Convection-Permitting Ensemble Forecasts at CAPS for Hazardous Weather Testbed (HWT)

Size: px
Start display at page:

Download "Convection-Permitting Ensemble Forecasts at CAPS for Hazardous Weather Testbed (HWT)"

Transcription

1 Convection-Permitting Ensemble Forecasts at CAPS for Hazardous Weather Testbed (HWT) Ming Xue Center for Analysis and Prediction of Storms and School of Meteorology University of Oklahoma August, 2010 ARPS Simulated Tornado

2 NOAA Hazardous Weather Testbed (HWT) HWT is a facility jointly managed by NSSL, SPC, and NWS Norman WFO To accelerate the transition of promising new technologies into forecasting and warning for hazardous weather. HWT organizes annual Spring Experiment that attracts about 100 researchers and forecasters each year. Provides forecasters with a first-hand look at the latest research concepts and potential future products, and immerses researchers in the challenges, needs, and constraints of forecasters.

3 HWT Spring Experiment Daily Discussions (pictures from spring 2007)

4 Storm-Scale Convection-Permitting Ensemble and Convection-Resolving Deterministic Forecasting CAPS/OU provided CONUS-scale 4-km ensemble & 1-2 km high-res forecasts for HWT Spring Experiment since NSSL, EMC, NCAR, and GSD provided additional 3-4 km deterministic forecasts.

5 Scientific Issues to Address The values and cost-benefits of storm-scale versus coarserresolution short-range ensembles versus even-higherresolution deterministic forecast; Suitable perturbation methods for storm-scale ensemble, e.g., IC, physics, and model perturbations; Proper handling and use of boundary perturbations; The value and impact of assimilating high-res data including those from radars; The most effective ensemble post-processing and most useful products at the convective scales; The impact of such unique products on forecasting and warning.

6 Forecast Configurations of Four Years Spring 2007: 10-member WRF-ARW, 4 km, 33 h, 21Z start time, NAM+SREF ICs. 5 members physics perturbations only, 5 with Phy+IC+LBC perturbations. Single 2 km grid. 2/3 CONUS (Xue et al.; Kong et al.; 2007 NWP conf.) Spring 2008: larger domain, 00Z start, Phy+IC+LBC pert for all. Radar Vr and Z data assimilation for 4 and 2 km grids! (Xue et al.; Kong et al SLS Conf.) Spring 2009: 20 members, 4 km, 3 models (ARW, NMM, ARPS), mixed physics/ic/lbcs. Single 1 km grid. Radar DA on native grids. 30 h forecasts from 0Z (Xue et al.; Kong et al NWP Conf.) Spring 2010: 26 4-km and one 1-km forecasts. Full CONUS domain. Some members with physics difference only, and 3 with storm-scale and mesoscale IC perturbations only for studying error growth and predictability. About 1.5 months each spring season from mid-april through early June

7 Configuration of 2007 Ensemble WRF ARW Model at 4 km

8 Average Domain Total Precipitation Physics All members only members Native grids Ferrier/MYJ Thompson/YSU Stage II Obs WSM6/YSU (Schwartz et al. 2009a,b)

9 Areal Coverages Native grids WSM6/YSU Ferrier/MYJ Thompson/YSU

10 Domain-mean ensemble spread - averaged over 38 forecast dates from April 18 to June 7 (Kong et al. 2007) Local Standard Time:

11 Key Findings from 2007 Experiment Ferrier/MYJ schemes are associated with greater average precipitation YSU PBL scheme seems to be associated with relatively less precipitation, on average, in combination with WSM6 or Thompson microphysics Physics only members are under-dispersive for large-scale fields For precipitation, physics perturbations seem to generate as much spread as IC/LBC perturbations There is significant high bias for most members especially on the second day Convective-allowing ensemble clearly out-performs convectionparameterization ensemble in propagation, ETS, statistical consistency, ROC, etc. (Adam Clark s talk) 2 km forecasts didn t seem to provide much more value than 4 km forecasts for the second day guidance.

12 Forecast Configurations of Four Years Spring 2007: 10-member WRF-ARW, 4 km, 33 h, 21Z start time, NAM+SREF ICs. 5 members physics perturbations only, 5 with Phy+IC+LBC perturbations. Single 2 km grid. 2/3 CONUS (Xue et al.; Kong et al.; 2007 NWP conf.) Spring 2008: larger domain, 00Z start, Phy+IC+LBC pert for all. Radar Vr and Z data assimilation for 4 and 2 km grids! (Xue et al.; Kong et al SLS Conf.) Spring 2009: 20 members, 4 km, 3 models (ARW, NMM, ARPS), mixed physics/ic/lbcs. Single 1 km grid. Radar DA on native grids. 30 h forecasts from 0Z (Xue et al.; Kong et al NWP Conf.) Spring 2010: 26 4-km and one 1-km forecasts. Full CONUS domain. Some members with physics difference only, and 3 with storm-scale and mesoscale IC perturbations only for studying error growth and predictability (Xue et al. 2010; Kong et al SLS conf.). About 1.5 months each spring season from mid-april through early June

13 4 km ensemble and 2 km high-res domains 3600 x 2688 km

14 Movie of 2 km forecast v.s. observations 5 minute time intervals

15 Configuration of 4-km Ensemble

16 1-h accumulated precipitation 0.1in, t=12 h 0.01in, t=24 h

17 BIAS comparison 1-h accumulated precipitation 0.1 in

18 Bias correction based on first 12 days bias based on ranks for each hour (a) Sorted 1 h accumulated precipitation, and (b) differences between members and observation (bias) for the 24 h forecast, averaged over a 12-day period from April 16 to May 7, (Kong et al SLS)

19 Bias corrected (for the later 15 days) >0.01 in/h >0.1 in/h Probability matching (Ebert 2001) >0.5 in/h > 1.0 in/h

20 Rank histogram of 1 h accumulated precipitation for 18 h, and 24 h, averaged over 15 days of bias corrected dates 18 h 24h (not much improvement to the reliability though)

21 ETS comparison 1-h accumulated precipitation 0.1 in

22 Forecast Configurations of Four Years Spring 2007: 10-member WRF-ARW, 4 km, 33 h, 21Z start time, NAM+SREF ICs. 5 members physics perturbations only, 5 with Phy+IC+LBC perturbations. Single 2 km grid. 2/3 CONUS (Xue et al.; Kong et al.; 2007 NWP conf.) Spring 2008: larger domain, 00Z start, Phy+IC+LBC pert for all. Radar Vr and Z data assimilation for 4 and 2 km grids! (Xue et al.; Kong et al SLS Conf.) Spring 2009: 20 members, 4 km, 3 models (ARW, NMM, ARPS), mixed physics/ic/lbcs. Single 1 km grid. Radar DA on native grids. 30 h forecasts from 0Z (Xue et al.; Kong et al NWP Conf.) Spring 2010: 26 4-km and one 1-km forecasts. Full CONUS domain. Some members with physics difference only, and 3 with storm-scale and mesoscale IC perturbations only for studying error growth and predictability. About 1.5 months each spring season from mid-april through early June

23 ARPS 3DVAR Analysis Grid 1 km grid: 3603 x 2691 x 51 WRF ARW (4 and 1 km) and ARPS forecast grid and common post-processing grid WRF NMM forecast grid

24 ETS for 3-hourly Precip. 0.5 in from HWT Spring Forecast Experiments 2008 (32-day) 2009 (26-day) With radar With radar no radar 12 km NAM no radar 12 km NAM Probability-matched score generally better than any ensemble member 2 km score no-better than the best 4-km ensemble member may be due to physics 1-km score better than any 4-km member and than the 4 km PM score.

