21 cm Cosmology. Miguel F. Morales Boulder, October 5 th, 2010

Size: px
Start display at page:

Download "21 cm Cosmology. Miguel F. Morales Boulder, October 5 th, 2010"

Transcription

1 21 cm Cosmology Miguel F. Morales Boulder, October 5 th, 2010

2 See invited ARAA review Reionization and Cosmology with 21-cm Fluctuations Miguel F. Morales 1 and J. Stuart B. Wyithe 2 1 Department of Physics, University of Washington, Seattle, Washington 98195; mmorales@phys.washington.edu 2 School of Physics, University of Melbourne, Parkville, 3052 Victoria, Australia; swyithe@unimelb.edu.au

3 The cosmological HI signal

4 How did galaxies form?? EOR Big Bang CMB ~6 redshift 0 (now)

5 Short history of hydrogen Neutral Hydgrogen Ionized Hydgrogen EOR Big Bang CMB ~6 redshift 0 (now)

6 Dark energy with HI 10 0 <F HI > V, <F HI > M z Wyithe & Loeb (2007) <F H1 > V related to Lyman-α absorption, ~10-4 <F H1 > M related to H1 emission, ~10-2

7

8 z Mpc/h HI during EoR Zahn Furlanetto, Sokasian, Hernquist (2004)

9 Statistical EoR detection iy v v f Image Cube FT Sky Coordinates f Visibilities FT Frequency h Fourier Representation ix u u

10 Spherical symmetry v h u Morales & Hewitt (2004)

11 EoR power spectrum 10 3 (k 3 P / 2π 2 ) 1/2 [Mpc -3/2 Jy Hz] k [Mpc -1 ] z = 8, 360 hours of integration Furlanetto, Zaldarriaga, Hernquist (2004a,b) Bowman, Morales & Hewitt (2005) Kaplinghat (2005)

12 Power spectrum dynamics McQuinn

13 HI power spectra evolution Lidz

14 Why is this hard? Foregrounds Galactic emission (polarized and Faraday rotated) Bright point sources Faint point sources Instrumental contamination Radio recombination lines RFI Mode mixing!

15 Foreground symmetry y z FT x

16 k-space measurement! +,01'23$1'&3 $ &9'((& 45&!)4 '65(78)5* " #$%&'%$()*+! +,-./!"#$%"&'()*'

17 Mode mixing Frontier of foreground subtraction is interactions between calibration and foregrounds Need measurement fidelity of Effectively a product of the calibration errors and foreground uncertainty

18 Examples Chromatic array beam (PSF) & residual source flux, residual frequency ripple Polarized foreground & polarization mis-calibration, flux leakage from Q & U I Antenna beam dependence & point sources, decorrelation of visibilities at different frequencies Frequency Position Mis-subtracted source Representative line of sight

19 k-space measurement! +,01'23$1'&3 $ &9'((& 45&!)4 '65(78)5* " #$%&'%$()*+! +,-./!"#$%"&'()*'

20 Bright source location error Datta et al. (2010)

21 Foreground subtraction Datta et al. (2010)

22 Confusion level sources!" " 6%&&'.50:5.(8/*&.8),&12.*3!*(4356$37.89 &! k [cm pc 1 ]!"!!! "!"!#!"!!!" " Bowman et al. (2008)

23 k-space measurement! +,01'23$1'&3 $ &9'((& 45&!)4 '65(78)5* " #$%&'%$()*+! +,-./!"#$%"&'()*'

24 MWA sensitivity

25 MWA power spectrum sensitivity 10 3 (k 3 P / 2π t2 ) 1/2 [Mpc -3/2 Jy Hz] k [Mpc -1 ] z = 8, 360 hours of Furlanetto, Zaldarriaga, Hernquist (2004a,b) Bowman, Morales & Hewitt (2005) Kaplinghat (2005)

26 k-space Fisher matrixes Tuning parameter sensitivity Visbal, in prep.

27 Opportunities for lunar 21 cm Low RFI No ionosphere Slow rotation rate Dark ages (redshift > 40) Very large arrays, novel hardware (e.g. MOFF?) Challenge of very fast ground-based development

28 See invited ARAA review Reionization and Cosmology with 21-cm Fluctuations Miguel F. Morales 1 and J. Stuart B. Wyithe 2 1 Department of Physics, University of Washington, Seattle, Washington 98195; mmorales@phys.washington.edu 2 School of Physics, University of Melbourne, Parkville, 3052 Victoria, Australia; swyithe@unimelb.edu.au

MURCHISON WIDEFIELD ARRAY

MURCHISON WIDEFIELD ARRAY MURCHISON WIDEFIELD ARRAY STEPS TOWARDS OBSERVING THE EPOCH OF RE-IONIZATION Ravi Subrahmanyan Raman Research Institute INDIA View from Earth: cosmic radio background from cosmological evolution in gas

More information

Foregrounds for observations of the high redshift global 21 cm signal

Foregrounds for observations of the high redshift global 21 cm signal Foregrounds for observations of the high redshift global 21 cm signal Geraint Harker 28/10/2010 Fall Postdoc Symposium 1 The hydrogen 21cm line The hydrogen 21cm (1420MHz) transition is a forbidden transition

