A study of the formation and trend of the Brewer-Dobson circulation

Size: px
Start display at page:

Download "A study of the formation and trend of the Brewer-Dobson circulation"

Transcription

1 A study of the formation and trend of the Brewer-Dobson circulation Kota Okamoto 1, Kaoru Sato 1, and Hideharu Akiyoshi 2 1: The University of Tokyo 2: National Institute for Environmental Studies Okamoto et al., (JGR, in press) Okamoto et al., (GRL, in preparation)

2 Introduction The Brewer Dobson circulation is a general term to show transport in the stratosphere which consists of a slower part of residual circulation (RC) driven by wave forcings and a fast part of lateral mixing by breaking waves (e.g., Birner and Boenish, 2010) The RC is composed of 2 cells: tropical upwelling and extratropical downwelling, which is well examined by the TEM equation system (Andrews et al., 1987) The planetary waves are considered to be a main driver of the RC (Plumb, 2002). However, it is known that synoptic waves and/or gravity waves also influence the formation of the RC, which needs to be quantified. Stratosphere RC Summer Winter Troposphere SP EQ Hadley Circulation WP 3

3 Purpose Using CCSR/NIES CCM data, Downward Control Analysis was made to clarify the role of gravity waves in the residual circulation (RC) cf. McLandress and Shepherd (JC, 2009) Backward Trajectory Analysis in the field of residual circulation was made to show how the RC acceleration affects the transit time (TT) as a proxy of Age of Air cf. Rosenlof (JGR, 1995), Birner and Boenish (ACP, 2011) 4

4 Data description 1978~2100 Ver.5.4g of CCSR/NIES AGCM T42L31, top 0.01 hpa daily CO2 from IPCC (A1B,2000) Halogen gases from WMO (Ab,2003) SST from MIROC CCSR/NIES CCM REF2 data no QBO, no solar activity, and no volcanic eruption gravity wave parameterization orographic McFarlane (1987) nonorographic Hines (1997) ERA Interim data is also used for confirmation of the model results 5

5 Downward Control Analysis - to clarify the role of gravity waves in the BDC -

6 The downward control principle The downward control (DC: Haynes et al. 1991) Various wave forcing contributions to the residual stream function can be estimated because wave forcing F can be linearly divided into resolved wave forcing and unresolved gravity wave forcing. ψ direct = ψ dc if in the steady state. 7

7 Wave contribution to the residual circulation (a) (b) (a) = (c) + (f) (c) = (d) + (e) (f) = (g) + (h) ψ direct = ψ dc steady state! the planetary wave is the main driver in the stratosphere gravity wave contribution is significant in the mid latitudes of the lower stratosphere and in the summer hemispheric low latitude part of the winter circulation. 8

8 Gravity wave contribution in ERA-Interim data gravity wave contribution in ERA Interim data (gwd ) is estimated as a difference GWD is important for the formation of the BDC in low latitudes of the summer stratosphere and mid latitudes of the lower stratosphere 9

9 Wave contribution to the net upward mass flux TL TL 70hPa 10

10 Backward trajectory analysis - to show how the RC acceleration modifies the transit time as a proxy of Age of Air

11 Motivation of the backward trajectory analysis Models show that the age of air decreases probably because of the RC acceleration. However, such trend is not clear in observations. Structural change in the RC may be a key to explain the difference. Age of Air [Year] CMAM (McLandress and Shepherd [2009]) CC (Waugh [2009]) (McLandress and Shepherd [2009]) 3/25/

12 Estimation method (v*,w*) Pressure 100 hpa START Latitude We calculated backward trajectory at each point in the stratosphere in time dependent residual velocity field. The transit time (TT), as a kind of proxy of AOA, at a particular point is obtained as the time elapsed after an air entering into the stratosphere from the troposphere. 13

13 Change in the transit time TT ΔTT ΔTT TT increases with the height and latitude, reflecting a two celled structure of the residual circulation in the stratosphere. TTs in high latitudes of the middle stratosphere are significantly increased in the past 20 years in the CCM, although TTs decrease in most stratosphere in the 21 st century. 14

14 Factors Controlling ΔTT y z ΔTT is mainly defined by ΔL This result suggests that the change in the structure of RC is important for determination of the transit time (and also possibly for the age of air). 15

15 Structural change October April DJF The difference occurs when the tracers are in the subtropics. After April, the tracers are in the summer hemispheric part of the winter circulation. Thus the tracers go back more equatorward for stronger RC. After October, the tracers are in the winter hemispheric part of the winter circulation. Thus the tracers go forth more poleward for stronger RC. This is a mechanism why when the RC accelerates, trajectories get longer and consequently the TTs increase. Note that the summer hemispheric part of the winter circulation is mainly contributed by gravity waves. 17

16 Summary and Concluding Remarks Wave contributions to RC and a possible cause of change in TT are investigated using CCSR/NIES CCM data. The planetary waves are a main driver of the RC, but gravity wave contribution is dominant in the summer subtropical region in the stratosphere as well as in the winter middle latitude region in the lowermost stratosphere. The change in TT depends on the height The structural change of the RC is important, in particular in the part of the summer subtropical region which is largely affected by GWs 7 This mechanism may explain the unclear decrease in AOA 5 that the observations show Age of Air [Year] 3 3/25/2011 CC (Waugh [2009])

Intensification of the shallow BDC branch: mechanism and consequences for Age of Air

Intensification of the shallow BDC branch: mechanism and consequences for Age of Air Intensification of the shallow BDC branch: mechanism and consequences for Age of Air H. Garny1,2, M. Dameris1, W. Randel2, G. Bodeker3, R. Deckert1 T. Birner4 1 Deutsches Zentrum für Luft und Raumfahrt

