Introduction to Python Practical 2

Size: px
Start display at page:

Download "Introduction to Python Practical 2"

Transcription

1 Introduction to Python Practical 2 Daniel Carrera & Brian Thorsbro November Searching through data One of the most important skills in scientific computing is sorting through large datasets and extracting the information that is interesting. On your PC, create a folder for the exercises. Download the Hipparcos catalogue as a text file from the web page for ASTM13 (below). Be careful not to save it as an html file. Check the file with Notepad to make sure that it only contains data. In the following we assume that the data file is called hipparcos.txt. Start python/spyder. Change the Current Directory to your folder. Open the script editor (press New File ) and type in the following script: # Load the functions from the numpy and matplotlib libraries from numpy import * from matplotlib.pyplot import * # Read from the file into the array data(:,:) data = loadtxt( hipparcos.txt ); # Columns. HIP = data[..., 0] # (---) Hipparcos number. l = data[..., 1] # (deg) Star longitude. b = data[..., 2] # (deg) Star latitude. p = data[..., 3] # (mas) Parallax. ul = data[..., 4] # (mas/yr) Proper motion, l direction. ub = data[..., 5] # (mas/yr) Proper motion, b direction. ep = data[..., 6] # (mas) Standard Error in parallax. el = data[..., 7] # (mas/yr) Standard Error in proper motion, l direction. eb = data[..., 8] # (mas/yr) Standard Error in proper motion, b direction. V = data[..., 9] # (mag) Visual magnitude. col = data[...,10] # (mag) Colour index, B-V. mult = data[...,11] # (---) Stellar multiplicity. 1

2 Extract all stars with a parallax less than 1 mas. This is a list of all stars farther than 1000 pc. # # mask is an array that contains ones and zeros. # one == True == Parallax less than 1 mas # mask = (p < 1) subset = p[mask] print(size(subset)) Stars with parallax less than 1 mas are located farther than 1000 pc. Determine the fraction of the Hipparcos catalogue that is farther than 1000 pc. print(size(p[mask]) / size(p)) 1.1 Map of Hipparcos stars In this section we are going to make a map of the local region of the galaxy, in order the study the distribution of red and blue stars. To do this well, we need to think about the best way to project the celestial sphere onto a flat plane so as to minimize distortion. I recommend a little-known projection by Soviet cartographer Vladimir Kavrayskiy ( ). It has a simple formula, and does a very good job at preserving area and shape: x = 3 l 1 ( ) 2 b 2 3 π y = b Where b [ π/2, π/2] and l [ π, π] are latitude and longitude (respectively). For illustration, here is a map of the Earth in this projection (source: wikipedia.org): 2

3 This projection is called Kavrayskiy VII. Enter the following lines to produce a Kavraiskiy VII projection of the red and blue stars in the Hipparcos catalog: # Convert latitude and longitude to radians. b = b * pi/180 l = l * pi/180 # Wrap around after longitude > pi, so it goes from -pi to pi. l[l > pi] = l[l > pi] - 2*pi # Do the Kavrayskiy VII projection. y = b x = l*3/2 * sqrt( 1/3 - (b/pi)**2 ) # Masks for blue and red stars. blue = (col < 0) # Stars with colour index B-V < 0.0 red = (col > 1) # Stars with colour index B-V > 1.0 # Final plot. figure(1) plot( x[red], y[red], r., x[blue], y[blue], b. ) legend( B-V > 1, B-V < 0 ) title( Hipparcos stars - Kavrayskiy VII projection ) ylabel( Galactic latitude ) xlabel( Projection of galactic longitude ) In the end, you should have a plot similar to this: 3