More information

Imaging HII Regions from Galaxies and Quasars During Reionisation with SKA

Imaging HII Regions from Galaxies and Quasars During Reionisation with SKA Imaging HII Regions from Galaxies and Quasars During Reionisation with SKA, Paul M. Geil, Hansik Kim School of Physics, The University of Melbourne, Parkville, Vic 31, Australia E-mail: swyithe@unimelb.edu.au

More information

Analysis of differential observations of the cosmological radio background: studying the SZE-21cm

Analysis of differential observations of the cosmological radio background: studying the SZE-21cm Analysis of differential observations of the cosmological radio background: studying the SZE-21cm Charles Mpho Takalana Supervisor: Prof Sergio Colafrancesco University of the Witwatersrand November 28,

More information

Probing the Dark Ages with 21 cm Absorption

Probing the Dark Ages with 21 cm Absorption May 13, 2008 Probing the Dark Ages with 21 cm Absorption Emil Polisensky (UMD/NRL) ABSTRACT A brief overview of detecting neutral hydrogen gas during the cosmic Dark Ages in absorption against the background

More information

HI across cosmic time

HI across cosmic time HI across cosmic time Hubble-ITC Fellow CfA Avi Loeb (CfA) Steve Furlanetto (UCLA) Stuart Wyithe (Melbourne) Mario Santos (Portugal) Hy Trac (CMU) Alex Amblard (Ames) Renyue Cen (Princeton) Asanthe Cooray

More information

Separating out the Alcock Paczyński effect on 21-cm fluctuations

Separating out the Alcock Paczyński effect on 21-cm fluctuations Mon. Not. R. Astron. Soc. 37, 59 64 006 doi: 10.1111/j.1365-966.006.1088.x Separating out the Alcock Paczyński effect on 1-cm fluctuations R. Barkana School of Physics and Astronomy, The Raymond and Beverly

More information

Spectral Line Intensity Mapping with SPHEREx

Spectral Line Intensity Mapping with SPHEREx Spectral Line Intensity Mapping with SPHEREx Tzu-Ching Chang (JPL/Caltech) SPHEREx Science Team Hao-Yi Heidi Wu (Ohio State) Olivier Doré Cosmology and First Light - December 2015 1 Line Intensity Mapping

More information

Cross-correlations of CMB lensing as tools for cosmology and astrophysics. Alberto Vallinotto Los Alamos National Laboratory

Cross-correlations of CMB lensing as tools for cosmology and astrophysics. Alberto Vallinotto Los Alamos National Laboratory Cross-correlations of CMB lensing as tools for cosmology and astrophysics Alberto Vallinotto Los Alamos National Laboratory Dark matter, large scales Structure forms through gravitational collapse......

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11177 S1. Description of the simulation code We developed our own code that implements a hybrid method to produce instances of the expected three-dimensional distribution of the first

More information

Statistical inversion of the LOFAR Epoch of Reionization experiment data model

Statistical inversion of the LOFAR Epoch of Reionization experiment data model Statistical inversion of the LOFAR Epoch of Reionization experiment data model ASTRON, Oude Hoogeveensedijk 4, 7991 PD, Dwingeloo, the Netherlands Kapteyn Astronomical Institute, Landleven 12, 9747 AD,

More information

Polarized foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen reionization

Polarized foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen reionization Mon. Not. R. Astron. Soc. 418, 516 535 (2011) doi:10.1111/j.1365-2966.2011.19509.x Polarized foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen

More information

Extracting a signal from the

Extracting a signal from the Extracting a signal from the epoch of reionization with LOFAR Geraint Harker Kapteyn Institute, Groningen, the Netherlands Collaborators: Ger de Bruyn; Michiel Brentjens, Leon Koopmans, Saleem Zaroubi;

More information

Baryonic acoustic oscillations in 21-cm emission: a probe of dark energy out to high redshifts

Baryonic acoustic oscillations in 21-cm emission: a probe of dark energy out to high redshifts Mon. Not. R. Astron. Soc. 383, 1195 129 (28) doi:1.1111/j.1365-2966.27.12631.x Baryonic acoustic oscillations in 21-cm emission: a probe of dark energy out to high redshifts J. Stuart B. Wyithe, 1 Abraham

More information

Studying 21cm power spectrum with one-point statistics

Studying 21cm power spectrum with one-point statistics doi:10.1093/mnras/stv965 Studying 21cm power spectrum with one-point statistics Hayato Shimabukuro, 1,2 Shintaro Yoshiura, 2 Keitaro Takahashi, 2 Shuichiro Yokoyama 3 and Kiyotomo Ichiki 1 1 Department

More information

MULTIREDSHIFT LIMITS ON THE 21 cm POWER SPECTRUM FROM PAPER

MULTIREDSHIFT LIMITS ON THE 21 cm POWER SPECTRUM FROM PAPER 2015. The American Astronomical Society. All rights reserved. doi:10.1088/0004-637x/801/1/51 MULTIREDSHIFT LIMITS ON THE 21 cm POWER SPECTRUM FROM PAPER Daniel C. Jacobs 1, Jonathan C. Pober 2, Aaron R.