More information

Sophie Oberländer, Ulrike Langematz, Stefanie Meul Institut für Meteorologie, Freie Universität Berlin

Sophie Oberländer, Ulrike Langematz, Stefanie Meul Institut für Meteorologie, Freie Universität Berlin Future changes in the Brewer-Dobson Circulation and possible causes derived from Chemistry-ClimateClimate Model Simulations, Ulrike Langematz, Stefanie Meul Institut für Meteorologie, Freie Universität

More information

Separating the dynamical effects of climate change and ozone depletion. Part I: Southern Hemisphere stratosphere

Separating the dynamical effects of climate change and ozone depletion. Part I: Southern Hemisphere stratosphere Separating the dynamical effects of climate change and ozone depletion. Part I: Southern Hemisphere stratosphere Article Published Version McLandress, C., Jonsson, A. I., Plummer, D. A., Reader, M. C.,

More information

Dynamics of the Atmosphere. General circulation of the atmosphere

Dynamics of the Atmosphere. General circulation of the atmosphere 12.810 Dynamics of the Atmosphere General circulation of the atmosphere 1 Spinup of the general circulation in an idealized model Fig. 1 Schneider, General circulation of the atmosphere, 2006 2 Sigma 0.2

More information

Stratospheric versus Tropospheric Control of the Strength and Structure of the Brewer Dobson Circulation

Stratospheric versus Tropospheric Control of the Strength and Structure of the Brewer Dobson Circulation SEPTEMBER 2012 G E R B E R 2857 Stratospheric versus Tropospheric Control of the Strength and Structure of the Brewer Dobson Circulation EDWIN P. GERBER Center for Atmosphere Ocean Science, Courant Institute

More information

WACCM simulations of the mean circulation linking the mesosphere and thermosphere. Anne Smith, Rolando Garcia, Dan Marsh NCAR/ACD

WACCM simulations of the mean circulation linking the mesosphere and thermosphere. Anne Smith, Rolando Garcia, Dan Marsh NCAR/ACD WACCM simulations of the mean circulation linking the mesosphere and thermosphere Anne Smith, Rolando Garcia, Dan Marsh NCAR/ACD trace species transport in the middle atmosphere wave driven mean circulation

More information

Stratospheric Predictability and the Arctic Polar-night Jet Oscillation

Stratospheric Predictability and the Arctic Polar-night Jet Oscillation Stratospheric Predictability and the Arctic Polar-night Jet Oscillation Peter Hitchcock1, Ted Shepherd2 University of Toronto Now at Cambridge 2Now at Reading 1 Gloria Manney JPL, NMT, Now at NWRA NAM

More information

Dynamical balances and tropical stratospheric upwelling

Dynamical balances and tropical stratospheric upwelling Dynamical balances and tropical stratospheric upwelling Bill Randel and Rolando Garcia NCAR Thanks to: Qiang Fu, Andrew Gettelman, Rei Ueyama, Mike Wallace, plus WACCM group at NCAR. Background: Well-known

More information

The strength of the diabatic circulation of the stratosphere

The strength of the diabatic circulation of the stratosphere The strength of the diabatic circulation of the stratosphere Ed Gerber October 25, 2017 S-RIP and SPARC-DA workshop with Marianna Linz*, Alan Plumb, Marta Abalos, Florian Haenel, Gabriele Stiller, Douglas

More information

Effects of a convective GWD parameterization in the global forecast system of the Met Office Unified Model in Korea

Effects of a convective GWD parameterization in the global forecast system of the Met Office Unified Model in Korea Effects of a convective GWD parameterization in the global forecast system of the Met Office Unified Model in Korea Young-Ha Kim 1, Hye-Yeong Chun 1, and Dong-Joon Kim 2 1 Yonsei University, Seoul, Korea

More information

Dynamical Balances and Tropical Stratospheric Upwelling

Dynamical Balances and Tropical Stratospheric Upwelling 3584 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 65 Dynamical Balances and Tropical Stratospheric Upwelling WILLIAM J. RANDEL, ROLANDO GARCIA, AND FEI WU National Center for Atmospheric

More information

WACCM: The High-Top Model

WACCM: The High-Top Model WACCM: The High-Top Model WACCM top Michael Mills CAM top WACCM Liaison mmills@ucar.edu (303) 497-1425 http://bb.cgd.ucar.edu/ 40 km Ozone Layer Jarvis, Bridging the Atmospheric Divide, Science, 293, 2218,

More information

A Simulation of the Separate Climate Effects of Middle-Atmospheric and Tropospheric CO 2 Doubling

A Simulation of the Separate Climate Effects of Middle-Atmospheric and Tropospheric CO 2 Doubling 2352 JOURNAL OF CLIMATE VOLUME 17 A Simulation of the Separate Climate Effects of Middle-Atmospheric and Tropospheric CO 2 Doubling M. SIGMOND Department of Applied Physics, Eindhoven University of Technology

More information

The Scientific Value of Stratospheric Wind Measurements

The Scientific Value of Stratospheric Wind Measurements Working Group on Space-based Lidar Winds, Monterey, 2008 The Scientific Value of Stratospheric Wind Measurements Ted Shepherd Department of Physics University of Toronto The distribution of ozone (important

More information

Impact of wind changes in the upper troposphere lower stratosphere on tropical ozone

Impact of wind changes in the upper troposphere lower stratosphere on tropical ozone Impact of wind changes in the upper troposphere lower stratosphere on tropical ozone Martin Dameris Deutsches Zentrum für Luft- und Raumfahrt (DLR) Institut für Physik der Atmosphäre, Oberpfaffenhofen