4 Discuss the distribution of red and blue stars with your classmates. Here are some interesting questions that you might want to think about: What are the main differences between the blue and red stars? Where in this picture can you find the galactic centre? (latitude = 0, longitude = 0). What could cause the two prominent over-densities of blue stars? What could cause the deep void of blue stars near the centre of the plot? Why does this void not affect red stars as much? Are there important biases in the sample? Why are there some blue stars at high galactic latitudes? Try to have an interesting discussion with your colleagues before moving to the next session. 2 Generating random data In science it is often necessary or useful to generate simulated data. For example, the first problem set for ASTM21 is to take the 2D galaxy distribution in the Hubble Ultra Deep Field (HUDF) and determine whether it is uniform. For this project it may be helpful to produce a few simulated galaxy distributions that are uniform and try to write a statistic that can distinguish the simulated data from the real Hubble data. Enter the following code in python. Here we use the random.uniform function to produce a star field with a uniform distribution. # Number of stars. nstars = 1000 # X and Y position. u_x = random.uniform(0,1,nstars) u_y = random.uniform(0,1,nstars) # Plot the star field. figure(2) plot(u_x,u_y, b. ) Enter the following code. This version uses normal instead of uniform. The function normal produces random values following the standard normal distribution (zero mean, variance one). Thus, the following version produces a star field more akin to a star cluster. 4

5 # Normal distribution c_x = random.normal(0,1,nstars) c_y = random.normal(0,1,nstars) # Plot the cluster figure(3) plot(c_x,c_y, b. ) Lastly, we would like to combine these two datasets. That would produce a more realistic star field around an open cluster. The star field would have a combination of stars from the cluster and background stars. Start by plotting the two data sets. You will have to modify the data sets slightly to get reasonable results. Here is my solution, but I encourage you to experiment. figure(4) plot(u_x*10-5,u_y*10-5, r.,c_x,c_y, b. ) Once you are happy with your plot, join the data sets accordingly: x = concatenate((u_x*10-5, c_x), axis=0) y = concatenate((u_y*10-5, c_y), axis=0) You have now produced a simulated (x,y) dataset that is similar to what you might observe on a CCD image of a star cluster. 3 Sample application We want to pick a star at random. Because the data was randomly generated, we can pick star 1. Plot the star field in blue and put a red + on star 1: x1 = x[0] y1 = y[0] figure(5) plot(x,y, b.,x1,y1, r+ ) First, find all the neighbours of star 1. The definition of neighbour is a bit arbitrary. In the following example I define it as the set of stars within distance 1 of star 1. But you should experiment with different distance values: 5

6 # Distance that defines a neighbour d = 1 # Find the distance to every other star. r = sqrt( (x1 - x)**2 + (y1 - y)**2 ) # Select those that have r < d. nbhr_x = x[ r < d ] nbhr_y = y[ r < d ] # Plot the neighbours with a black circle. plot(x,y, b.,x1,y1, r+,nbhr_x,nbhr_y, ko,x1,y1, r+ ) # Count the number of neighbours of star 1. num_neighbours = sum( r < 1 ) print(num_neighbours) We can write a python function to help us find the globular cluster in our artificial star field. First, we can define the local density at the point (xp,yp) as the number of stars within distance d of (xp,yp). Write a function to compute the local density of a star field, the indentation is important as it signifies to python which lines are part of your cunftion. Put the function in your script file, such that it appears before you need to use it the first time: # function: find density around xp,xy given stars in starsx,starsy # returns the density def density( starsx, starsy, xp, yp ): d = 1 r = sqrt( (xp - starsx)**2 + (yp - starsy)**2 ) return sum( r < d ) Confirm that this function is correct by confirming that it gives the same number of neighbours that you obtained earlier for star 1: print(density(x,y,x1,y1)) Now plot the local density along the X axis. rho = zeros(21) # allocate memory yp = 0 for i in range(0,21): # element 0 is included, but 21 is not included! xp = i - 10 rho[i] = density(x,y,xp,yp) figure(6) plot(arange(-10,11,1),rho) 6