25 BIAS for 1 h precip of 2009 (24-day average) 0.1 inch/h

26 Reliability diagram for precipitation probability forecast Reliability is improved by using multiple models 12 h forecast of 1 h accumulated precip. 0.1in

27 Object-Oriented Precipitation forecasts clusters (by Aaron Johnson) ARW ARPS NMM No Radar ARW ARPS NMM Microphysics PBL 4

28 Forecast Configurations of Four Years Spring 2007: 10-member WRF-ARW, 4 km, 33 h, 21Z start time, NAM+SREF ICs. 5 members physics perturbations only, 5 with Phy+IC+LBC perturbations. Single 2 km grid. 2/3 CONUS (Xue et al.; Kong et al.; 2007 NWP conf.) Spring 2008: larger domain, 00Z start, Phy+IC+LBC pert for all. Radar Vr and Z data assimilation for 4 and 2 km grids! (Xue et al.; Kong et al SLS Conf.) Spring 2009: 20 members, 4 km, 3 models (ARW, NMM, ARPS), mixed physics/ic/lbcs. Single 1 km grid. Radar DA on native grids. 30 h forecasts from 0Z (Xue et al.; Kong et al NWP Conf.) Spring 2010: 26 4-km and one 1-km forecasts. Full CONUS domain. Some members with physics difference only, and 3 with storm-scale and mesoscale IC perturbations only for studying error growth and predictability. About 1.5 months each spring season from mid-april through early June

29 2010 Spring Experiment Domains Full CONUS NMM 790x999 3DVAR 1200x780 ARW, ARPS & verification 1160x720

30 member IC BC Radar data microphy LSM PBL arw_cn 00Z ARPSa 00Z NAMf yes Thompson Noah MYJ arw_c0 00Z NAMa 00Z NAMf no Thompson Noah MYJ arw_m3 arw_cn + random pert 00Z NAMf yes Thompson Noah MYJ arw_m4 arw_cn + RF pert 00Z NAMf yes Thompson Noah MYJ arw_m5 arw_cn + em-p1 + RF pert 21Z SREF em-p1 yes Morrison RUC YSU arw_m6 arw_cn + em-p1_pert ARW member configuration (19) 21Z SREF em-p1 yes Morrison RUC YSU arw_m7 arw_cn + em-p2_pert 21Z SREF em-p2 yes Thompson Noah QNSE arw_m8 arw_cn nmm-p1_pert 21Z SREF nmm-p1 yes WSM6 RUC QNSE arw_m9 arw_cn + nmm-p2_pert 21Z SREF nmm-p2 yes WDM6 Noah MYNN arw_m10 arw_cn + rsmsas-n1_pert 21Z SREF rsmsas-n1 yes Ferrier RUC YSU arw_m11 arw_cn etakf-n1_pert 21Z SREF etakf-n1 yes Ferrier Noah YSU arw_m12 arw_cn + etakf-p1_pert 21Z SREF etakf-p1 yes WDM6 RUC QNSE arw_m13 arw_cn etabmj-n1_pert 21Z SREF etabmj-n1 yes WSM6 Noah MYNN arw_m14 arw_cn + etabmj-p1_pert 21Z SREF etabmj-p1 yes Thompson RUC MYNN arw_m15 00Z ARPSa 00Z NAMf yes WDM6 Noah MYJ arw_m16 00Z ARPSa 00Z NAMf yes WSM6 Noah MYJ arw_m17 00Z ARPSa 00Z NAMf yes Morrison Noah MYJ arw_m18 00Z ARPSa 00Z NAMf yes Thompson Noah QNSE arw_m19 00Z ARPSa 00Z NAMf yes Thompson Noah MYNN For all ARW members: ra_lw_physics= RRTM; ra_sw_physics=goddard; cu_physics=none

31 NMM member configuration (5) member IC BC Radar data mp_phy lw_phy sw-phy sf_phy nmm_cn 00Z ARPSa 00Z NAMf yes Ferrier GFDL GFDL Noah nmm_c0 00Z NAMa 00Z NAMf no Ferrier GFDL GFDL Noah nmm_m3 nmm_cn + nmmn1_pert 21Z SREF nmmn1 yes Thompson RRTM Dudhia Noah nmm_m4 nmm_cn + nmmn2_pert 21Z SREF nmmn2 yes WSM 6-class RRTM Dudhia RUC nmm_m5 nmm_cn + em-n1_pert 21Z SREF em-n1 yes Ferrier GFDL GFDL RUC For all NMM members: pbl_physics=myj; cu_physics=none ARPS member configuration (2) member IC BC Radar data Microphy. radiation sf_phy arps_cn 00Z ARPSa 00Z NAMf yes Lin Chou/Suarez Force-restore arps_c0 00Z NAMa 00Z NAMf no Lin Chou/Suarez Force-restore For all ARPS members: no cumulus parameterization Members in red contribute to the 15-member sub-ensemble for post-processed product

32 HWT images 12 18Z accumulated precipitation: 18h (June 14, 2010 OKC Flood Day) SSEF mean SSEF Prob match QPE SREF mean SREF Prob match NCEP 12 km NAM

33 HWT images 12 18Z accumulated precipitation: 18h (May 19, 2010) SSEF mean SSEF Prob match QPE SREF mean SREF Prob match NAM

34 Gilbert Skill Scores (ETSs) for CAPS s SSEF (4 and 1 km) ESRL/GSD s 3 km HRRR NCEP 12 km NAM From 2010 spring experiment

35 Referred publications from the data Schwartz, C., J. Kain, S. Weiss, M. Xue, D. Bright, F. Kong, K. Thomas, J. Levit, and M. Coniglio, 2009: Next-day convection-allowing WRF model guidance: A second look at 2 vs. 4 km grid spacing. Mon. Wea. Rev., 137, Schwartz, C. S., J. S. Kain, S. J. Weiss, M. Xue, D. R. Bright, F. Kong, K. W.Thomas, J. J. Levit, M. C. Coniglio, and M. S. Wandishin, 2010: Toward improved convection-allowing ensembles: model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forcasting, 25, Clark, A. J., W. A. Gallus, Jr., M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small near-convection-permitting and large convection-parameterizing ensembles. Wea. and Forecasting, 24, Clark, A. J., W. A. Gallus, Jr., M. Xue, and F. Kong, 2010: Growth of spread in convection-allowing and convection-parameterizing ensembles, In press. Clark, A. J., W. A. Gallus, Jr., M. Xue, and F. Kong, 2010: Convection-allowing and convectionparameterizing ensemble forecasts of a mesoscale convective vortex and associated severe weather. Wea. Forecasting, Accepted. Coniglio, M. C., K. L. Elmore, J. S. Kain, S. Weiss, and M. Xue, 2009: Evaluation of WRF model output for severe-weather forecasting from the 2008 NOAA Hazardous Weather Testbed Spring Experiment. Wea. Forcasting, Accepted. Kain, J. S., M. Xue, M. C. Coniglio, S. J. Weiss, F. Kong, T. L. Jensen, B. G. Brown, J. Gao, K. Brewster, K. W. Thomas, Y. Wang, C. S. Schwartz, and J. J. Levit, 2010: Assessing advances in the assimilation of radar data within a collaborative forecasting-research environment. Wea. Forecasting, Accepted.

36 Web links to papers and realtime products Xue, M., F. Kong, K. W. Thomas, J. Gao, Y. Wang, K. Brewster, K. K. Droegemeier, X. Wang, J. Kain, S. Weiss, D. Bright, M. Coniglio, and J. Du, 2009: CAPS realtime multi-model convection-allowing ensemble and 1-km convectionresolving forecasts for the NOAA Hazardous Weather Testbed 2009 Spring Experiment. 23nd Conf. Wea. Anal. Forecasting/19th Conf. Num. Wea. Pred., Omaha, NB, Amer. Meteor. Soc., Paper 16A.2. Kong, F. M. Xue, K. W. Thomas, J. Gao, Y. Wang, K. Brewster, K. K. Droegemeier, J. Kain, S. Weiss, D. Bright, M. Coniglio, and J. Du, 2009: A realtime storm-scale ensemble forecast system: 2009 spring experiment. 23nd Conf. Wea. Anal. Forecasting/19th Conf. Num. Wea. Pred., Omaha, NB, Amer. Meteor. Soc., Paper 16A.3.

37 Resources $125K/year CSTAR funding! NSF supercomputers. 18,000-core Cray XT-4 at NICS ~5 hours a day in 2010 All data archived (TBs/day) need to be fully exploited Collaboration in analyzing the data welcome.