More information

The role of stratospheric processes in large-scale teleconnections

The role of stratospheric processes in large-scale teleconnections The role of stratospheric processes in large-scale teleconnections Judith Perlwitz NOAA/Earth System Research Laboratory and CIRES/University of Colorado Outline Introduction Comparison of features of

More information

Temperature changes in the tropical tropopause layer

Temperature changes in the tropical tropopause layer Temperature changes in the tropical tropopause layer Kohei Yoshida Division of Earth System Science, Graduate School of Environmental Science, Hokkaido University February 011 Abstract ⅰ Abstract Temperature

More information

The residual mean circulation in the tropical tropopause layer driven by tropical waves

The residual mean circulation in the tropical tropopause layer driven by tropical waves 1 2 The residual mean circulation in the tropical tropopause layer driven by tropical waves 3 4 David A. Ortland 5 6 7 8 NorthWest Research Associates 4118 148th Ave NE Redmond, WA 98052 ortland@nwra.com

More information

Non-orographic gravity waves in general circulation models

Non-orographic gravity waves in general circulation models Non-orographic gravity waves in general circulation models Erich Becker Leibniz-Institute of Atmospheric Physics (IAP) Kühlungsborn, Germany (1) General problem and issues Assumed equilibirium state for

More information

Dynamical Mechanism for the Increase in Tropical Upwelling in the Lowermost Tropical Stratosphere during Warm ENSO Events

Dynamical Mechanism for the Increase in Tropical Upwelling in the Lowermost Tropical Stratosphere during Warm ENSO Events JULY 2010 C A L V O E T A L. 2331 Dynamical Mechanism for the Increase in Tropical Upwelling in the Lowermost Tropical Stratosphere during Warm ENSO Events N. CALVO Atmospheric Chemistry Division, NCAR,*

More information

Chemistry Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes

Chemistry Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes VOLUME 23 J O U R N A L O F C L I M A T E 15 OCTOBER 2010 Chemistry Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes NEAL BUTCHART, a I. CIONNI, b V. EYRING,

More information

Comparing QBO and ENSO impacts on stratospheric transport in WACCM-SD and -FR

Comparing QBO and ENSO impacts on stratospheric transport in WACCM-SD and -FR Comparing QBO and ENSO impacts on stratospheric transport in WACCM-SD and -FR Multivariate ENSO Index + QBO shear index based on Singapore wind U50-U25 CESM Chemistry WG Meeting Boulder, CO February 10,

More information

Chihoko Yamashita 1,2, Han-Li Liu 1

Chihoko Yamashita 1,2, Han-Li Liu 1 1 1 Gravity Waves and the High-Resolution Modeling (Using ECMWF-T799) Chihoko Yamashita 1,2, Han-Li Liu 1 1. NCAR/HAO 2. University of Colorado at Boulder AWMG/WAWG Workshop 2012-02-01 Motivations Gravity

More information

Angular momentum conservation and gravity wave drag parameterization: implications for climate models

Angular momentum conservation and gravity wave drag parameterization: implications for climate models Angular momentum conservation and gravity wave drag parameterization: implications for climate models Article Published Version Shaw, T. A. and Shepherd, T. G. (2007) Angular momentum conservation and

More information

3D Brewer Dobson circulation derived from satellite measurements

3D Brewer Dobson circulation derived from satellite measurements SPARC BDC Workshop Grindelwald, Tuesday, June 26, 202 3D Brewer Dobson circulation derived from satellite measurements Axel Gabriel, Deniz Demirhan Bari,2, Heiner Körnich 3, Dieter H.W. Peters Leibniz-Institute

More information

Lecture #3: Gravity Waves in GCMs. Charles McLandress (Banff Summer School 7-13 May 2005)

Lecture #3: Gravity Waves in GCMs. Charles McLandress (Banff Summer School 7-13 May 2005) Lecture #3: Gravity Waves in GCMs Charles McLandress (Banff Summer School 7-13 May 2005) 1 Outline of Lecture 1. Role of GWs in the middle atmosphere 2. Background theory 3. Resolved GWs in GCMs 4. Parameterized

More information

An Examination of Anomalously Low Column Ozone in the Southern Hemisphere Midlatitudes During 1997

An Examination of Anomalously Low Column Ozone in the Southern Hemisphere Midlatitudes During 1997 San Jose State University From the SelectedWorks of Eugene C. Cordero April, 2002 An Examination of Anomalously Low Column Ozone in the Southern Hemisphere Midlatitudes During 1997 Eugene C. Cordero, San

More information

Meridional structure of the downwelling branch of the BDC Susann Tegtmeier

Meridional structure of the downwelling branch of the BDC Susann Tegtmeier Meridional structure of the downwelling branch of the BDC Susann Tegtmeier Helmholtz Centre for Ocean Research Kiel (GEOMAR), Germany SPARC Brewer-Dobson Circulation Workshop, Grindelwald, June 2012 no

More information

Reconciling conflicting interpretations of the forcing of the tropical upwelling in the Brewer- Dobson circulation

Reconciling conflicting interpretations of the forcing of the tropical upwelling in the Brewer- Dobson circulation Reconciling conflicting interpretations of the forcing of the tropical upwelling in the Brewer- Dobson circulation Rei Ueyama Earth Science Division, NASA Ames Research Center, Moffett Field, CA Edwin