7 The plot is probably not very smooth. Can you improve the for loop to produce a better plot? Based on this plot, how would you define the edge of the cluster? Alternatively, we could use the density function to determine which stars belong to the star cluster. A simple implementation would look like this: cluster_x = [] cluster_y = [] rho_min = 50 for i in range(0,size(x)): if density(x,y,x[i],y[i]) > rho_min: cluster_x = insert(cluster_x,size(cluster_x),x[i],axis=0) cluster_y = insert(cluster_y,size(cluster_y),y[i],axis=0) figure(7) plot(x,y, b.,cluster_x,cluster_y, r+ ) Experiment with different values of rho min and d. Choose a good set of parameters to find the star cluster. Compare answers with your class mates. Ideally you would like to find a routine that reliably finds the cluster for all the generated data sets. Could the routine be improved if it was based on the mean density of the star field? Try to implement a cluster-finding routine that uses the mean star density rather than a hard-coded value. 4 Code profiling Solving linear systems (Ax = b) is one of the most common and most expensive operations in scientific computing. For example, this operation is used for linear least squares optimization. In the following code example, we use the python library timeit to profile the cost of this operation: import timeit t = zeros(500) for n in range(1,501): A = random.uniform(0,1,(n,n)) b = random.uniform(0,1,n) tic = timeit.default_timer() for i in range(0,5): linalg.lstsq(a,b) toc = timeit.default_timer() t[n-1] = (toc-tic) / 5 # n starts on 1 but first index is 0 figure(8) plot(t) 7

8 There is a risk that some times random.uniform() will produce a matrix that just happens to be easy to invert. Can you suggest a way to improve the above for-loop to minimize this risk? 8

Introduction to MATLAB Practical 2

Introduction to MATLAB Practical 2 Introduction to MATLAB Practical 2 Daniel Carrera November 2016 1 Searching through data One of the most important skills in scientific computing is sorting through large datasets and extracting the information

More information

Satellite project, AST 1100

Satellite project, AST 1100 Satellite project, AST 1100 Introduction and useful information 0.1 Project overview In this project you are going to send a satellite from your home planet, in your own personal star system, to visit

More information

Open Cluster Research Project

Open Cluster Research Project Open Cluster Research Project I. Introduction The observational data indicate that all stars form in clusters. In a cloud of hydrogen gas, laced with helium and a trace of other elements, something triggers

More information

AstroBITS: Open Cluster Project

AstroBITS: Open Cluster Project AstroBITS: Open Cluster Project I. Introduction The observational data that astronomers have gathered over many years indicate that all stars form in clusters. In a cloud of hydrogen gas, laced with helium

More information

Your work from these three exercises will be due Thursday, March 2 at class time.

Your work from these three exercises will be due Thursday, March 2 at class time. GEO231_week5_2012 GEO231, February 23, 2012 Today s class will consist of three separate parts: 1) Introduction to working with a compass 2) Continued work with spreadsheets 3) Introduction to surfer software

More information

PROBLEM SET #1. Galactic Structure 37 pts total. due Tuesday, 2/19/2019

PROBLEM SET #1. Galactic Structure 37 pts total. due Tuesday, 2/19/2019 PROBLEM SET #1 Galactic Structure 37 pts total due Tuesday, 2/19/2019 1. Stellar cluster problem [26 pts] The following refers to a star cluster observed on Aug 15, 2010 at about 4am UT. The cluster is

More information

Creative Data Mining

Creative Data Mining Creative Data Mining Using ML algorithms in python Artem Chirkin Dr. Daniel Zünd Danielle Griego Lecture 7 0.04.207 /7 What we will cover today Outline Getting started Explore dataset content Inspect visually

More information

New Mexico Tech Hyd 510

New Mexico Tech Hyd 510 Vectors vector - has magnitude and direction (e.g. velocity, specific discharge, hydraulic gradient) scalar - has magnitude only (e.g. porosity, specific yield, storage coefficient) unit vector - a unit

More information

Source localization in an ocean waveguide using supervised machine learning

Source localization in an ocean waveguide using supervised machine learning Source localization in an ocean waveguide using supervised machine learning Haiqiang Niu, Emma Reeves, and Peter Gerstoft Scripps Institution of Oceanography, UC San Diego Part I Localization on Noise09

More information

Lab 2 Astronomical Coordinates, Time, Focal Length, Messier List and Open Clusters