38 Future Plan (in CSTAR Renewal Proposal) General direction: more emphasis on aviation weather (e.g., 3 weeks in June + May), more runs/day, shorter forecast ranges, fine-tuning of ensemble design, Multi-scale IC perturbations, ETKF perturbations, EnKF-based perturbations Land surface perturbations, Possible additional LBC perturbations, More intelligent choices of physics suites Addition of COAMPS Improved initial conditions via more advanced data assimilation Possible GSI analyses with target HRRR set up and other more experimental configurations/schemes Possible hybrid ensemble-gsi analysis Possible EnKF analysis Post-analysis and probabilistic products: e.g., calibration, bias removal, detailed performance evaluation, cost-benefit/trade off assessment, effective products for end users (e.g., those for aviation weather, severe storms); Integration/coordination with national mesoscale ensemble efforts (DTC/DET collaborations).

39 Probabilistic Warn-on-Forecast for Tornadoes - The ultimate challenge need ~100 m resolution Radar and Initial Forecast at 2100 CST Radar at 2130 CST: Accurate Forecast An ensemble of storm-scale NWP models predict the path of a potentially tornadic supercell during the next 1 hour. The ensemble is used to create probabilistic tornado guidance. Probabilistic tornado guidance: Forecast looks on track, storm circulation (hook echo) is tracking along centerline of highest tornadic probabilities Developing thunderstorm 50% 30% Most Likely Tornado Path 50% 30% Most Likely Tornado Path 70% 70% T=2200 CST T=2200 CST T=2120 CST T=2140 T=2130 T=2150 T=2120 CST T=2140 T=2130 T=2150 (Stensrud, Xue, et al. BAMS 2009) NSSL Warn on Forecast Briefing March 5, 2007

40 The Computers Used NICS, Kraken (~99K cores) For 2010: Exclusive use of a 18,000-core Cray XT-4 at NICS/University of Tennessee 6 hours a day PSC (4K cores) Thanks!

CAPS Storm-Scale Ensemble Forecasting (SSEF) System

CAPS Storm-Scale Ensemble Forecasting (SSEF) System CAPS Storm-Scale Ensemble Forecasting (SSEF) System Fanyou Kong, Ming Xue, Xuguang Wang, Keith Brewster Center for Analysis and Prediction of Storms University of Oklahoma (collaborated with NSSL, SPC,

More information

CAPS Storm-Scale Ensemble Forecast for the NOAA Hazardous Weather Testbed (HWT) Spring Experiment

CAPS Storm-Scale Ensemble Forecast for the NOAA Hazardous Weather Testbed (HWT) Spring Experiment CAPS Storm-Scale Ensemble Forecast for the NOAA Hazardous Weather Testbed (HWT) Spring Experiment Fanyou Kong, Ming Xue, Kevin W. Thomas, Yunheng Wang, Keith Brewster, Xuguang Wang (Center for Analysis

More information

New Development in CAPS Storm-Scale Ensemble Forecasting System for NOAA 2012 HWT Spring Experiment

New Development in CAPS Storm-Scale Ensemble Forecasting System for NOAA 2012 HWT Spring Experiment New Development in CAPS Storm-Scale Ensemble Forecasting System for NOAA 2012 HWT Spring Experiment Fanyou Kong, Ming Xue, Kevin W. Thomas, Yunheng Wang, Keith Brewster, Xuguang Wang (Center for Analysis

More information

2010 CAPS Spring Forecast Experiment Program Plan (A Brief Version)

2010 CAPS Spring Forecast Experiment Program Plan (A Brief Version) 21 CAPS Spring Forecast Experiment Program Plan (A Brief Version) May 17, 21 Table of Content Table of Content... 2 1. Overview of New Features for 21 Season... 3 2. Program Duration... 4 3. Forecast System

More information

457 EVALUATION OF CAPS MULTI-MODEL STORM-SCALE ENSEMBLE FORECAST FOR THE NOAA HWT 2010 SPRING EXPERIMENT

457 EVALUATION OF CAPS MULTI-MODEL STORM-SCALE ENSEMBLE FORECAST FOR THE NOAA HWT 2010 SPRING EXPERIMENT 24th Conference on Weather and Forecasting/20th Conference on Numerical Weather Prediction. AMS, Seattle, WA, January 23-27, 2011. 457 EVALUATION OF CAPS MULTI-MODEL STORM-SCALE ENSEMBLE FORECAST FOR THE

More information

A Cycled GSI+EnKF and Storm-Scale Ensemble Forecasting (SSEF) Experiment

A Cycled GSI+EnKF and Storm-Scale Ensemble Forecasting (SSEF) Experiment A Cycled GSI+EnKF and Storm-Scale Ensemble Forecasting (SSEF) Experiment Fanyou Kong, Ming Xue, Youngsun Jung, Keith A. Brewster, Gang Zhao Center for Analysis and Prediction of Storms University of Oklahoma

More information

University of Oklahoma 3 National Severe Storms Laboratory, NOAA 4 Storm Prediction Center/NCEP, NOAA

University of Oklahoma 3 National Severe Storms Laboratory, NOAA 4 Storm Prediction Center/NCEP, NOAA Extended Abstract, 25th Conference on Severe Local Storms Amer. Meteor. Soc., Denver, Colorado, October 11-14 7B.3 CAPS REALTIME STORM-SCALE ENSEMBLE AND CONVECTION-RESOLVING HIGH-RESOLUTION FORECASTS

More information

CAPS STORMSCALE ENSEMBLE FORECASTING SYSTEM: IMPACT OF IC AND LBC PERTURBATIONS

CAPS STORMSCALE ENSEMBLE FORECASTING SYSTEM: IMPACT OF IC AND LBC PERTURBATIONS $%& ' ( ) %$* +, % - '.&/! CAPS STORMSCALE ENSEMBLE FORECASTING SYSTEM: IMPACT OF IC AND LBC PERTURBATIONS Fanyou Kong 1 *, Ming Xue 1,2, Kevin W. Thomas 1, Yunheng Wang 1, Keith A. Brewster 1, Youngsun

More information

Aaron Johnson* and Xuguang Wang. University of Oklahoma School of Meteorology and Center for Analysis and Prediction of Storms (CAPS), Norman, OK

Aaron Johnson* and Xuguang Wang. University of Oklahoma School of Meteorology and Center for Analysis and Prediction of Storms (CAPS), Norman, OK 3.1 VERIFICATION AND CALIBRATION OF PROBABILISTIC PRECIPITATION FORECASTS DERIVED FROM NEIGHBORHOOD AND OBJECT BASED METHODS FOR A MULTI-MODEL CONVECTION-ALLOWING ENSEMBLE Aaron Johnson* and Xuguang Wang

More information

32 AN OVERVIEW OF CAPS STORMSCALE ENSEMBLE FORECAST FOR THE 2015 NOAA HWT SPRING FORECASTING EXPERIMENT

32 AN OVERVIEW OF CAPS STORMSCALE ENSEMBLE FORECAST FOR THE 2015 NOAA HWT SPRING FORECASTING EXPERIMENT !"# #$%#&'(&#)*+ 32 AN OVERVIEW OF CAPS STORMSCALE ENSEMBLE FORECAST FOR THE 2015 NOAA HWT SPRING FORECASTING EXPERIMENT Fanyou Kong 1 *, Ming Xue 1,2, Youngsun Jung 1, Keith A. Brewster 1, Kevin W. Thomas

More information

University of Oklahoma, Norman, OK INTRODUCTION

University of Oklahoma, Norman, OK INTRODUCTION Preprints, 22th Conf. on Weather Analysis and Forecasting and 18th Conf. on Numerical Weather Prediction Amer. Meteor. Soc., Park City, UT, 25-29 June 2007 3B.2 PRELIMINARY ANALYSIS ON THE REAL-TIME STORM-SCALE

More information

Comparison of Convection-permitting and Convection-parameterizing Ensembles

Comparison of Convection-permitting and Convection-parameterizing Ensembles Comparison of Convection-permitting and Convection-parameterizing Ensembles Adam J. Clark NOAA/NSSL 18 August 2010 DTC Ensemble Testbed (DET) Workshop Introduction/Motivation CAMs could lead to big improvements