More information

Atmospheric Responses to Solar Wind Dynamic Pressure

Atmospheric Responses to Solar Wind Dynamic Pressure Atmospheric Responses to Solar Wind Dynamic Pressure Hua Lu British Antarctic Survey Outline Background: Sun-Earth Climate Connection Solar wind/geomagnetic activity signals with 3 examples stratospheric

More information

Long-term changes in stratospheric age spectra in the 21st century in the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM)

Long-term changes in stratospheric age spectra in the 21st century in the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012jd017905, 2012 Long-term changes in stratospheric age spectra in the 21st century in the Goddard Earth Observing System Chemistry-Climate Model

More information

Future changes in wintertime stratospheric Arctic variability in CCMI models

Future changes in wintertime stratospheric Arctic variability in CCMI models Future changes in wintertime stratospheric Arctic variability in CCMI models B. Ayarzagüena 1, U. Langematz 1, J. Abalichin 1, H. Akiyoshi 2, M. Michou 3, O. Morgenstern 4 & L. Oman 5 1 Institut für Meteorologie,

More information

Interactions Between the Stratosphere and Troposphere

Interactions Between the Stratosphere and Troposphere Interactions Between the Stratosphere and Troposphere A personal perspective Scott Osprey Courtesy of Verena Schenzinger The Wave-Driven Circulation Global structure of Temperature and Wind Temperature

More information

AGU Chapman Conference on The Role of the Stratosphere in Climate and Climate Change in Santorini, Greece, on 28th September, 2007

AGU Chapman Conference on The Role of the Stratosphere in Climate and Climate Change in Santorini, Greece, on 28th September, 2007 AGU Chapman Conference on The Role of the Stratosphere in Climate and Climate Change in Santorini, Greece, on 28th September, 2007 Parameter Sweep Experiments on the Remote Influences of the Equatorial

More information

Math, Models, and Climate Change How shaving cream moved a jet stream, and how mathematics can help us better understand why

Math, Models, and Climate Change How shaving cream moved a jet stream, and how mathematics can help us better understand why Math, Models, and Climate Change How shaving cream moved a jet stream, and how mathematics can help us better understand why Edwin P. Gerber Center for Atmosphere and Ocean Science Courant Institute of

More information

7 The General Circulation

7 The General Circulation 7 The General Circulation 7.1 The axisymmetric state At the beginning of the class, we discussed the nonlinear, inviscid, axisymmetric theory of the meridional structure of the atmosphere. The important

More information

P4.2 THE THREE DIMENSIONAL STRUCTURE AND TIME EVOLUTION OF THE DECADAL VARIABILITY REVEALED IN ECMWF REANALYSES

P4.2 THE THREE DIMENSIONAL STRUCTURE AND TIME EVOLUTION OF THE DECADAL VARIABILITY REVEALED IN ECMWF REANALYSES P4.2 THE THREE DIMENSIONAL STRUCTURE AND TIME EVOLUTION OF THE DECADAL VARIABILITY REVEALED IN ECMWF REANALYSES Taehyoun Shim 1, Gyu-Ho Lim* 1 and Dong-In Lee 2 1 School of Earth and Environmental Sciences,

More information

Abrupt Circulation Responses to Tropical Upper-Tropospheric Warming in a Relatively Simple Stratosphere-Resolving AGCM

Abrupt Circulation Responses to Tropical Upper-Tropospheric Warming in a Relatively Simple Stratosphere-Resolving AGCM 15 JUNE 2012 W A N G E T A L. 4097 Abrupt Circulation Responses to Tropical Upper-Tropospheric Warming in a Relatively Simple Stratosphere-Resolving AGCM SHUGUANG WANG Department of Applied Physics and

More information

Sensitivity of zonal-mean circulation to air-sea roughness in climate models

Sensitivity of zonal-mean circulation to air-sea roughness in climate models Sensitivity of zonal-mean circulation to air-sea roughness in climate models Inna Polichtchouk & Ted Shepherd Royal Meteorological Society National Meeting 16.11.2016 MOTIVATION Question: How sensitive

More information

Dynamics, Stratospheric Ozone, and Climate Change. Theodore G. Shepherd. Department of Physics, University of Toronto

Dynamics, Stratospheric Ozone, and Climate Change. Theodore G. Shepherd. Department of Physics, University of Toronto Submitted to Special Issue of Atmos.-Ocean (20 th Anniversary of Montreal Protocol) Dynamics, Stratospheric Ozone, and Climate Change Theodore G. Shepherd Department of Physics, University of Toronto 60

More information

Variability and trends in stratospheric water vapor

Variability and trends in stratospheric water vapor Variability and trends in stratospheric water vapor Bill Randel Atmospheric Chemistry Division NCAR, Boulder, CO Photo: Liz Moyer Climatology - Seasonal cycle (by far the largest variability) - summer

More information

Lecture #1 Tidal Models. Charles McLandress (Banff Summer School 7-13 May 2005)

Lecture #1 Tidal Models. Charles McLandress (Banff Summer School 7-13 May 2005) Lecture #1 Tidal Models Charles McLandress (Banff Summer School 7-13 May 2005) 1 Outline of Lecture 1. Introduction 2. Brief description of tides 3. Observations of tides 4. Simulating tides using a general

More information

Inertia-gravity waves in the mesosphere observed by the PANSY radar

Inertia-gravity waves in the mesosphere observed by the PANSY radar Inertia-gravity waves in the mesosphere observed by the PANSY radar Ryosuke Shibuya *1, Kaoru Sato 1 and Masaki Tsutsumi 2 1 The University of Tokyo, Japan 2 National Institute of Polar Research, Japan