Lab 2 Astronomical Coordinates, Time, Focal Length, Messier List and Open Clusters Lab 2 Astronomical Coordinates, Time, Focal Length, Messier List and Open Clusters Name: Partner(s): Boxes contain questions that you are expected to answer (in the box). You will also be asked to put

More information

Satellite project, AST 1100

Satellite project, AST 1100 Satellite project, AST 1100 Part 4: Skynet The goal in this part is to develop software that the satellite can use to orient itself in the star system. That is, that it can find its own position, velocity

More information

A Reconstruction of Regional and Global Temperature for the Past 11,300 Years Marcott et al STUDENT ACTIVITY

A Reconstruction of Regional and Global Temperature for the Past 11,300 Years Marcott et al STUDENT ACTIVITY A Reconstruction of Regional and Global Temperature for the Past 11,300 Years Marcott et al. 2013 STUDENT ACTIVITY How do we reconstruct global average temperatures? Learning Objective: This activity explores

More information

Using the EartH2Observe data portal to analyse drought indicators. Lesson 4: Using Python Notebook to access and process data

Using the EartH2Observe data portal to analyse drought indicators. Lesson 4: Using Python Notebook to access and process data Using the EartH2Observe data portal to analyse drought indicators Lesson 4: Using Python Notebook to access and process data Preface In this fourth lesson you will again work with the Water Cycle Integrator

More information

LAB B. The Local Stellar Population

LAB B. The Local Stellar Population KEELE UNIVERSITY SCHOOL OF PHYSICAL AND GEOGRAPHICAL SCIENCES Year 1 ASTROPHYSICS LAB LAB B. The Local Stellar Population R. D. Jeffries version January 2010 D. E. McLaughlin Throughout this experiment

More information

MATH20411 PDEs and Vector Calculus B

MATH20411 PDEs and Vector Calculus B MATH2411 PDEs and Vector Calculus B Dr Stefan Güttel Acknowledgement The lecture notes and other course materials are based on notes provided by Dr Catherine Powell. SECTION 1: Introctory Material MATH2411

More information

Newton s Cooling Model in Matlab and the Cooling Project!

Newton s Cooling Model in Matlab and the Cooling Project! Newton s Cooling Model in Matlab and the Cooling Project! James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 10, 2014 Outline Your Newton

More information

22 Approximations - the method of least squares (1)

22 Approximations - the method of least squares (1) 22 Approximations - the method of least squares () Suppose that for some y, the equation Ax = y has no solutions It may happpen that this is an important problem and we can t just forget about it If we

More information

Galactic Census: Population of the Galaxy grades 9 12

Galactic Census: Population of the Galaxy grades 9 12 Galactic Census: Population of the Galaxy grades 9 12 Objective Introduce students to a range of celestial objects that populate the galaxy, having them calculate estimates of how common each object is

More information

KEELE UNIVERSITY SCHOOL OF CHEMICAL AND PHYSICAL SCIENCES Year 1 ASTROPHYSICS LAB. WEEK 1. Introduction

KEELE UNIVERSITY SCHOOL OF CHEMICAL AND PHYSICAL SCIENCES Year 1 ASTROPHYSICS LAB. WEEK 1. Introduction KEELE UNIVERSITY SCHOOL OF CHEMICAL AND PHYSICAL SCIENCES Year 1 ASTROPHYSICS LAB WEEK 1. Introduction D. E. McLaughlin January 2011 The purpose of this lab is to introduce you to some astronomical terms

More information

Star Cluster Photometry and the H-R Diagram

Star Cluster Photometry and the H-R Diagram Star Cluster Photometry and the H-R Diagram Contents Introduction Star Cluster Photometry... 1 Downloads... 1 Part 1: Measuring Star Magnitudes... 2 Part 2: Plotting the Stars on a Colour-Magnitude (H-R)

More information

HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data

HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data Jason Kendall, William Paterson University, Department of Physics HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data Background Purpose: HR Diagrams are central to understanding

More information

The Night Sky [Optional - only for those interested] by Michael Kran - Thursday, 2 October 2008, 03:49 PM