More information

P9.3 AN OPERATIONAL APPROACH FOR INTEGRATING MULTIPLE HIGH RESOLUTION MODEL SOLUTIONS DURING A HIGH IMPACT EVENT: THE 22 MAY 2010 EF4 BOWDLE TORNADO

P9.3 AN OPERATIONAL APPROACH FOR INTEGRATING MULTIPLE HIGH RESOLUTION MODEL SOLUTIONS DURING A HIGH IMPACT EVENT: THE 22 MAY 2010 EF4 BOWDLE TORNADO P9.3 AN OPERATIONAL APPROACH FOR INTEGRATING MULTIPLE HIGH RESOLUTION MODEL SOLUTIONS DURING A HIGH IMPACT EVENT: THE 22 MAY 2010 EF4 BOWDLE TORNADO 1. INTRODUCTION Michael A. Fowle * NOAA/NWS, Aberdeen,

More information

12.2 CAPS REALTIME STORM-SCALE ENSEMBLE AND HIGH-RESOLUTION FORECASTS AS PART OF THE NOAA HAZARDOUS WEATHER TESTBED 2008 SPRING EXPERIMENT

12.2 CAPS REALTIME STORM-SCALE ENSEMBLE AND HIGH-RESOLUTION FORECASTS AS PART OF THE NOAA HAZARDOUS WEATHER TESTBED 2008 SPRING EXPERIMENT Extended Abstract, 224h Conf. on Severe Local Storms Amer. Meteor. Soc., Savannah, Georgia, October 26-31, 2008 12.2 CAPS REALTIME STORM-SCALE ENSEMBLE AND HIGH-RESOLUTION FORECASTS AS PART OF THE NOAA

More information

School of Meteorology, University of Oklahoma, and Center for Analysis and Prediction of Storms, Norman, Oklahoma FANYOU KONG

School of Meteorology, University of Oklahoma, and Center for Analysis and Prediction of Storms, Norman, Oklahoma FANYOU KONG 3694 M O N T H L Y W E A T H E R R E V I E W VOLUME 139 Hierarchical Cluster Analysis of a Convection-Allowing Ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part II: Ensemble Clustering

More information

Aaron Johnson School of Meteorology, University of Oklahoma and Center for Analysis and Prediction of Storms, Norman, Oklahoma

Aaron Johnson School of Meteorology, University of Oklahoma and Center for Analysis and Prediction of Storms, Norman, Oklahoma Hierarchical cluster analysis of a convection-allowing ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part II: Ensemble clustering over the whole experiment period Aaron Johnson

More information

Probabilistic Precipitation Forecast Skill as a Function of Ensemble Size and Spatial Scale in a Convection-Allowing Ensemble

Probabilistic Precipitation Forecast Skill as a Function of Ensemble Size and Spatial Scale in a Convection-Allowing Ensemble 1410 M O N T H L Y W E A T H E R R E V I E W VOLUME 139 Probabilistic Precipitation Forecast Skill as a Function of Ensemble Size and Spatial Scale in a Convection-Allowing Ensemble ADAM J. CLARK,* JOHN

More information

Norman Oklahoma Submitted to Advances in Meteorology. May 2013 Revised November, Corresponding author address

Norman Oklahoma Submitted to Advances in Meteorology. May 2013 Revised November, Corresponding author address Prediction of Convective Storms at Convection-Resolving 1 km Resolution over Continental United States with Radar Data Assimilation: An Example Case of 26 May 2008 Ming Xue 1, Fanyou Kong 1, Kevin W. Thomas

More information

Forecasting Tornado Pathlengths Using a Three-Dimensional Object Identification Algorithm Applied to Convection-Allowing Forecasts

Forecasting Tornado Pathlengths Using a Three-Dimensional Object Identification Algorithm Applied to Convection-Allowing Forecasts 1090 W E A T H E R A N D F O R E C A S T I N G VOLUME 27 Forecasting Tornado Pathlengths Using a Three-Dimensional Object Identification Algorithm Applied to Convection-Allowing Forecasts ADAM J. CLARK,*,1

More information

Object-based evaluation of the impact of horizontal grid spacing on convection-allowing forecasts

Object-based evaluation of the impact of horizontal grid spacing on convection-allowing forecasts Object-based evaluation of the impact of horizontal grid spacing on convection-allowing forecasts Aaron Johnson School of Meteorology, University of Oklahoma and Center for Analysis and Prediction of Storms,

More information

School of Meteorology, University of Oklahoma, and Center for Analysis and Prediction of Storms, Norman, Oklahoma FANYOU KONG

School of Meteorology, University of Oklahoma, and Center for Analysis and Prediction of Storms, Norman, Oklahoma FANYOU KONG VOLUME 139 M O N T H L Y W E A T H E R R E V I E W DECEMBER 2011 Hierarchical Cluster Analysis of a Convection-Allowing Ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part I: Development

More information

Verifying Ensemble Forecasts Using A Neighborhood Approach

Verifying Ensemble Forecasts Using A Neighborhood Approach Verifying Ensemble Forecasts Using A Neighborhood Approach Craig Schwartz NCAR/MMM schwartz@ucar.edu Thanks to: Jack Kain, Ming Xue, Steve Weiss Theory, Motivation, and Review Traditional Deterministic

More information

OPTIMIZING PROBABILISTIC HIGH-RESOLUTION ENSEMBLE GUIDANCE FOR HYDROLOGIC PREDICTION

OPTIMIZING PROBABILISTIC HIGH-RESOLUTION ENSEMBLE GUIDANCE FOR HYDROLOGIC PREDICTION 9.4 OPTIMIZING PROBABILISTIC HIGH-RESOLUTION ENSEMBLE GUIDANCE FOR HYDROLOGIC PREDICTION Craig S. Schwartz* 1, John S. Kain 2, Steven J. Weiss 3, Ming Xue 1,4, David R. Bright 3, Fanyou Kong 4, Kevin W.

More information

Evaluation of WRF Model Output for Severe Weather Forecasting from the 2008 NOAA Hazardous Weather Testbed Spring Experiment

Evaluation of WRF Model Output for Severe Weather Forecasting from the 2008 NOAA Hazardous Weather Testbed Spring Experiment 408 W E A T H E R A N D F O R E C A S T I N G VOLUME 25 Evaluation of WRF Model Output for Severe Weather Forecasting from the 2008 NOAA Hazardous Weather Testbed Spring Experiment MICHAEL C. CONIGLIO,

More information

A GSI-based convection-allowing EnKF and ensemble forecast system for PECAN

A GSI-based convection-allowing EnKF and ensemble forecast system for PECAN A GSI-based convection-allowing EnKF and ensemble forecast system for PECAN Aaron Johnson, Xuguang Wang, Samuel Degelia University of Oklahoma, Norman, OK 26 May 2016 7 th EnKF Data Assimilation Workshop,

More information

Convection-Resolving NWP with WRF. Section coordinator Ming Xue University of Oklahoma

Convection-Resolving NWP with WRF. Section coordinator Ming Xue University of Oklahoma Convection-Resolving NWP with WRF Section coordinator Ming Xue University of Oklahoma Convection-resolving NWP Is NWP that explicitly treats moist convective systems ranging from organized MCSs to individual

More information

Chengsi Liu 1, Ming Xue 1, 2, Youngsun Jung 1, Lianglv Chen 3, Rong Kong 1 and Jingyao Luo 3 ISDA 2019

Chengsi Liu 1, Ming Xue 1, 2, Youngsun Jung 1, Lianglv Chen 3, Rong Kong 1 and Jingyao Luo 3 ISDA 2019 Development of Optimized Radar Data Assimilation Capability within the Fully Coupled EnKF EnVar Hybrid System for Convective Permitting Ensemble Forecasting and Testing via NOAA Hazardous Weather Testbed

More information

10.1 AN OVERVIEW OF THE 2012 NOAA HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT

10.1 AN OVERVIEW OF THE 2012 NOAA HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT 10.1 AN OVERVIEW OF THE 2012 NOAA HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT John S. Kain,* I. L. Jirak, + A. J. Clark, #, * M. C. Coniglio,* S. J. Weiss, + J. Correia Jr., #,+ A. R. Dean,