More information

SPARC Dynamics and Variability Project and its Connection to C20C. Paul J. Kushner (Project Coordinator) University of Toronto

SPARC Dynamics and Variability Project and its Connection to C20C. Paul J. Kushner (Project Coordinator) University of Toronto SPARC Dynamics and Variability Project and its Connection to C20C Paul J. Kushner (Project Coordinator) University of Toronto Mark Baldwin, Neil Butchart, Norm McFarlane, Alan O Neill, Judith Perlwitz,

More information

The global overturning diabatic circulation of the stratosphere as a metric for the Brewer-Dobson Circulation

The global overturning diabatic circulation of the stratosphere as a metric for the Brewer-Dobson Circulation The global overturning diabatic circulation of the stratosphere as a metric for the Brewer-Dobson Circulation Marianna Linz, Marta Abalos, Anne Sasha Glanville 3, Douglas E. Kinnison 3, Alison Ming 4,

More information

Polar vortex variability and stratosphere-troposphere coupling

Polar vortex variability and stratosphere-troposphere coupling FDEPS 2012, Lecture 4 Polar vortex variability and stratosphere-troposphere coupling Ted Shepherd Department of Meteorology University of Reading Polar temperatures at 30 hpa (approx 25 km) Forcing of

More information

WACCM: The High-Top Model

WACCM: The High-Top Model WACCM: The High-Top Model WACCM top Michael Mills CAM top WACCM Liaison mmills@ucar.edu (303) 497-1425 http://bb.cgd.ucar.edu/ 40 km Ozone Layer Jarvis, Bridging the Atmospheric Divide, Science, 293, 2218,

More information

The effect of zonal asymmetries in the Brewer- Dobson circulation on ozone and water vapor distributions in the northern middle atmosphere

The effect of zonal asymmetries in the Brewer- Dobson circulation on ozone and water vapor distributions in the northern middle atmosphere JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 118, 3447 3466, doi:10.1029/2012jd017709, 2013 The effect of zonal asymmetries in the Brewer- Dobson circulation on ozone and water vapor distributions

More information

Trends of Lower- to Mid-Stratospheric Water Vapor Simulated in Chemistry-Climate Models

Trends of Lower- to Mid-Stratospheric Water Vapor Simulated in Chemistry-Climate Models ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2015, VOL. 8, NO. 1, 57 62 Trends of Lower- to Mid-Stratospheric Water Vapor Simulated in Chemistry-Climate Models HU Ding-Zhu 1, HAN Yuan-Yuan 1, SANG Wen-Jun

More information

Future changes in Elevated Stratopause Events

Future changes in Elevated Stratopause Events Future changes in Elevated Stratopause Events Janice Scheffler 1, Ulrike Langematz 1, Yvan J. Orsolini 2, Blanca Ayarzagüena 1 1 Institut für Meteorologie, Freie Universität Berlin 2 Norwegian Institute

More information

c Copyright 2013 Pu Lin

c Copyright 2013 Pu Lin c Copyright 213 Pu Lin Understanding changes in the stratospheric circulation from observations and simulations Pu Lin A dissertation submitted in partial fulfillment of the requirements for the degree

More information

Four ways of inferring the MMC. 1. direct measurement of [v] 2. vorticity balance. 3. total energy balance

Four ways of inferring the MMC. 1. direct measurement of [v] 2. vorticity balance. 3. total energy balance Four ways of inferring the MMC 1. direct measurement of [v] 2. vorticity balance 3. total energy balance 4. eliminating time derivatives in governing equations Four ways of inferring the MMC 1. direct

More information

What kind of stratospheric sudden warming propagates to the troposphere?

What kind of stratospheric sudden warming propagates to the troposphere? What kind of stratospheric sudden warming propagates to the troposphere? Ken I. Nakagawa 1, and Koji Yamazaki 2 1 Sapporo District Meteorological Observatory, Japan Meteorological Agency Kita-2, Nishi-18,

More information

Linkages between Arctic sea ice loss and midlatitude

Linkages between Arctic sea ice loss and midlatitude Linkages between Arctic sea ice loss and midlatitude weather patterns Response of the wintertime atmospheric circulation to current and projected Arctic sea ice decline Gudrun Magnusdottir and Yannick

More information

CHAPTER 4. THE HADLEY CIRCULATION 59 smaller than that in midlatitudes. This is illustrated in Fig. 4.2 which shows the departures from zonal symmetry

CHAPTER 4. THE HADLEY CIRCULATION 59 smaller than that in midlatitudes. This is illustrated in Fig. 4.2 which shows the departures from zonal symmetry Chapter 4 THE HADLEY CIRCULATION The early work on the mean meridional circulation of the tropics was motivated by observations of the trade winds. Halley (1686) and Hadley (1735) concluded that the trade

More information

Introduction to Climate ~ Part I ~

Introduction to Climate ~ Part I ~ 2015/11/16 TCC Seminar JMA Introduction to Climate ~ Part I ~ Shuhei MAEDA (MRI/JMA) Climate Research Department Meteorological Research Institute (MRI/JMA) 1 Outline of the lecture 1. Climate System (

More information

The Stratospheric Link Between the Sun and Climate

The Stratospheric Link Between the Sun and Climate The Stratospheric Link Between the Sun and Climate The Stratospheric Link Between the Sun and Climate Mark P. Baldwin Northwest Research Associates, USA SORCE, 27 October 2004 Overview Climatology of the

More information

Extremely cold and persistent stratospheric Arctic vortex in the winter of

Extremely cold and persistent stratospheric Arctic vortex in the winter of Article Atmospheric Science September 2013 Vol.58 No.25: 3155 3160 doi: 10.1007/s11434-013-5945-5 Extremely cold and persistent stratospheric Arctic vortex in the winter of 2010 2011 HU YongYun 1* & XIA