More information

Simulating cosmic reionization at large scales

Simulating cosmic reionization at large scales Simulating cosmic reionization at large scales I.T. Iliev, G. Mellema, U. L. Pen, H. Merz, P.R. Shapiro and M.A. Alvarez Presentation by Mike Pagano Nov. 30th 2007 Simulating cosmic reionization at large

More information

Rupert Croft. QuickTime and a decompressor are needed to see this picture.

Rupert Croft. QuickTime and a decompressor are needed to see this picture. Rupert Croft QuickTime and a decompressor are needed to see this picture. yesterday: Plan for lecture 1: History : -the first quasar spectra -first theoretical models (all wrong) -CDM cosmology meets the

More information

Future Radio Interferometers

Future Radio Interferometers Future Radio Interferometers Jim Ulvestad National Radio Astronomy Observatory Radio Interferometer Status in 2012 ALMA Covers much of 80 GHz-1 THz band, with collecting area of about 50% of VLA, for a

More information

Probing Into The Dark Ages with a Low Frequency Interferometer on the Moon

Probing Into The Dark Ages with a Low Frequency Interferometer on the Moon Probing Into The Dark Ages with a Low Frequency Interferometer on the Moon Jack Burns Center for Astrophysics and Space Science University of Colorado, Boulder (with contributions from A. Loeb, J. Hewitt,

More information

The First Stars John Wise, Georgia Tech

The First Stars John Wise, Georgia Tech z=1100 The First Stars John Wise, Georgia Tech z~20-30 z~6 > (P=kT b Δν) Courtesy of J. Pritchard Adapted from Pritchard & Loeb, 2010, Phys. Rev. D, 82, 023006 A great mystery now confronts us: When and

More information

University of Groningen. Opening the low frequency window to the high redshift Universe Vedantham, Harish

University of Groningen. Opening the low frequency window to the high redshift Universe Vedantham, Harish University of Groningen Opening the low frequency window to the high redshift Universe Vedantham, Harish IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish

More information

Surface Telerobotics 1

Surface Telerobotics 1 1 DARE Project Team Principal Investigator: Jack Burns, University of Colorado Boulder Project Management & Mission Operations: NASA Ames Research Center: B. Hine & J. Bauman Observatory Project Management:

More information

PoS(Cosmology2009)022

PoS(Cosmology2009)022 and 21cm Observations Max Planck Institute for Astrophysics E-mail: ciardi@mpa-garching.mpg.de With the advent in the near future of radio telescopes as LOFAR, a new window on the highredshift universe

More information

Instruments for studying the Epoch of Reionization (EOR) Presentation to CORF by Alan Rogers 27 May 09

Instruments for studying the Epoch of Reionization (EOR) Presentation to CORF by Alan Rogers 27 May 09 Instruments for studying the Epoch of Reionization (EOR) Presentation to CORF by Alan Rogers 27 May 09 Summary The Epoch of Reionization (EOR) What are the theoretical predictions for what we might be

More information

(Astro)Physics 343 Lecture # 13: cosmic microwave background (and cosmic reionization!)

(Astro)Physics 343 Lecture # 13: cosmic microwave background (and cosmic reionization!) (Astro)Physics 343 Lecture # 13: cosmic microwave background (and cosmic reionization!) Welcome back! (four pictures on class website; add your own to http://s304.photobucket.com/albums/nn172/rugbt/) Results:

More information

The History of the Universe in One Hour. Max Tegmark, MIT

The History of the Universe in One Hour. Max Tegmark, MIT The History of the Universe in One Hour Max Tegmark, MIT QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Other people associated with MIT who worked on COBE: Chuck Bennett,

More information

Parkes 21 cm Intensity Mapping Experiments

Parkes 21 cm Intensity Mapping Experiments Parkes 21 cm Intensity Mapping Experiments Jonghwan Rhee (ICRAR/UWA) In collaboration with: Lister Staveley-Smith (ICRAR/UWA), Laura Wolz (Univ. of Melbourne), Stuart Wyithe (Univ. of Melbourne), Chris

More information

CURRICULUM VITAE Adam Lidz

CURRICULUM VITAE Adam Lidz CURRICULUM VITAE Adam Lidz University of Pennsylvania Department of Physics & Astronomy e-mail: alidz@sas.upenn.edu EDUCATION Columbia University Ph.D. in Physics, July 2004 M.A. in Physics, 2004 The University

More information

HOW TO GET LIGHT FROM THE DARK AGES

HOW TO GET LIGHT FROM THE DARK AGES HOW TO GET LIGHT FROM THE DARK AGES Anthony Smith Lunar Seminar Presentation 2/2/2010 OUTLINE Basics of Radio Astronomy Why go to the moon? What should we find there? BASICS OF RADIO ASTRONOMY Blackbody