More information

Tornado Pathlength Forecasts from 2010 to 2011 Using Ensemble Updraft Helicity

Tornado Pathlength Forecasts from 2010 to 2011 Using Ensemble Updraft Helicity APRIL 2013 C L A R K E T A L. 387 Tornado Pathlength Forecasts from 2010 to 2011 Using Ensemble Updraft Helicity ADAM J. CLARK,*,1 JIDONG GAO, 1 PATRICK T. MARSH,*,1,# TRAVIS SMITH,*,1 JOHN S. KAIN, 1

More information

Amy Harless. Jason Levit, David Bright, Clinton Wallace, Bob Maxson. Aviation Weather Center Kansas City, MO

Amy Harless. Jason Levit, David Bright, Clinton Wallace, Bob Maxson. Aviation Weather Center Kansas City, MO Amy Harless Jason Levit, David Bright, Clinton Wallace, Bob Maxson Aviation Weather Center Kansas City, MO AWC Mission Decision Support for Traffic Flow Management Ensemble Applications at AWC Testbed

More information

Growth of Spread in Convection-Allowing and Convection-Parameterizing Ensembles

Growth of Spread in Convection-Allowing and Convection-Parameterizing Ensembles Geological and Atmospheric Sciences Publications Geological and Atmospheric Sciences 2010 Growth of Spread in Convection-Allowing and Convection-Parameterizing Ensembles Adam J. Clark Iowa State University

More information

THE DECORRELATION SCALE: METHODOLOGY AND APPLICATION FOR PRECIPITATION FORECASTS

THE DECORRELATION SCALE: METHODOLOGY AND APPLICATION FOR PRECIPITATION FORECASTS THE DECORRELATION SCALE: METHODOLOGY AND APPLICATION FOR PRECIPITATION FORECASTS Madalina Surcel, Isztar Zawadzki and M. K. Yau Thanking Adam Clark (NSSL), Ming Xue (OU, CAPS) and Fanyou Kong (CAPS) for

More information

Center for Analysis and Prediction of Storms 1 and School of Meteorology 2 University of Oklahoma, Norman, OK 73072

Center for Analysis and Prediction of Storms 1 and School of Meteorology 2 University of Oklahoma, Norman, OK 73072 Evaluation of Convection-Permitting Precipitation Forecast Products using WRF, NMMB, and FV3 for the 2016-2017 NOAA Hydrometeorology Testbed Flash Flood and Intense Rainfall Experiments Nathan Snook 1,

More information

10.3 PROBABILISTIC FORECASTS OF LOCATION AND TIMING OF CONVECTION DURING THE 2012 NOAA HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT

10.3 PROBABILISTIC FORECASTS OF LOCATION AND TIMING OF CONVECTION DURING THE 2012 NOAA HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT 10.3 PROBABILISTIC FORECASTS OF LOCATION AND TIMING OF CONVECTION DURING THE 2012 NOAA HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT Stuart D. Miller, Jr.*,3,4,6, John S. Kain 1, Patrick T. Marsh

More information

1. INTRODUCTION 3. PROJECT DATAFLOW

1. INTRODUCTION 3. PROJECT DATAFLOW P10.5 THE NOAA HAZARDOUS WEATHER TESTBED 2008 SPRING EXPERIMENT: TECHINCAL AND SCIENTIFIC CHALLENGES OF CREATING A DATA VISUALIZATION ENVIRONMENT FOR STORM- SCALE DETERMINISTIC AND ENSEMBLE FORECASTS Jason

More information

Advanced Multi-Moment Microphysics for Precipitation and Tropical Cyclone Forecast Improvement within COAMPS

Advanced Multi-Moment Microphysics for Precipitation and Tropical Cyclone Forecast Improvement within COAMPS DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Advanced Multi-Moment Microphysics for Precipitation and Tropical Cyclone Forecast Improvement within COAMPS PI: Ming Xue

More information

Canadian Meteorological and Oceanographic Society and American Meteorological Society 21 st Conference on Numerical Weather Prediction 31 May 2012

Canadian Meteorological and Oceanographic Society and American Meteorological Society 21 st Conference on Numerical Weather Prediction 31 May 2012 Canadian Meteorological and Oceanographic Society and American Meteorological Society 21 st Conference on Numerical Weather Prediction 31 May 2012 The High Resolution Rapid Refresh (): An hourly updating

More information

Dynamic Ensemble Model Evaluation of Elevated Thunderstorms sampled by PRECIP

Dynamic Ensemble Model Evaluation of Elevated Thunderstorms sampled by PRECIP Dynamic Ensemble Model Evaluation of Elevated Thunderstorms sampled by PRECIP Joshua S. Kastman, Patrick S. Market, and Neil Fox, University of Missouri, Columbia, MO Session 8B - Numerical Weather Prediction

More information

Using Convection-Allowing Models to Produce Forecast Guidance For Severe Thunderstorm Hazards via a Surrogate-Severe Approach!

Using Convection-Allowing Models to Produce Forecast Guidance For Severe Thunderstorm Hazards via a Surrogate-Severe Approach! Using Convection-Allowing Models to Produce Forecast Guidance For Severe Thunderstorm Hazards via a Surrogate-Severe Approach! Ryan Sobash! University of Oklahoma, School of Meteorology, Norman, OK! J.

More information

Introduction to NCEP's time lagged North American Rapid Refresh Ensemble Forecast System (NARRE-TL)

Introduction to NCEP's time lagged North American Rapid Refresh Ensemble Forecast System (NARRE-TL) Introduction to NCEP's time lagged North American Rapid Refresh Ensemble Forecast System (NARRE-TL) Binbin Zhou 1,2, Jun Du 2, Geoff Manikin 2 & Geoff DiMego 2 1. I.M. System Group 2. EMC/NCEP/NWS/NOAA

More information

Plans for NOAA s regional ensemble systems: NARRE, HRRRE, and a regional hybrid assimilation

Plans for NOAA s regional ensemble systems: NARRE, HRRRE, and a regional hybrid assimilation NOAA Earth System Research Laboratory Plans for NOAA s regional ensemble systems: NARRE, HRRRE, and a regional hybrid assimilation Tom Hamill (substituting for Stan Benjamin and team) NOAA Earth System

More information

The Developmental Testbed Center (DTC) Steve Koch, NOAA/FSL

The Developmental Testbed Center (DTC) Steve Koch, NOAA/FSL The Developmental Testbed Center (DTC) Steve Koch, NOAA/FSL A facility where the NWP research and operational communities interact to accelerate testing and evaluation of new models and techniques for

More information

HPC Ensemble Uses and Needs

HPC Ensemble Uses and Needs 1 HPC Ensemble Uses and Needs David Novak Science and Operations Officer With contributions from Keith Brill, Mike Bodner, Tony Fracasso, Mike Eckert, Dan Petersen, Marty Rausch, Mike Schichtel, Kenneth

More information

J11.4 IN SEARCH OF CI: LESSONS LEARNED FROM APPLYING PROXIES TO CI IN CONVECTION-ALLOWING MODELS

J11.4 IN SEARCH OF CI: LESSONS LEARNED FROM APPLYING PROXIES TO CI IN CONVECTION-ALLOWING MODELS J11.4 IN SEARCH OF CI: LESSONS LEARNED FROM APPLYING PROXIES TO CI IN CONVECTION-ALLOWING MODELS Stuart D. Miller, Jr. 1,2,3, John S. Kain 3 *, Patrick T. Marsh 4, Adam J. Clark 2,3, Michael C. Coniglio

More information

SPC Ensemble Applications: Current Status and Future Plans

SPC Ensemble Applications: Current Status and Future Plans : Current Status and Future Plans Israel Jirak Science Support Branch Storm Prediction Center Norman, OK Acknowledgments: Steve Weiss, Andy Dean, Gregg Grosshans, and Chris Melick Outline Large-Scale Guidance:

More information

Extracting probabilistic severe weather guidance from convection-allowing model forecasts. Ryan Sobash 4 December 2009 Convection/NWP Seminar Series

