 Issue 6 Version 1.0 November 2011 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc.

Volume 11 Issue 6 Version 1.0 November 2011 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. Volume 11 Issue 6 Version 1.0 2011 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: & Print ISSN: Abstract - Time series analysis and forecasting

More information

-_J E3 L I OT H E 0 U E

-_J E3 L I OT H E 0 U E YA 1 C ANADA TATITJOUE CANADA 71 F00I4XPE c 2 MA ' At 14 CONTROL CHART FOR NON-REPONE RATE IN THE pmf CANADIAN LABOUR FORCE URVEY LIBRARY KP Hapuarachchi and A Wroñski, tatistics Canada KP Hapuarachchi,

More information

ARIMA Models. Jamie Monogan. January 25, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 25, / 38

ARIMA Models. Jamie Monogan. January 25, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 25, / 38 ARIMA Models Jamie Monogan University of Georgia January 25, 2012 Jamie Monogan (UGA) ARIMA Models January 25, 2012 1 / 38 Objectives By the end of this meeting, participants should be able to: Describe

More information

Time Series Forecasting: A Tool for Out - Sample Model Selection and Evaluation

Time Series Forecasting: A Tool for Out - Sample Model Selection and Evaluation AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 214, Science Huβ, http://www.scihub.org/ajsir ISSN: 2153-649X, doi:1.5251/ajsir.214.5.6.185.194 Time Series Forecasting: A Tool for Out - Sample Model

More information

ARIMA model to forecast international tourist visit in Bumthang, Bhutan

ARIMA model to forecast international tourist visit in Bumthang, Bhutan Journal of Physics: Conference Series PAPER OPEN ACCESS ARIMA model to forecast international tourist visit in Bumthang, Bhutan To cite this article: Choden and Suntaree Unhapipat 2018 J. Phys.: Conf.

More information

STAT 436 / Lecture 16: Key

STAT 436 / Lecture 16: Key STAT 436 / 536 - Lecture 16: Key Modeling Non-Stationary Time Series Many time series models are non-stationary. Recall a time series is stationary if the mean and variance are constant in time and the

More information

Technical note on seasonal adjustment for Capital goods imports

Technical note on seasonal adjustment for Capital goods imports Technical note on seasonal adjustment for Capital goods imports July 1, 2013 Contents 1 Capital goods imports 2 1.1 Additive versus multiplicative seasonality..................... 2 2 Steps in the seasonal

More information

Prediction of Annual National Coconut Production - A Stochastic Approach. T.S.G. PEIRIS Coconut Research Institute, Lunuwila, Sri Lanka

Prediction of Annual National Coconut Production - A Stochastic Approach. T.S.G. PEIRIS Coconut Research Institute, Lunuwila, Sri Lanka »(0 Prediction of Annual National Coconut Production - A Stochastic Approach T.S.G. PEIRIS Coconut Research Institute, Lunuwila, Sri Lanka T.U.S. PEIRIS Coconut Research Institute, Lunuwila, Sri Lanka

More information

Forecasting. Simon Shaw 2005/06 Semester II

Forecasting. Simon Shaw 2005/06 Semester II Forecasting Simon Shaw s.c.shaw@maths.bath.ac.uk 2005/06 Semester II 1 Introduction A critical aspect of managing any business is planning for the future. events is called forecasting. Predicting future

More information