More information

Search for 21cm Reionization

Search for 21cm Reionization Search for 21cm Reionization Ue-Li Pen Xiang-Ping Wu, Jeff Peterson Beacons of Darkness Reionizing sources create a network of billions of holes in the diffuse 21cm background with precise redshifts Can

More information

Low-frequency radio astronomy and wide-field imaging

Low-frequency radio astronomy and wide-field imaging Low-frequency radio astronomy and wide-field imaging James Miller-Jones (NRAO Charlottesville/Curtin University) ITN 215212: Black Hole Universe Many slides taken from NRAO Synthesis Imaging Workshop (Tracy

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Bernard F. Burke Massachusetts Institute of Technology and Francis Graham-Smith Jodrell Bank, University of Manchester CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements

More information

Cosmic Dawn/EoR SWG. Cathryn Trott

Cosmic Dawn/EoR SWG. Cathryn Trott Cosmic Dawn/EoR SWG Cathryn Trott EoR and Cosmic Dawn Cosmic Dawn z ~ 12 - > 28 Growth of structure; high sky temp. (1000s K); completely unchartered territory Epoch of HeaOng Epoch of ReionisaOon Framed

More information

arxiv:astro-ph/ v1 8 Nov 2006

arxiv:astro-ph/ v1 8 Nov 2006 Draft version November 10, 2006 Preprint typeset using L A TEX style emulateapj v. 9/08/03 THE CROSS-CORRELATION OF HIGH-REDSHIFT 21 CM AND GALAXY SURVEYS Steven R. Furlanetto 1 & Adam Lidz 2 Draft version

More information

The Epoch of Experimentation Theory and Instrumentation Targeting Cosmological Reionization

The Epoch of Experimentation Theory and Instrumentation Targeting Cosmological Reionization The Epoch of Experimentation Theory and Instrumentation Targeting Cosmological Reionization The EOR is the next CMB (Loeb) only better Radio interferometers will (may) enable Direct imaging of the dominant

More information

arxiv: v2 [astro-ph.co] 7 May 2014

arxiv: v2 [astro-ph.co] 7 May 2014 Mon. Not. R. Astron. Soc. 001, 1 (2012) Printed 14 October 2018 (MN LATEX style file v2.2) arxiv:1402.0508v2 [astro-ph.co] 7 May 2014 Light cone effect on the reionization 21-cm signal II: Evolution, anisotropies

More information

Probing non-gaussian features in the H I distribution at the epoch of re-ionization

Probing non-gaussian features in the H I distribution at the epoch of re-ionization Mon. Not. R. Astron. Soc. 358, 968 976 (25) doi:./j.365-2966.25.8836.x Probing non-gaussian features in the H I distribution at the epoch of re-ionization Somnath Bharadwaj Sanjay K. Pey 2 Department of

More information

Simulating HI 21-cm Signal from EoR and Cosmic Dawn. Kanan K. Datta Presidency University, Kolkata

Simulating HI 21-cm Signal from EoR and Cosmic Dawn. Kanan K. Datta Presidency University, Kolkata Simulating HI 21-cm Signal from EoR and Cosmic Dawn Kanan K. Datta Presidency University, Kolkata Plan of the talk Why simulations?! Dynamic ranges of simulations! Basic flowchart for simulation! Various

More information

The HI 21-cm visibility signal and foreground simulations for the Ooty Wide Field Array(OWFA)

The HI 21-cm visibility signal and foreground simulations for the Ooty Wide Field Array(OWFA) The HI 21-cm visibility signal and foreground simulations for the Ooty Wide Field Array(OWFA) Suman Chatterjee(IIT Kgp), V. R. Marthi (NCRA-TIFR) With Somnath Bharadwaj (IIT Kgp), J. N. Chengalur(NCRA-TIFR)

More information

Future Probes of Cosmology and the High-Redshift Universe

Future Probes of Cosmology and the High-Redshift Universe Future Probes of Cosmology and the High-Redshift Universe The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Visbal, Elijah

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Second edition Bernard F. Burke and Francis Graham-Smith CAMBRIDGE UNIVERSITY PRESS Contents Preface to the second edition page x 1 Introduction 1 1.1 The role of radio

More information

Measuring the dark universe. Luca Amendola University of Heidelberg

Measuring the dark universe. Luca Amendola University of Heidelberg Measuring the dark universe Luca Amendola University of Heidelberg 1 In search of the dark Searching with new probes Searching in new domains Or: a short overview of what I have been doing in the last

More information

arxiv: v2 [astro-ph.co] 27 Jul 2011

arxiv: v2 [astro-ph.co] 27 Jul 2011 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 30 May 2018 (MN LATEX style file v2.2) arxiv:1011.2321v2 [astro-ph.co] 27 Jul 2011 Polarised foreground removal at low radio frequencies using rotation

More information

Foregrounds for redshifted 21-cm studies of reionization: Giant Meter Wave Radio Telescope 153-MHz observations

Foregrounds for redshifted 21-cm studies of reionization: Giant Meter Wave Radio Telescope 153-MHz observations Mon. Not. R. Astron. Soc. 385, 2166 2174 (28) doi:10.1111/j.1365-2966.28.12984.x Foregrounds for redshifted 21-cm studies of reionization: Giant Meter Wave Radio Telescope 153-MHz observations Sk. Saiyad

More information

Brief Introduction to Cosmology

Brief Introduction to Cosmology Brief Introduction to Cosmology Matias Zaldarriaga Harvard University August 2006 Basic Questions in Cosmology: How does the Universe evolve? What is the universe made off? How is matter distributed? How

More information

Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations. Large scale structure

Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations. Large scale structure Modern cosmology : The Growth of Structure Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations effect of cosmological parameters Large scale structure

More information

Really, really, what universe do we live in?