The Night Sky [Optional - only for those interested] by Michael Kran - Thursday, 2 October 2008, 03:49 PM The Night Sky [Optional - only for those interested] by Michael Kran - Thursday, 2 October 2008, 03:49 PM A question sometimes arises: "What's up in the sky at a particular moment?" There are several ways

More information

Mitaka and Milky Way texture map

Mitaka and Milky Way texture map Mitaka and Milky Way texture map Tsunehiko Kato (4D2U Project, NAOJ) Four- Dimensional Digital Universe Project National Astronomical Observatory of Japan March 2nd, 2017 Data to Dome Workshop at Mitaka

More information

Shape Measurement: An introduction to KSB

Shape Measurement: An introduction to KSB Shape Measurement: An introduction to KSB Catherine Heymans Institute for Astronomy, University of Edinburgh, UK DUEL Weak Lensing School September 2009 at the end of the week you ll be able to... Use

More information

EQUATION OF A CIRCLE (CENTRE A, B)

EQUATION OF A CIRCLE (CENTRE A, B) EQUATION OF A CIRCLE (CENTRE A, B) A circle can have different centres as well as different radii. Let s now consider a more general equation for a circle with centre (a, b) and radius r Exercise 1 Consider

More information

Department of Chemical Engineering University of California, Santa Barbara Spring Exercise 2. Due: Thursday, 4/19/09

Department of Chemical Engineering University of California, Santa Barbara Spring Exercise 2. Due: Thursday, 4/19/09 Department of Chemical Engineering ChE 210D University of California, Santa Barbara Spring 2012 Exercise 2 Due: Thursday, 4/19/09 Objective: To learn how to compile Fortran libraries for Python, and to

More information

Okay now go back to your pyraf window

Okay now go back to your pyraf window PHYS 391 Astronomical Image Data: Measuring the Distance and Age of a Stellar Cluster Goals This lab is designed to demonstrate basic astronomy data analysis and how extracting stellar population information

More information

The Hertzsprung-Russell Diagram

The Hertzsprung-Russell Diagram Introduction + Aims Installing the Software Theory of Hertzsprung-Russell Diagrams Method: Part 1 - Distance to the Star Cluster Part 2 - Age of the Star Cluster Part 3 - Comparison of Star Clusters Extension

More information

ASTRO 1050 LAB #9: Parallax and Angular Size-Distance relations

ASTRO 1050 LAB #9: Parallax and Angular Size-Distance relations ASTRO 1050 LAB #9: Parallax and Angular Size-Distance relations ABSTRACT Parallax is the name given to the technique astronomers use to find distances to the nearby stars. You will calibrate their own

More information

Introduction to Computational Neuroscience

Introduction to Computational Neuroscience CSE2330 Introduction to Computational Neuroscience Basic computational tools and concepts Tutorial 1 Duration: two weeks 1.1 About this tutorial The objective of this tutorial is to introduce you to: the

More information

f = Xw + b, We can compute the total square error of the function values above, compared to the observed training set values:

f = Xw + b, We can compute the total square error of the function values above, compared to the observed training set values: Linear regression Much of machine learning is about fitting functions to data. That may not sound like an exciting activity that will give us artificial intelligence. However, representing and fitting

More information

The Curvature of Space and the Expanding Universe

The Curvature of Space and the Expanding Universe Summary The Curvature of Space and the Expanding Universe The idea of curved space and the curvature of our own universe may take some time to fully appreciate. We will begin by looking at some examples

More information

Analyzing the Earth Using Remote Sensing

Analyzing the Earth Using Remote Sensing Analyzing the Earth Using Remote Sensing Instructors: Dr. Brian Vant- Hull: Steinman 185, 212-650- 8514 brianvh@ce.ccny.cuny.edu Ms. Hannah Aizenman: NAC 7/311, 212-650- 6295 haizenman@ccny.cuny.edu Dr.