More information

Modeling the Downward Influence of Stratospheric Final Warming events

Modeling the Downward Influence of Stratospheric Final Warming events Modeling the Downward Influence of Stratospheric Final Warming events Lantao Sun Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign Walter A. Robinson Division of Atmospheric

More information

Modelling the atmosphere. Hennie Kelder University of Technology Eindhoven

Modelling the atmosphere. Hennie Kelder University of Technology Eindhoven Modelling the atmosphere Hennie Kelder University of Technology Eindhoven Content Basics of the atmosphere Atmospheric dynamics Large scale circulation Planetary waves Brewer-Dobson circulation Some Key

More information

The Tropospheric Jet Response to Prescribed Zonal Forcing in an Idealized Atmospheric Model

The Tropospheric Jet Response to Prescribed Zonal Forcing in an Idealized Atmospheric Model 2254 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 65 The Tropospheric Jet Response to Prescribed Zonal Forcing in an Idealized Atmospheric Model GANG CHEN Program in Atmospheres,

More information

Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change

Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change Chapter 1 Atmospheric and Oceanic Simulation Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change Project Representative Tatsushi

More information

Solar Variability and Climate Change over the Late Holocene. D. Rind NASA/GISS NOAA Program: Abrupt Change in a Warming World

Solar Variability and Climate Change over the Late Holocene. D. Rind NASA/GISS NOAA Program: Abrupt Change in a Warming World Solar Variability and Climate Change over the Late Holocene D. Rind NASA/GISS ---------------- NOAA Program: Abrupt Change in a Warming World http://sohowww.nascom.nasa.gov/ It looks like the solar minimum

More information

DynVar Diagnostic MIP Dynamics and Variability of the Stratosphere Troposphere System

DynVar Diagnostic MIP Dynamics and Variability of the Stratosphere Troposphere System DynVar Diagnostic MIP Dynamics and Variability of the Stratosphere Troposphere System Co-Chairs: Edwin Gerber (gerber@cims.nyu.edu) Elisa Manzini (elisa.manzini@mpimet.mpg.de) Members of the Scientific

More information

The stratospheric response to extratropical torques and its relationship with the annular mode

The stratospheric response to extratropical torques and its relationship with the annular mode The stratospheric response to extratropical torques and its relationship with the annular mode Peter Watson 1, Lesley Gray 1,2 1. Atmospheric, Oceanic and Planetary Physics, Oxford University 2. National

More information

CHAPTER 4. Stratospheric Dynamics. Lead Authors: Neal Butchart & Andrew J. Charlton-Perez

CHAPTER 4. Stratospheric Dynamics. Lead Authors: Neal Butchart & Andrew J. Charlton-Perez CHAPTER 4 Stratospheric Dynamics Lead Authors: Neal Butchart & Andrew J. Charlton-Perez Co-authors: Irene Cionni Steven C. Hardiman Kirstin Krüger Paul Kushner Paul Newman Scott M. Osprey Judith Perlwitz

More information

Climatology and ENSO-related interannual variability of. gravity waves in the southern hemisphere subtropical

Climatology and ENSO-related interannual variability of. gravity waves in the southern hemisphere subtropical SATO ET AL: ENSO-MODULATED GRAVITY WAVES 1 1 2 3 Climatology and ENSO-related interannual variability of gravity waves in the southern hemisphere subtropical stratosphere revealed by high-resolution AIRS

More information

How do we deal with uncertainty connected with atmospheric circulation?

How do we deal with uncertainty connected with atmospheric circulation? How do we deal with uncertainty connected with atmospheric circulation? Ted Shepherd Grantham Professor of Climate Science Department of Meteorology University of Reading Some addi-onal background Circula-on

More information

On the Control of the Residual Circulation and Stratospheric Temperatures in the Arctic by Planetary Wave Coupling

On the Control of the Residual Circulation and Stratospheric Temperatures in the Arctic by Planetary Wave Coupling JANUARY 2014 S H A W A N D P E R L W I T Z 195 On the Control of the Residual Circulation and Stratospheric Temperatures in the Arctic by Planetary Wave Coupling TIFFANY A. SHAW Department of Earth and

More information

1 Climatological balances of heat, mass, and angular momentum (and the role of eddies)

1 Climatological balances of heat, mass, and angular momentum (and the role of eddies) 1 Climatological balances of heat, mass, and angular momentum (and the role of eddies) We saw that the middle atmospheric temperature structure (which, through thermal wind balance, determines the mean

More information

Characteristics of gravity waves from convection and implications. for their parameterization in global circulation models.

Characteristics of gravity waves from convection and implications. for their parameterization in global circulation models. Generated using version 3.2 of the official AMS L A TEX template 1 Characteristics of gravity waves from convection and implications 2 for their parameterization in global circulation models 3 Claudia

More information

The mean meridional circulation and midlatitude ozone buildup

The mean meridional circulation and midlatitude ozone buildup Atmos. Chem. Phys., 5, 59 7, 5 www.atmos-chem-phys.org/acp/5/59/ SRef-ID: 68-74/acp/5-5-59 European Geosciences Union Atmospheric Chemistry and Physics The mean meridional circulation and midlatitude ozone

More information

The 11 year solar cycle signal in transient simulations from the Whole Atmosphere Community Climate Model

The 11 year solar cycle signal in transient simulations from the Whole Atmosphere Community Climate Model JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011jd016393, 2012 The 11 year solar cycle signal in transient simulations from the Whole Atmosphere Community Climate Model G. Chiodo, 1 N. Calvo,