Really, really, what universe do we live in? Really, really, what universe do we live in? Fluctuations in cosmic microwave background Origin Amplitude Spectrum Cosmic variance CMB observations and cosmological parameters COBE, balloons WMAP Parameters

More information

The Epoch of Reionization: Observational & Theoretical Topics

The Epoch of Reionization: Observational & Theoretical Topics The Epoch of Reionization: Observational & Theoretical Topics Lecture 1 Lecture 2 Lecture 3 Lecture 4 Current constraints on Reionization Physics of the 21cm probe EoR radio experiments Expected Scientific

More information

Constraining the unexplored period between reionization and the dark ages with observations of the global 21 cm signal

Constraining the unexplored period between reionization and the dark ages with observations of the global 21 cm signal Constraining the unexplored period between reionization and the dark ages with observations of the global 21 cm signal Jonathan R. Pritchard and Abraham Loeb Harvard-Smithsonian Center for Astrophysics,

More information

Center for Astrophysics & Space Astronomy University of Colorado at Boulder

Center for Astrophysics & Space Astronomy University of Colorado at Boulder LUNAR Lead Scientists: J. Burns, Principal Investigator E. Hallman, U. Colorado J. Lazio, NRL J. Hewitt, MIT C. Carilli, NRAO T. Murphy, UCSD D. Currie, U. Maryland S. Merkowitz, GSFC J. Kasper, CfA R.

More information

II. The Universe Around Us. ASTR378 Cosmology : II. The Universe Around Us 23

II. The Universe Around Us. ASTR378 Cosmology : II. The Universe Around Us 23 II. The Universe Around Us ASTR378 Cosmology : II. The Universe Around Us 23 Some Units Used in Astronomy 1 parsec distance at which parallax angle is 1 ; 1 pc = 3.086 10 16 m ( 3.26 light years; 1 kpc

More information

Cosmic Microwave Background

Cosmic Microwave Background Cosmic Microwave Background Following recombination, photons that were coupled to the matter have had very little subsequent interaction with matter. Now observed as the cosmic microwave background. Arguably

More information

PRECISION ARRAY TO PROBE THE EPOCH OF REIONIZATION

PRECISION ARRAY TO PROBE THE EPOCH OF REIONIZATION PRECISION ARRAY TO PROBE THE EPOCH OF REIONIZATION PAPER Team: R. Bradley (Co PI), E. Mastrantonio, C. Parashare, N. Gugliucci, D. Boyd, P. Reis (NRAO & UVA); A. Parsons, M. Wright, D. Werthimer, CASPER

More information

CHIME. Kendrick Smith on behalf of the CHIME collaboration Barcelona, September 2015

CHIME. Kendrick Smith on behalf of the CHIME collaboration Barcelona, September 2015 CHIME Kendrick Smith on behalf of the CHIME collaboration Barcelona, September 2015 *Mandana*Amiri* *Philippe*Berger* *Kevin*Bandura* *Dick*Bond* *JeanEFrancois*Cliche* *Liam*Connor* *Meiling*Deng* *Nolan*Denman*

More information

arxiv: v2 [astro-ph.co] 12 Aug 2015

arxiv: v2 [astro-ph.co] 12 Aug 2015 Mon. Not. R. Astron. Soc., 5 (?) Printed 3 January 8 (MN LATEX style file v.) -cm signal from cosmic dawn - II: Imprints of the light-cone effects arxiv:54.56v [astro-ph.co] Aug 5 Raghunath Ghara, Kanan

More information

Foregrounds for EoR 21cm signals: their properties, effects and strategies to deal with them

Foregrounds for EoR 21cm signals: their properties, effects and strategies to deal with them Foregrounds for EoR 21cm signals: their properties, effects and strategies to deal with them Ger de Bruyn Groningen Reionization meeting, 29 jun 05 ASTRON, Dwingeloo & Kapteyn Institute, Groningen Outline

More information

On the use of seminumerical simulations in predicting the 21-cm signal from the epoch of reionization

On the use of seminumerical simulations in predicting the 21-cm signal from the epoch of reionization doi:10.1093/mnras/stu1342 On the use of seminumerical simulations in predicting the 21-cm signal from the epoch of reionization Suman Majumdar, 1 Garrelt Mellema, 1 Kanan K. Datta, 2 Hannes Jensen, 1 T.