More information

SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT GALAXIES

SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT GALAXIES PROJECT 7 GALAXIES Objective: The topics covered in the previous lessons target celestial objects located in our neighbourhood, i.e. objects which are within our own Galaxy. However, the Universe extends

More information

Least squares and Eigenvalues

Least squares and Eigenvalues Lab 1 Least squares and Eigenvalues Lab Objective: Use least squares to fit curves to data and use QR decomposition to find eigenvalues. Least Squares A linear system Ax = b is overdetermined if it has

More information

Experiment 1: Linear Regression

Experiment 1: Linear Regression Experiment 1: Linear Regression August 27, 2018 1 Description This first exercise will give you practice with linear regression. These exercises have been extensively tested with Matlab, but they should

More information

Photometry of Messier 34

Photometry of Messier 34 Photometry of Messier 34 J. Kielkopf November 12, 2012 1 Messier 34 The open cluster Messier 34 (M34) is in the solar neighborhood, lying roughly in the plane of the Milky Way galaxy in the direction of

More information

Lab 2: Photon Counting with a Photomultiplier Tube

Lab 2: Photon Counting with a Photomultiplier Tube Lab 2: Photon Counting with a Photomultiplier Tube 1 Introduction 1.1 Goals In this lab, you will investigate properties of light using a photomultiplier tube (PMT). You will assess the quantitative measurements

More information

ArcGIS for Applied Economists Session 2

ArcGIS for Applied Economists Session 2 ArcGIS for Applied Economists Session 2 Mark Westcott LMU Munich June 15, 2015 1 / 31 Topics for this session: Geographic Coordinate Systems Projections Projected Coordinate Systems Geocoding 2 / 31 Some

More information

Lecture 29. Our Galaxy: "Milky Way"

Lecture 29. Our Galaxy: Milky Way Lecture 29 The Milky Way Galaxy Disk, Bulge, Halo Rotation Curve Galactic Center Apr 3, 2006 Astro 100 Lecture 29 1 Our Galaxy: "Milky Way" Milky, diffuse band of light around sky known to ancients. Galileo

More information

The Rain in Spain - Tableau Public Workbook

The Rain in Spain - Tableau Public Workbook The Rain in Spain - Tableau Public Workbook This guide will take you through the steps required to visualize how the rain falls in Spain with Tableau public. (All pics from Mac version of Tableau) Workbook

More information

This lab exercise will try to answer these questions using spatial statistics in a geographic information system (GIS) context.

This lab exercise will try to answer these questions using spatial statistics in a geographic information system (GIS) context. by Introduction Problem Do the patterns of forest fires change over time? Do forest fires occur in clusters, and do the clusters change over time? Is this information useful in fighting forest fires? This

More information

Astronomy 102 Lab: Stellar Parallax and Proper Motion

Astronomy 102 Lab: Stellar Parallax and Proper Motion Name: Astronomy 102 Lab: Stellar Parallax and Proper Motion If you own a laptop, please bring it to class. You will use Stellarium again. The Stellarium shortcuts you used in the first lab are on the inside

More information

Open Cluster Photometry: Part II

Open Cluster Photometry: Part II Project 4 Open Cluster Photometry: Part II Observational Astronomy ASTR 310 Fall 2005 1 Introduction The objective of this and the previous project is to learn how to produce color-magnitude diagrams of

More information

THE PLEIADES OPEN CLUSTER

THE PLEIADES OPEN CLUSTER THE PLEIADES OPEN CLUSTER G. Iafrate (a), M. Ramella (a) and P. Padovani (b) (a) INAF - Astronomical Observatory of Trieste (b) ESO - European Southern Observatory 1 Introduction Open star clusters are

More information

MATH0328: Numerical Linear Algebra Homework 3 SOLUTIONS

MATH0328: Numerical Linear Algebra Homework 3 SOLUTIONS MATH038: Numerical Linear Algebra Homework 3 SOLUTIONS Due Wednesday, March 8 Instructions Complete the following problems. Show all work. Only use Matlab on problems that are marked with (MATLAB). Include

More information

Assignment 2: Exploring the CESM model output Due: Tuesday February Question 1: Comparing the CESM control run to NCEP reanalysis data