Extracting probabilistic severe weather guidance from convection-allowing model forecasts. Ryan Sobash 4 December 2009 Convection/NWP Seminar Series Extracting probabilistic severe weather guidance from convection-allowing model forecasts Ryan Sobash 4 December 2009 Convection/NWP Seminar Series Identification of severe convection in high-resolution

More information

Convection-Allowing Models (CAMs) A discussion on Creating a Roadmap to a Unified CAM-based Data-Assimilation and Forecast Ensemble

Convection-Allowing Models (CAMs) A discussion on Creating a Roadmap to a Unified CAM-based Data-Assimilation and Forecast Ensemble Convection-Allowing Models (CAMs) A discussion on Creating a Roadmap to a Unified CAM-based Data-Assimilation and Forecast Ensemble Panel Members Curtis Alexander (ESRL/GSD) Adam Clark (NSSL) Lucas Harris

More information

A Look at the NSSL-WRF Forecast Output for the Violent Tornado Events in Central Oklahoma on May 19 and 20, 2013

A Look at the NSSL-WRF Forecast Output for the Violent Tornado Events in Central Oklahoma on May 19 and 20, 2013 A Look at the NSSL-WRF Forecast Output for the Violent Tornado Events in Central Oklahoma on May 19 and 20, 2013 David A. Imy, NOAA SPC, emeritus and Adam J. Clark, CIMMS/NSSL, Norman, OK 1. Introduction

More information

P1.36 IMPACT OF MESOSCALE DATA, CLOUD ANALYSIS ON THE EXPLICIT PREDICTION OF AN MCS DURING IHOP Daniel T. Dawson II and Ming Xue*

P1.36 IMPACT OF MESOSCALE DATA, CLOUD ANALYSIS ON THE EXPLICIT PREDICTION OF AN MCS DURING IHOP Daniel T. Dawson II and Ming Xue* P1.36 IMPACT OF MESOSCALE DATA, CLOUD ANALYSIS ON THE EXPLICIT PREDICTION OF AN MCS DURING IHOP 2002 Daniel T. Dawson II and Ming Xue* School of Meteorology and Center for the Analysis and Prediction of

More information

Aaron Johnson School of Meteorology, University of Oklahoma and Center for Analysis and Prediction of Storms, Norman, Oklahoma

Aaron Johnson School of Meteorology, University of Oklahoma and Center for Analysis and Prediction of Storms, Norman, Oklahoma Hierarchical cluster analysis of a convection-allowing ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part I: Development of object-oriented cluster analysis method for precipitation

More information

Development of an Hourly- Updated NAM Forecast System

Development of an Hourly- Updated NAM Forecast System Development of an Hourly- Updated NAM Forecast System Jacob Carley ab, Eric Rogers b, Shun Liu ab, Brad Ferrier ab, Eric Aligo ab, Matthew Pyle b, and Geoff DiMego b a IMSG, b NOAA/NWS/NCEP/EMC jacob.carley@noaa.gov

More information

VERIFICATION OF PROXY STORM REPORTS DERIVED FROM ENSEMBLE UPDRAFT HELICITY

VERIFICATION OF PROXY STORM REPORTS DERIVED FROM ENSEMBLE UPDRAFT HELICITY VERIFICATION OF PROXY STORM REPORTS DERIVED FROM ENSEMBLE UPDRAFT HELICITY MALLORY ROW 12,JAMES CORRIEA JR. 3, AND PATRICK MARSH 3 1 National Weather Center Research Experiences for Undergraduates Program

More information

Air Force Weather Ensembles

Air Force Weather Ensembles 16 th Weather Squadron Air Force Weather Ensembles Evan Kuchera Fine Scale Models and Ensemble 16WS/WXN evan.kuchera@us.af.mil Overview n Air Force Weather Operational Ensembles n Probabilistic inline

More information

15A.2 Some Challenges And Successes Associated with Using Storm-Scale Modeling at a NWS Forecast Office. Alexander Tardy 1

15A.2 Some Challenges And Successes Associated with Using Storm-Scale Modeling at a NWS Forecast Office. Alexander Tardy 1 15A.2 Some Challenges And Successes Associated with Using Storm-Scale Modeling at a NWS Forecast Office Alexander Tardy 1 1 NOAA/NWS/Weather Forecast Office, Corpus Christi, Texas 1. INTRODUCTION At the

More information

P1.89 COMPARISON OF IMPACTS OF WRF DYNAMIC CORE, PHYSICS PACKAGE, AND INITIAL CONDITIONS ON WARM SEASON RAINFALL FORECASTS

P1.89 COMPARISON OF IMPACTS OF WRF DYNAMIC CORE, PHYSICS PACKAGE, AND INITIAL CONDITIONS ON WARM SEASON RAINFALL FORECASTS P1.89 COMPARISON OF IMPACTS OF WRF DYNAMIC CORE, PHYSICS PACKAGE, AND INITIAL CONDITIONS ON WARM SEASON RAINFALL FORECASTS William A. Gallus, Jr. Iowa State University, Ames, Iowa 1. INTRODUCTION A series

More information

Using the LEAD Portal for Customized Weather Forecasts on the TeraGrid

Using the LEAD Portal for Customized Weather Forecasts on the TeraGrid Using the LEAD Portal for Customized Weather Forecasts on the TeraGrid Keith Brewster Center for Analysis and Prediction of Storms, Univ. of Oklahoma Dan Weber, Suresh Marru, Kevin Thomas, Dennis Gannon,

More information

WEATHER RESEARCH AND FORECASTING MODEL SENSITIVITY COMPARISONS FOR WARM SEASON CONVECTIVE INITIATION

WEATHER RESEARCH AND FORECASTING MODEL SENSITIVITY COMPARISONS FOR WARM SEASON CONVECTIVE INITIATION JA. WEATHER RESEARCH AND FORECASTING MODEL SENSITIVITY COMPARISONS FOR WARM SEASON CONVECTIVE INITIATION Leela R. Watson* Applied Meteorology Unit, ENSCO, Inc., Cocoa Beach, FL Brian Hoeth NOAA NWS Spaceflight

More information

2012 and changes to the Rapid Refresh and HRRR weather forecast models

2012 and changes to the Rapid Refresh and HRRR weather forecast models 2012 and 2013-15 changes to the Rapid Refresh and HRRR weather forecast models 31 October 2012 Stan Benjamin Steve Weygandt Curtis Alexander NOAA Earth System Research Laboratory Boulder, CO FPAW - 2012

More information

Weather Hazard Modeling Research and development: Recent Advances and Plans

Weather Hazard Modeling Research and development: Recent Advances and Plans Weather Hazard Modeling Research and development: Recent Advances and Plans Stephen S. Weygandt Curtis Alexander, Stan Benjamin, Geoff Manikin*, Tanya Smirnova, Ming Hu NOAA Earth System Research Laboratory

More information

Convective-scale Warn-on-Forecast The Future of Severe Weather Warnings in the USA?

Convective-scale Warn-on-Forecast The Future of Severe Weather Warnings in the USA? Convective-scale Warn-on-Forecast The Future of Severe Weather Warnings in the USA? David J. Stensrud Department of Meteorology The Pennsylvania State University Present Warning System: 2 March 2012 Warning

More information

Use of the LEAD Portal for On-Demand Severe Weather Prediction

Use of the LEAD Portal for On-Demand Severe Weather Prediction Use of the LEAD Portal for On-Demand Severe Weather Prediction Keith A. Brewster *1 ; and Daniel B. Weber 1, Kevin W. Thomas 1, Kelvin K. Droegemeier 1,2, Yunheng Wang 1, Ming Xue 1,2, Suresh Marru 3,

More information

4.5 A WRF-DART study of the nontornadic and tornadic supercells intercepted by VORTEX2 on 10 June 2010

4.5 A WRF-DART study of the nontornadic and tornadic supercells intercepted by VORTEX2 on 10 June 2010 4.5 A WRF-DART study of the nontornadic and tornadic supercells intercepted by VORTEX2 on 10 June 2010 ALICIA M. KLEES AND YVETTE P. RICHARDSON The Pennsylvania State University, University Park, Pennsylvania.