More information

CMB Polarization and Cosmology

CMB Polarization and Cosmology CMB Polarization and Cosmology Wayne Hu KIPAC, May 2004 Outline Reionization and its Applications Dark Energy The Quadrupole Gravitational Waves Acoustic Polarization and Initial Power Gravitational Lensing

More information

Lecture 27 The Intergalactic Medium

Lecture 27 The Intergalactic Medium Lecture 27 The Intergalactic Medium 1. Cosmological Scenario 2. The Ly Forest 3. Ionization of the Forest 4. The Gunn-Peterson Effect 5. Comment on HeII Reionization References J Miralda-Escude, Science

More information

Dark-ages reionization and galaxy formation simulation V: morphology and statistical signatures of reionization

Dark-ages reionization and galaxy formation simulation V: morphology and statistical signatures of reionization Advance Access publication 2016 July 18 doi:10.1093/mnras/stw1718 Dark-ages reionization and galaxy formation simulation V: morphology and statistical signatures of reionization Paul M. Geil, 1 Simon J.

More information

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift Lecture 14: Cosmology Olbers paradox Redshift and the expansion of the Universe The Cosmological Principle Ω and the curvature of space The Big Bang model Primordial nucleosynthesis The Cosmic Microwave

More information

Near-IR Background Fluctuation Results from the Cosmic Infrared Background Experiment

Near-IR Background Fluctuation Results from the Cosmic Infrared Background Experiment Near-IR Background Fluctuation Results from the Cosmic Infrared Background Experiment Michael Zemcov The Near- IR Background II: From Reionization to the Present Epoch Max- Planck- Gesellschaft, June 2,

More information

VLA OBSERVING APPLICATION

VLA OBSERVING APPLICATION VLA OBSERVING APPLICATION DEADLINES: 1st of Feb., June., Oct. for next configuration following review INSTRUCTIONS: Each numbered item must have an entry or N/A E-MAIL TO: propsoc@nrao.edu (different for

More information

The simulated 21 cm signal during the EoR : Ly-α and X-ray fluctuations

The simulated 21 cm signal during the EoR : Ly-α and X-ray fluctuations The simulated 21 cm signal during the EoR : Ly-α and X-ray fluctuations Sunghye BAEK Collaborators : B. Semelin, P. Di Matteo, F. Combes, Y. Revaz LERMA - Observatoire de Paris 9 Dec 2008 Physics of the

More information

3/1/18 LETTER. Instructors: Jim Cordes & Shami Chatterjee. Reading: as indicated in Syllabus on web

3/1/18 LETTER. Instructors: Jim Cordes & Shami Chatterjee. Reading: as indicated in Syllabus on web Astro 2299 The Search for Life in the Universe Lecture 9 Last time: Star formation Formation of protostars and planetary systems This time A few things about the epoch of reionization and free fall times

More information

21 cm Intensity Mapping

21 cm Intensity Mapping 21cmIntensityMapping JeffreyB.Peterson 1,RoyAleksan 2,RézaAnsari 3,KevinBandura 1,DickBond 4,JohnBunton 5, KermitCarlson 6,Tzu ChingChang 4,7,FritzDeJongh 3,MattDobbs 8,ScottDodelson 6,Hassane Darhmaoui

More information

Using training sets and SVD to separate global 21-cm signal from foreground and instrument systematics

Using training sets and SVD to separate global 21-cm signal from foreground and instrument systematics Using training sets and SVD to separate global 21-cm signal from foreground and instrument systematics KEITH TAUSCHER*, DAVID RAPETTI, JACK O. BURNS, ERIC SWITZER Aspen, CO Cosmological Signals from Cosmic

More information

Lyman-alpha intensity mapping during the Epoch of Reionization

Lyman-alpha intensity mapping during the Epoch of Reionization Lyman-alpha intensity mapping during the Epoch of Reionization Mário G. Santos CENTRA IST (Austin, May 15, 2012) Marta Silva, Mario G. Santos, Yan Gong, Asantha Cooray (2012), arxiv:1205.1493 Intensity

More information

Lyman-α Cosmology with BOSS Julián Bautista University of Utah. Rencontres du Vietnam Cosmology 2015

Lyman-α Cosmology with BOSS Julián Bautista University of Utah. Rencontres du Vietnam Cosmology 2015 Lyman-α Cosmology with BOSS Julián Bautista University of Utah Rencontres du Vietnam Cosmology 2015 Lyman-α Forest of a Quasar (by Andrew Pontzen) F ( obs )= Observed flux Unabsorbed flux ( obs) 2 Lyman-α

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS EDGES MEMO #171 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 September 3, 2015 Telephone: 781-981-5400 Fax: 781-981-0590 To: EDGES Group From: Alan E.E. Rogers

More information

arxiv:astro-ph/ v4 8 Jan 2003

arxiv:astro-ph/ v4 8 Jan 2003 1 Spectral signature of cosmological infall of gas around the first quasars Rennan Barkana and Abraham Loeb arxiv:astro-ph/0209515v4 8 Jan 2003 School of Physics and Astronomy, Tel Aviv University, Tel