More information

Transfer of the solar signal from the stratosphere to the troposphere: Northern winter

Transfer of the solar signal from the stratosphere to the troposphere: Northern winter JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005jd006283, 2006 Transfer of the solar signal from the stratosphere to the troposphere: Northern winter Katja Matthes, 1,2 Yuhji Kuroda, 3 Kunihiko

More information

Role of vertical eddy heat flux in the response of tropical tropopause temperature to changes in tropical sea surface temperature

Role of vertical eddy heat flux in the response of tropical tropopause temperature to changes in tropical sea surface temperature Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009jd012783, 2010 Role of vertical eddy heat flux in the response of tropical tropopause temperature to changes in tropical

More information

Climate Change and Variability in the Southern Hemisphere: An Atmospheric Dynamics Perspective

Climate Change and Variability in the Southern Hemisphere: An Atmospheric Dynamics Perspective Climate Change and Variability in the Southern Hemisphere: An Atmospheric Dynamics Perspective Edwin P. Gerber Center for Atmosphere Ocean Science Courant Institute of Mathematical Sciences New York University

More information

Dynamical coupling between the middle atmosphere and lower thermosphere

Dynamical coupling between the middle atmosphere and lower thermosphere Dynamical coupling between the middle atmosphere and lower thermosphere Anne Smith, Dan Marsh, Nick Pedatella NCAR* Tomoko Matsuo CIRES/NOAA NCAR is sponsored by the National Science Foundation Model runs

More information

Gravity Waves from Southern Ocean Islands and the Southern Hemisphere Circulation

Gravity Waves from Southern Ocean Islands and the Southern Hemisphere Circulation Gravity Waves from Southern Ocean Islands and the Southern Hemisphere Circulation Chaim Garfinkel 1, Luke Oman 2 1. Earth Science Institute, Hebrew University 2 NASA GSFC ECMWF, September 2016 Topographic

More information

Elevated stratopause and mesospheric intrusion following a stratospheric sudden warming in WACCM

Elevated stratopause and mesospheric intrusion following a stratospheric sudden warming in WACCM Elevated stratopause and mesospheric intrusion following a stratospheric sudden warming in WACCM Yvan J. Orsolini 1,V. Limpasuvan 2, J. Richter 3, O. K. Kvissel 4, F. Stordal 4,D. Marsh 3 1 Norwegian Institute

More information

Influence of the polar vortex on Arctic column-averaged dry-air mixing ratios of atmospheric methane

Influence of the polar vortex on Arctic column-averaged dry-air mixing ratios of atmospheric methane Influence of the polar vortex on Arctic column-averaged dry-air mixing ratios of atmospheric methane Leif Backman, Tuula Aalto Climate Research, Finnish Meteorological Institute Rigel Kivi, Pauli Heikkinen

More information

State of polar boreal winter stratosphere ( ) The middle and upper regions of the atmosphere are now recognized as important and

State of polar boreal winter stratosphere ( ) The middle and upper regions of the atmosphere are now recognized as important and CHAPTER 3 State of polar boreal winter stratosphere (1993-2009) 3.1 Introduction The middle and upper regions of the atmosphere are now recognized as important and sensitive indicators of the polar middle

More information

Flux distributions as robust diagnostics of stratosphere-troposphere exchange

Flux distributions as robust diagnostics of stratosphere-troposphere exchange JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011jd016455, 2012 Flux distributions as robust diagnostics of stratosphere-troposphere exchange Clara Orbe, 1 Mark Holzer, 1,2 and Lorenzo M. Polvani

More information

Topic 1: Atmosphere and Climate

Topic 1: Atmosphere and Climate Topic 1: Atmosphere and Climate Peter Braesicke Fügen Sie auf der Masterfolie ein frei wählbares Bild ein (z.b. passend zum Vortrag) KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

More information

no eddies eddies Figure 3. Simulated surface winds. Surface winds no eddies u, v m/s φ0 =12 φ0 =0

no eddies eddies Figure 3. Simulated surface winds. Surface winds no eddies u, v m/s φ0 =12 φ0 =0 References Held, Isaac M., and Hou, A. Y., 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515-533. Held, Isaac M., and Suarez, M. J., 1994: A proposal

More information

The Quasi-Biennial Oscillation Analysis of the Resolved Wave Forcing

The Quasi-Biennial Oscillation Analysis of the Resolved Wave Forcing The Quasi-Biennial Oscillation Analysis of the Resolved Wave Forcing Thomas Krismer, Marco Giorgetta Max Planck Institute for Meteorology Hamburg Introduction 1) The Quasi Biennial Oscillation is driven

More information

Predictability of the Stratospheric Polar Vortex Breakdown

Predictability of the Stratospheric Polar Vortex Breakdown International Symposium on the Whole Atmosphere (ISWA) Session 4: Sudden stratospheric warming and SSW-initiated global coupling 14 September 2016 @ Ito Hall, The University of Tokyo Predictability of

More information

Lecture #2 Planetary Wave Models. Charles McLandress (Banff Summer School 7-13 May 2005)

Lecture #2 Planetary Wave Models. Charles McLandress (Banff Summer School 7-13 May 2005) Lecture #2 Planetary Wave Models Charles McLandress (Banff Summer School 7-13 May 2005) 1 Outline of Lecture 1. Observational motivation 2. Forced planetary waves in the stratosphere 3. Traveling planetary

More information

Solar cycle signal in a general circulation and chemistry model with internally generated quasi biennial oscillation