More information

ENSEMBLE FORECASTS AND VERIFICATION OF THE MAY 2015 MULTI-HAZARD SEVERE WEATHER EVENT IN OKLAHOMA. Austin Coleman 1, Nusrat Yussouf 2

ENSEMBLE FORECASTS AND VERIFICATION OF THE MAY 2015 MULTI-HAZARD SEVERE WEATHER EVENT IN OKLAHOMA. Austin Coleman 1, Nusrat Yussouf 2 ENSEMBLE FORECASTS AND VERIFICATION OF THE MAY 2015 MULTI-HAZARD SEVERE WEATHER EVENT IN OKLAHOMA Austin Coleman 1, Nusrat Yussouf 2 1 National Weather Center Research Experience for Undergraduates Program,

More information

Development of High-Resolution Rapid Refresh (HRRR) Ensemble Data Assimilation, Forecast and Post-Processing

Development of High-Resolution Rapid Refresh (HRRR) Ensemble Data Assimilation, Forecast and Post-Processing CORP Science Symposium, July 18-19, 2016, Fort Collins Development of High-Resolution Rapid Refresh (HRRR) Ensemble Data Assimilation, Forecast and Post-Processing Isidora Jankov, Curtis Alexander, David

More information

Transition of Research to Operations

Transition of Research to Operations Transition of Research to Operations Ligia Bernardet Shaowu Bao, Mrinal Biswas, Tim Brown, Don Stark, Laurie Carson http://www.dtcenter.org/hurrwrf/users External collaborators: NOAA Environmental Modeling

More information

Evaluation of WRF model output for severe-weather forecasting from the 2008 NOAA. Hazardous Weather Testbed Spring Experiment

Evaluation of WRF model output for severe-weather forecasting from the 2008 NOAA. Hazardous Weather Testbed Spring Experiment Evaluation of WRF model output for severe-weather forecasting from the 2008 NOAA Hazardous Weather Testbed Spring Experiment Michael C. Coniglio, Kimberly L. Elmore, John S. Kain NOAA/OAR/National Severe

More information

Motivation & Goal. We investigate a way to generate PDFs from a single deterministic run

Motivation & Goal. We investigate a way to generate PDFs from a single deterministic run Motivation & Goal Numerical weather prediction is limited by errors in initial conditions, model imperfections, and nonlinearity. Ensembles of an NWP model provide forecast probability density functions

More information

Background. Each spring during the climatological. An Overview of the Experimental Forecast

Background. Each spring during the climatological. An Overview of the Experimental Forecast An Overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment by Ad a m J. Cl a r k, St e v e n J. Weiss, Joh n S. Ka i n, Is r a e l L. Ji r a k, Mi c h a e l Co n

More information

Some Applications of WRF/DART

Some Applications of WRF/DART Some Applications of WRF/DART Chris Snyder, National Center for Atmospheric Research Mesoscale and Microscale Meteorology Division (MMM), and Institue for Mathematics Applied to Geoscience (IMAGe) WRF/DART

More information

J11.1 AN OVERVIEW OF THE 2013 NOAA HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT

J11.1 AN OVERVIEW OF THE 2013 NOAA HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT J11.1 AN OVERVIEW OF THE 2013 NOAA HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT Israel L. Jirak 1*, Michael Coniglio 2, Adam J. Clark 2,3, James Correia Jr. 1,3, Kent H. Knopfmeier 2,3, Christopher

More information

Aaron Johnson 1,2, Xuguang Wang 1,2

Aaron Johnson 1,2, Xuguang Wang 1,2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 Multiscale characteristics and evolution of perturbations for warm season

More information

Study of the impacts of grid spacing and physical parameterizations on WRF simulations of convective system rainfall and morphology

Study of the impacts of grid spacing and physical parameterizations on WRF simulations of convective system rainfall and morphology Study of the impacts of grid spacing and physical parameterizations on WRF simulations of convective system rainfall and morphology Introduction Report on WRF-DTC Visit of W. Gallus, I. Jankov and E. Aligo

More information

Final Report on. Evaluating the new Weather Research and Forecasting (WRF) model at the Storm Prediction Center

Final Report on. Evaluating the new Weather Research and Forecasting (WRF) model at the Storm Prediction Center Final Report on Evaluating the new Weather Research and Forecasting (WRF) model at the Storm Prediction Center John S. Kain, Michael E. Baldwin, Steven J. Weiss, Frederick H. Carr, Geoffrey J. DiMego Time

More information

Developmental Testbed Center Visitor Program Final Report: Development and Application of 3-Dimensional Object Algorithms to High Resolution Forecasts

Developmental Testbed Center Visitor Program Final Report: Development and Application of 3-Dimensional Object Algorithms to High Resolution Forecasts Developmental Testbed Center Visitor Program Final Report: Development and Application of 3-Dimensional Object Algorithms to High Resolution Forecasts Adam J. Clark Cooperative Institute for Mesoscale

More information

A Comparison of Precipitation Forecast Skill between Small Near-Convection- Permitting and Large Convection-Parameterizing Ensembles

A Comparison of Precipitation Forecast Skill between Small Near-Convection- Permitting and Large Convection-Parameterizing Ensembles A Comparison of Precipitation Forecast Skill between Small Near-Convection- Permitting and Large Convection-Parameterizing Ensembles Adam J. Clark* 1, William A. Gallus Jr. 1, Ming Xue 2,3, and Fanyou

More information

THE IMPACT OF DIFFERENT DATA FIELDS ON STORM-SSCALE DATA ASSIMILATION

THE IMPACT OF DIFFERENT DATA FIELDS ON STORM-SSCALE DATA ASSIMILATION JP1J.3 THE IMPACT OF DIFFERENT DATA FIELDS ON STORM-SSCALE DATA ASSIMILATION Guoqing Ge 1,2,*, Jidong Gao 1, Kelvin Droegemeier 1,2 Center for Analysis and Prediction of Storms, University of Oklahoma,

More information

David Dowell, Glen Romine, and Chris Snyder National Center for Atmospheric Research *, Boulder, CO. (a) CONUS domain

David Dowell, Glen Romine, and Chris Snyder National Center for Atmospheric Research *, Boulder, CO. (a) CONUS domain 9.5 ENSEMBLE STORM-SCALE DATA ASSIMILATION AND PREDICTION FOR SEVERE CONVECTIVE STORMS David Dowell, Glen Romine, and Chris Snyder National Center for Atmospheric Research *, Boulder, CO 1. INTRODUCTION

More information

Overview of HFIP FY10 activities and results

Overview of HFIP FY10 activities and results Overview of HFIP FY10 activities and results Bob Gall HFIP Annual Review Meeting Miami Nov 9, 2010 Outline In this presentation I will show a few preliminary results from the summer program. More detail

More information

PSU HFIP 2010 Summary: Performance of the ARW-EnKF Real-time Cloud-resolving TC Ensemble Analysis and Forecasting System.

PSU HFIP 2010 Summary: Performance of the ARW-EnKF Real-time Cloud-resolving TC Ensemble Analysis and Forecasting System. PSU HFIP 2010 Summary: Performance of the ARW-EnKF Real-time Cloud-resolving TC Ensemble Analysis and Forecasting System Fuqing Zhang Penn State University Contributors: Yonghui Weng, John Gamache and

More information

46 AN OVERVIEW OF THE 2014 NOAA HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT

46 AN OVERVIEW OF THE 2014 NOAA HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT 46 AN OVERVIEW OF THE 2014 NOAA HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT Israel L. Jirak 1*, Michael Coniglio 2, Adam J. Clark 2,3, James Correia Jr. 1,3, Kent H. Knopfmeier 2,3, Christopher

More information

Di Wu, Xiquan Dong, Baike Xi, Zhe Feng, Aaron Kennedy, and Gretchen Mullendore. University of North Dakota

Di Wu, Xiquan Dong, Baike Xi, Zhe Feng, Aaron Kennedy, and Gretchen Mullendore. University of North Dakota Di Wu, Xiquan Dong, Baike Xi, Zhe Feng, Aaron Kennedy, and Gretchen Mullendore University of North Dakota Objectives 3 case studies to evaluate WRF and NAM performance in Oklahoma (OK) during summer 2007,