More information

Microwave Background Polarization: Theoretical Perspectives

Microwave Background Polarization: Theoretical Perspectives Microwave Background Polarization: Theoretical Perspectives Department of Physics and Astronomy University of Pittsburgh CMBpol Technology Workshop Outline Tensor Perturbations and Microwave Polarization

More information

Astrophysics Enabled by the Return to the Moon

Astrophysics Enabled by the Return to the Moon Astrophysics Enabled by the Return to the Moon One s Destination is never a place but rather a new way of looking at things. Henry Miller Mario Livio Space Telescope Science Institute BRIEF OUTLINE What

More information

Spectral Line Intensity Mapping with SPHEREx and CDIM

Spectral Line Intensity Mapping with SPHEREx and CDIM Spectral Line Intensity Mapping with SPHEREx and CDIM Tzu-Ching Chang (JPL/Caltech) SPHEREx Science Team & CDIM Science Team Olivier Doré Cosmology and First Light - December 2015 1 SPHEREx deep fields:

More information

On the Detectability of Lyman Alpha Emission by Galaxies from the Epoch of Reionization. Mark Dijkstra (MPA, Garching)

On the Detectability of Lyman Alpha Emission by Galaxies from the Epoch of Reionization. Mark Dijkstra (MPA, Garching) On the Detectability of Lyman Alpha Emission by Galaxies from the Epoch of Reionization Mark Dijkstra (MPA, Garching) Outline Why we care about the HI Lya line. Lya transfer basics. Why direct detection

More information

First Light And Reionization. Nick Gnedin

First Light And Reionization. Nick Gnedin First Light And Reionization Nick Gnedin Reionization and 5-Year Plans Sovier leaders would love reionization it is a field where every 5 years something interesting happens. SDSS Quasars ~ 2005 z=5.7

More information

Astro2020 Science White Paper Dark Cosmology: Investigating Dark Matter & Exotic Physics in the Dark Ages using the Redshifted 21-cm Global Spectrum

Astro2020 Science White Paper Dark Cosmology: Investigating Dark Matter & Exotic Physics in the Dark Ages using the Redshifted 21-cm Global Spectrum Astro2020 Science White Paper Dark Cosmology: Investigating Dark Matter & Exotic Physics in the Dark Ages using the Redshifted 21-cm Global Spectrum Thematic Areas: Planetary Systems Star and Planet Formation

More information

The Square Kilometre Array Epoch of Reionisation and Cosmic Dawn Experiment

The Square Kilometre Array Epoch of Reionisation and Cosmic Dawn Experiment Peering towards Cosmic Dawn Proceedings IAU Symposium No. 333, 2018 Vibor Jelić & Thijs van der Hulst, eds. c 2018 International Astronomical Union DOI: 00.0000/X000000000000000X The Square Kilometre Array

More information

arxiv: v2 [astro-ph.co] 1 Apr 2019

arxiv: v2 [astro-ph.co] 1 Apr 2019 Differential Observation Techniques for the SZE-21cm and radio sources arxiv:1903.12631v2 [astro-ph.co] 1 Apr 2019 University of the Witwatersrand E-mail: mtakalana@ska.ac.za Paolo Marchegiani University

More information

First Season MWA EoR Power Spectrum Results at Redshift 7

First Season MWA EoR Power Spectrum Results at Redshift 7 First Season MWA EoR Power Spectrum Results at Redshift 7 The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Beardsley,

More information

Future radio galaxy surveys

Future radio galaxy surveys Future radio galaxy surveys Phil Bull JPL/Caltech Quick overview Radio telescopes are now becoming sensitive enough to perform surveys of 107 109 galaxies out to high z 2 main types of survey from the

More information

Reionization constraints post Planck-15

Reionization constraints post Planck-15 Reionization constraints post Planck-15 Tirthankar Roy Choudhury National Centre for Radio Astrophysics Tata Institute of Fundamental Research Pune CMB Spectral Distortions from Cosmic Baryon Evolution

More information

The Intergalactic Medium: Overview and Selected Aspects

The Intergalactic Medium: Overview and Selected Aspects The Intergalactic Medium: Overview and Selected Aspects Draft Version Tristan Dederichs June 18, 2018 Contents 1 Introduction 2 2 The IGM at high redshifts (z > 5) 2 2.1 Early Universe and Reionization......................................

More information

Lya as a Probe of the (High-z) Universe

Lya as a Probe of the (High-z) Universe Lya as a Probe of the (High-z) Universe Mark Dijkstra (CfA) Main Collaborators: Adam Lidz, Avi Loeb (CfA) Stuart Wyithe (Melbourne), Zoltan Haiman (Columbia) Lya as a Probe of the (High-z) Universe Outline

More information

Multi-frequency polarimetry of a complete sample of faint PACO sources. INAF-IRA (Bologna)

Multi-frequency polarimetry of a complete sample of faint PACO sources. INAF-IRA (Bologna) Multi-frequency polarimetry of a complete sample of faint PACO sources. Vincenzo Galluzzi Marcella Massardi DiFA (University of Bologna) INAF-IRA (Bologna) INAF-IRA & Italian ARC The state-of-the-art The