Solar cycle signal in a general circulation and chemistry model with internally generated quasi biennial oscillation Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009jd012542, 2010 Solar cycle signal in a general circulation and chemistry model with internally generated quasi biennial

More information

Some Observed Features of Stratosphere-Troposphere Coupling

Some Observed Features of Stratosphere-Troposphere Coupling Some Observed Features of Stratosphere-Troposphere Coupling Mark P. Baldwin, David B. Stephenson, David W.J. Thompson, Timothy J. Dunkerton, Andrew J. Charlton, Alan O Neill 1 May, 2003 1000 hpa (Arctic

More information

The general circulation: midlatitude storms

The general circulation: midlatitude storms The general circulation: midlatitude storms Motivation for this class Provide understanding basic motions of the atmosphere: Ability to diagnose individual weather systems, and predict how they will change

More information

On the role of planetary-scale waves in the abrupt seasonal. transition of the Northern Hemisphere general circulation. Tiffany A.

On the role of planetary-scale waves in the abrupt seasonal. transition of the Northern Hemisphere general circulation. Tiffany A. Generated using version 3.2 of the official AMS L A TEX template 1 On the role of planetary-scale waves in the abrupt seasonal 2 transition of the Northern Hemisphere general circulation 3 Tiffany A. Shaw

More information

February 1989 T. Iwasaki, S. Yamada and K. Tada 29. A Parameterization Scheme of Orographic Gravity Wave Drag

February 1989 T. Iwasaki, S. Yamada and K. Tada 29. A Parameterization Scheme of Orographic Gravity Wave Drag February 1989 T. Iwasaki, S. Yamada and K. Tada 29 A Parameterization Scheme of Orographic Gravity Wave Drag with Two Different Vertical Partitionings Part II: Zonally Averaged Budget Analyses Based on

More information

Impact of sudden Arctic sea-ice loss on stratospheric polar ozone recovery

Impact of sudden Arctic sea-ice loss on stratospheric polar ozone recovery Impact of sudden Arctic sea-ice loss on stratospheric polar ozone recovery A BC DEF B E E D E E E E D E E BC E E C C D E E DE BC E E E E EB DD E EB E BBE E B B C E E E E C B E B CE B E E E E ED E EE A

More information

Improved middle atmosphere climate and forecasts in the ECMWF model through a non-orographic gravity wave drag parametrization

Improved middle atmosphere climate and forecasts in the ECMWF model through a non-orographic gravity wave drag parametrization Improved middle atmosphere climate and forecasts in the ECMWF model through a non-orographic gravity wave drag parametrization April 2010 Andrew Orr*, Peter Bechtold, John Scinocca 1, Manfred Ern 2 and

More information

Stratosphere Troposphere Coupling in a Relatively Simple AGCM: The Importance of Stratospheric Variability

Stratosphere Troposphere Coupling in a Relatively Simple AGCM: The Importance of Stratospheric Variability 1920 J O U R N A L O F C L I M A T E VOLUME 22 Stratosphere Troposphere Coupling in a Relatively Simple AGCM: The Importance of Stratospheric Variability EDWIN P. GERBER Department of Applied Physics and

More information

Zonal mean dynamics of extended recoveries from stratospheric sudden warmings

Zonal mean dynamics of extended recoveries from stratospheric sudden warmings Zonal mean dynamics of extended recoveries from stratospheric sudden warmings Article Published Version Hitchcock, P. and Shepherd, T. G. (2013) Zonal mean dynamics of extended recoveries from stratospheric

More information

METEOROLOGY ATMOSPHERIC TELECONNECTIONS: FROM CAUSAL ATTRIBUTION TO STORYLINES OF CIRCULATION CHANGE

METEOROLOGY ATMOSPHERIC TELECONNECTIONS: FROM CAUSAL ATTRIBUTION TO STORYLINES OF CIRCULATION CHANGE METEOROLOGY ATMOSPHERIC TELECONNECTIONS: FROM CAUSAL ATTRIBUTION TO STORYLINES OF CIRCULATION CHANGE Ted Shepherd Grantham Chair of Climate Science Stratosphere-troposphere coupling: stratospheric polar

More information

IMPULSIVE NITRATE DEPOSITION EVENTS IN POLAR ICE THE RESULT OF SOLAR PROTON EVENTS. D. F. Smart and M. A. Shea SYNOPSIS

IMPULSIVE NITRATE DEPOSITION EVENTS IN POLAR ICE THE RESULT OF SOLAR PROTON EVENTS. D. F. Smart and M. A. Shea SYNOPSIS IMPULSIVE NITRATE DEPOSITION EVENTS IN POLAR ICE THE RESULT OF SOLAR PROTON EVENTS D. F. Smart and M. A. Shea Emeritus at AFRL (RVBXS), Bedford, MA, 01731, USA SYNOPSIS The endothermic chemical reaction

More information

Chemistry-Climate Models: What we have and what we need

Chemistry-Climate Models: What we have and what we need Chemistry-Climate Models: What we have and what we need Dan Marsh National Center for Atmospheric Research NCAR is sponsored by the National Science Foundation Outline Overview of processes in our current

More information

AMIP-type horizontal resolution experiments with NorESM. Øyvind Seland, Trond Iversen, Ivar Seierstad

AMIP-type horizontal resolution experiments with NorESM. Øyvind Seland, Trond Iversen, Ivar Seierstad AMWG meeting 10th-12th February 2014 AMIP-type horizontal resolution experiments with NorESM Øyvind Seland, Trond Iversen, Ivar Seierstad Motivation: For given a computer resource, ESMs need to balance

More information