More information

HMON (HNMMB): Development of a new Hurricane model for NWS/NCEP operations

HMON (HNMMB): Development of a new Hurricane model for NWS/NCEP operations 1 HMON (HNMMB): Development of a new Hurricane model for NWS/NCEP operations Avichal Mehra, EMC Hurricane and Mesoscale Teams Environmental Modeling Center NOAA / NWS / NCEP HMON: A New Operational Hurricane

More information

The WRF Developmental Testbed Center (DTC)

The WRF Developmental Testbed Center (DTC) The WRF Developmental Testbed Center (DTC) Bob Gall A facility where the NWP research and operational communities interact to accelerate testing and evaluation of new models and techniques for research

More information

The Effects of High Resolution Model Output on Severe Weather Forecasts as Evaluated in the SPC/NSSL Spring Program 2004

The Effects of High Resolution Model Output on Severe Weather Forecasts as Evaluated in the SPC/NSSL Spring Program 2004 The Effects of High Resolution Model Output on Severe Weather Forecasts as Evaluated in the SPC/NSSL Spring Program 2004 Adam French National Weather Center Research Experience for Undergraduates Valparaiso

More information

Implementation and evaluation of cloud analysis with WSR-88D reflectivity data for GSI and WRF-ARW

Implementation and evaluation of cloud analysis with WSR-88D reflectivity data for GSI and WRF-ARW Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L07808, doi:10.1029/2006gl028847, 2007 Implementation and evaluation of cloud analysis with WSR-88D reflectivity data for GSI and WRF-ARW

More information

Toward improved initial conditions for NCAR s real-time convection-allowing ensemble. Ryan Sobash, Glen Romine, Craig Schwartz, and Kate Fossell

Toward improved initial conditions for NCAR s real-time convection-allowing ensemble. Ryan Sobash, Glen Romine, Craig Schwartz, and Kate Fossell Toward improved initial conditions for NCAR s real-time convection-allowing ensemble Ryan Sobash, Glen Romine, Craig Schwartz, and Kate Fossell Storm-scale ensemble design Can an EnKF be used to initialize

More information

Thunderstorm-Scale EnKF Analyses Verified with Dual-Polarization, Dual-Doppler Radar Data

Thunderstorm-Scale EnKF Analyses Verified with Dual-Polarization, Dual-Doppler Radar Data Thunderstorm-Scale EnKF Analyses Verified with Dual-Polarization, Dual-Doppler Radar Data David Dowell and Wiebke Deierling National Center for Atmospheric Research, Boulder, CO Ensemble Data Assimilation

More information

COMET Cooperative Project Final Report. Name of University Researcher Preparing Report: Michael Baldwin

COMET Cooperative Project Final Report. Name of University Researcher Preparing Report: Michael Baldwin University: Purdue University COMET Cooperative Project Final Report Name of University Researcher Preparing Report: Michael Baldwin NWS Offices: NWSFO Indianapolis, IN, NWSFO North Webster, IN, NCEP/Storm

More information

Numerical Weather Prediction: Data assimilation. Steven Cavallo

Numerical Weather Prediction: Data assimilation. Steven Cavallo Numerical Weather Prediction: Data assimilation Steven Cavallo Data assimilation (DA) is the process estimating the true state of a system given observations of the system and a background estimate. Observations

More information

Report on EN6 DTC Ensemble Task 2014: Preliminary Configuration of North American Rapid Refresh Ensemble (NARRE)

Report on EN6 DTC Ensemble Task 2014: Preliminary Configuration of North American Rapid Refresh Ensemble (NARRE) Report on EN6 DTC Ensemble Task 2014: Preliminary Configuration of North American Rapid Refresh Ensemble (NARRE) Motivation As an expansion of computing resources for operations at EMC is becoming available

More information

Severe storm forecast guidance based on explicit identification of convective phenomena in WRF-model forecasts

Severe storm forecast guidance based on explicit identification of convective phenomena in WRF-model forecasts Severe storm forecast guidance based on explicit identification of convective phenomena in WRF-model forecasts Ryan Sobash 10 March 2010 M.S. Thesis Defense 1 Motivation When the SPC first started issuing

More information

NOAA s Severe Weather Forecasting System: HRRR to WoF to FACETS

NOAA s Severe Weather Forecasting System: HRRR to WoF to FACETS NOAA s Severe Weather Forecasting System: HRRR to WoF to FACETS David D NOAA / Earth System Research Laboratory / Global Systems Division Nowcasting and Mesoscale Research Working Group Meeting World Meteorological

More information

New 16km NCEP Short-Range Ensemble Forecast (SREF) system: what we have and what we need? (SREF.v6.0.0, implementation date: Aug. 21.

New 16km NCEP Short-Range Ensemble Forecast (SREF) system: what we have and what we need? (SREF.v6.0.0, implementation date: Aug. 21. New 16km NCEP Short-Range Ensemble Forecast (SREF) system: what we have and what we need? (SREF.v6.0.0, implementation date: Aug. 21. 2012) Jun Du, Geoff DiMego, Binbin Zhou, Dusan Jovic, Brad Ferrier,

More information

Sensitivity of 24 h Forecast Dryline Position and Structure to Boundary Layer Parameterizations in Convection-allowing WRF Model Simulations

Sensitivity of 24 h Forecast Dryline Position and Structure to Boundary Layer Parameterizations in Convection-allowing WRF Model Simulations 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 Sensitivity of 24 h Forecast Dryline Position and Structure to Boundary Layer Parameterizations

More information

NEXT-DAY CONVECTION-ALLOWING WRF MODEL GUIDANCE: A SECOND LOOK AT 2 VS. 4 KM GRID SPACING

NEXT-DAY CONVECTION-ALLOWING WRF MODEL GUIDANCE: A SECOND LOOK AT 2 VS. 4 KM GRID SPACING P10.3 NEXT-DAY CONVECTION-ALLOWING WRF MODEL GUIDANCE: A SECOND LOOK AT 2 VS. 4 KM GRID SPACING Craig S. Schwartz *1, John S. Kain 2, Steven J. Weiss 3, Ming Xue 1,4, David R. Bright 3, Fanyou Kong 4,

More information

Development of High-Resolution Rapid Refresh (HRRR) Ensemble Data Assimilation, Forecasts and Post Processing

Development of High-Resolution Rapid Refresh (HRRR) Ensemble Data Assimilation, Forecasts and Post Processing 7 th Ensemble Users Workshop Ensemble Development I Development of High-Resolution Rapid Refresh (HRRR) Ensemble Data Assimilation, Forecasts and Post Processing 14 June 2016 Curtis Alexander, David Dowell,

More information

4A.4 NCEP Short Range Ensemble Forecast (SREF) System Upgrade in 2009

4A.4 NCEP Short Range Ensemble Forecast (SREF) System Upgrade in 2009 4A.4 NCEP Short Range Ensemble Forecast (SREF) System Upgrade in 2009 Jun Du, Geoff DiMego, Zoltan Toth, Dusan Jovic, Binbin Zhou, Julia Zhu, Hui-Ya Chuang, Jun Wang, Henry Juang, Eric Rogers and Ying

More information

Deterministic and Ensemble Storm scale Lightning Data Assimilation

Deterministic and Ensemble Storm scale Lightning Data Assimilation LI Mission Advisory Group & GOES-R Science Team Workshop 27-29 May 2015 Deterministic and Ensemble Storm scale Lightning Data Assimilation Don MacGorman, Ted Mansell (NOAA/National Severe Storms Lab) Alex

More information

The EMC Mission.. In response to operational requirements:

The EMC Mission.. In response to operational requirements: The EMC Mission.. In response to operational requirements: Maintain operational model suite The scientific correctness and integrity of operational forecast modeling systems Modify current operational

More information

WRF-RTFDDA Optimization and Wind Farm Data Assimilation

WRF-RTFDDA Optimization and Wind Farm Data Assimilation 2009, University Corporation for Atmospheric Research. All rights reserved. WRF-RTFDDA Optimization and Wind Farm Data Assimilation William Y.Y. Cheng, Yubao Liu, Yuewei Liu, and Gregory Roux NCAR/Research

More information