More information

arxiv: v2 [astro-ph.co] 20 Dec 2010

arxiv: v2 [astro-ph.co] 20 Dec 2010 Mon. Not. R. Astron. Soc., () Printed 5 November 28 (MN LATEX style file v2.2) The impact of anisotropy from finite light travel time on detecting ionized bubbles in redshifted 2-cm maps. arxiv:6.43v2

More information

arxiv: v2 [astro-ph.co] 2 Dec 2015

arxiv: v2 [astro-ph.co] 2 Dec 2015 MNRAS, () Preprint 13 August 18 Compiled using MNRAS LATEX style file v3. Effects of the sources of reionization on 1-cm redshift-space distortions arxiv:159.7518v [astro-ph.co] Dec 15 Suman Majumdar 1,,

More information

LOFAR Key Science Projects and Science Network in Germany

LOFAR Key Science Projects and Science Network in Germany LOFAR Key Science Projects and Science Network in Germany Rainer Beck MPIfR Bonn LOFAR A revolution in radio telescope design: Software telescope: no moving parts, no mirrors, simultaneous multi-beaming,

More information

Geraint Harker. Kapteyn Astronomical Institute, Groningen. Wed. 17th Sept Hamburg LOFAR Workshop

Geraint Harker. Kapteyn Astronomical Institute, Groningen. Wed. 17th Sept Hamburg LOFAR Workshop Geraint Harker Kapteyn Astronomical Institute, Groningen Wed. 17th Sept. 2008 Hamburg LOFAR Workshop 1 Extract a cosmological signal from a datacube, the three axes of which are x and y positions, and

More information

German LOFAR a new era in radio astronomy

German LOFAR a new era in radio astronomy German LOFAR a new era in radio astronomy Marcus Brüggen International University Bremen Rainer Beck (MPIfR) Heino Falcke (ASTRON) Anton Zensus (MPIfR) Köln, 28. Sep 2005 Outline Why LOFAR? What is happening

More information

Seeing Through the Trough: Detecting Lyman Alpha from Early Generations of Galaxies

Seeing Through the Trough: Detecting Lyman Alpha from Early Generations of Galaxies Seeing Through the Trough: Detecting Lyman Alpha from Early Generations of Galaxies Mark Dijkstra (ITC) collaborators: Stuart Wyithe, Avi Loeb, Adam Lidz, Zoltan Haiman Schematic History of the Universe

More information

Keck. The First Billion Years. Study start date: 16 August 2010 Study end date: 14 October 2011 Final report submission date: 1 April 2012 TEAM LEADS

Keck. The First Billion Years. Study start date: 16 August 2010 Study end date: 14 October 2011 Final report submission date: 1 April 2012 TEAM LEADS Keck I N S T I TUTE F O R S PAC E S TUD I E S The First Billion Years REPORT OF A STUDY PROGRAM Study start date: 16 August 2010 Study end date: 14 October 2011 Final report submission date: 1 April 2012

More information

THE PRIMORDIAL FIREBALL. Joe Silk (IAP, CEA, JHU)

THE PRIMORDIAL FIREBALL. Joe Silk (IAP, CEA, JHU) THE PRIMORDIAL FIREBALL Joe Silk (IAP, CEA, JHU) CONTENTS OF THE UNIVERSE Albert Einstein Georges Lemaitre Alexander Friedmann George Gamow Fred Hoyle 1930 Albert Einstein Edwin Hubble velocity 1929: Hubble

More information

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ =

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ = Cosmology AS7009, 2008 Lecture 10 Outline Structure formation Jeans length, Jeans mass Structure formation with and without dark matter Cold versus hot dark matter Dissipation The matter power spectrum

More information

The Expanding Universe

The Expanding Universe Cosmology Expanding Universe History of the Universe Cosmic Background Radiation The Cosmological Principle Cosmology and General Relativity Dark Matter and Dark Energy Primitive Cosmology If the universe

More information

Investigating the connection between LyC and Lyα emission and other indirect indicators

Investigating the connection between LyC and Lyα emission and other indirect indicators Investigating the connection between LyC and Lyα emission and other indirect indicators F. Marchi, L. Pentericci, L. Guaita, D. Schaerer, M. Castellano, B. Ribeiro and the VUDS collaboration Emission line

More information

Power spectrum exercise

Power spectrum exercise Power spectrum exercise In this exercise, we will consider different power spectra and how they relate to observations. The intention is to give you some intuition so that when you look at a microwave

More information

Quasar Absorption Lines

Quasar Absorption Lines Tracing the Cosmic Web with Diffuse Gas DARK MATTER GAS STARS NEUTRAL HYDROGEN Quasar Absorption Lines use quasars as bright beacons for probing intervening gaseous material can study both galaxies and

More information

arxiv: v1 [astro-ph.co] 10 Sep 2015

arxiv: v1 [astro-ph.co] 10 Sep 2015 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 26 July 2018 (MN LATEX style file v2.2) Optimal core baseline design and observing strategy for probing the astrophysics of reionization with the SKA

More information