Assignment 2: Exploring the CESM model output Due: Tuesday February Question 1: Comparing the CESM control run to NCEP reanalysis data ENV 480: Climate Laboratory, Spring 2014 Assignment 2: Exploring the CESM model output Due: Tuesday February 18 2014 Question 1: Comparing the CESM control run to NCEP reanalysis data The previous exercise

More information

Exercise 1.0 THE CELESTIAL EQUATORIAL COORDINATE SYSTEM

Exercise 1.0 THE CELESTIAL EQUATORIAL COORDINATE SYSTEM Exercise 1.0 THE CELESTIAL EQUATORIAL COORDINATE SYSTEM Equipment needed: A celestial globe showing positions of bright stars and Messier Objects. I. Introduction There are several different ways of representing

More information

MontePython Exercises IFT School on Cosmology Tools

MontePython Exercises IFT School on Cosmology Tools MontePython Exercises IFT School on Cosmology Tools Miguel Zumalacarregui March 16, 2017 The exercises have been ranked by level of difficulty (boring = v, interesting = challenging = and whether they

More information

Tutorial for reading and manipulating catalogs in Python 1

Tutorial for reading and manipulating catalogs in Python 1 Tutorial for reading and manipulating catalogs in Python 1 First, download the data The catalogs that you will need for this exercise can be downloaded here: https://www.dropbox.com/sh/le0d8971tmufcqx/aaaxivdo2p_pg63orhkdudr7a?dl=0

More information

Midterm Observing Project: RR Lyrae, Rapidly Pulsating Stars

Midterm Observing Project: RR Lyrae, Rapidly Pulsating Stars AY 145: Topics in Astrophysics Spring, 2005 Midterm Observing Project: RR Lyrae, Rapidly Pulsating Stars Observations: March 21-24, 2005 Lab Report Due: Friday April 15, 2005 Purpose: In place of a midterm

More information

Photometry of Supernovae with Makali i

Photometry of Supernovae with Makali i Photometry of Supernovae with Makali i How to perform photometry specifically on supernovae targets using the free image processing software, Makali i This worksheet describes how to use photometry to

More information

Planet Hunting with Python

Planet Hunting with Python Planet Hunting with Python Richard P. Nelson & Gavin Coleman School of Physics & Astronomy, Queen Mary University of London Abstract NASA s Kepler spacecraft was launched in 2009 and spent approximately

More information

Where on Earth are We? Projections and Coordinate Reference Systems

Where on Earth are We? Projections and Coordinate Reference Systems Where on Earth are We? Projections and Coordinate Reference Systems Nick Eubank February 11, 2018 If I told you that there was a treasure chest buried at the coordinates p2, 5q, your first response might

More information

HIRES 2017 Syllabus. Instructors:

HIRES 2017 Syllabus. Instructors: HIRES 2017 Syllabus Instructors: Dr. Brian Vant-Hull: Steinman 185, 212-650-8514, brianvh@ce.ccny.cuny.edu Ms. Hannah Aizenman: NAC 7/311, 212-650-6295, haizenman@ccny.cuny.edu Dr. Tarendra Lakhankar:

More information

CE 365K Exercise 1: GIS Basemap for Design Project Spring 2014 Hydraulic Engineering Design

CE 365K Exercise 1: GIS Basemap for Design Project Spring 2014 Hydraulic Engineering Design CE 365K Exercise 1: GIS Basemap for Design Project Spring 2014 Hydraulic Engineering Design The purpose of this exercise is for you to construct a basemap in ArcGIS for your design project. You may execute

More information

MEASURING DISTANCE WITH CEPHEID VARIABLES

MEASURING DISTANCE WITH CEPHEID VARIABLES Name Date Partner(s) Grade / MEASURING DISTANCE WITH CEPHEID VARIABLES Written by T. Jaeger INTRODUCTION Cepheid stars (named after the class prototype star, DELTA CEPHEI) are of great interest because

More information

ASTRONOMY 460: PROJECT INTRO - GALACTIC ROTATION CURVE

ASTRONOMY 460: PROJECT INTRO - GALACTIC ROTATION CURVE ASTRONOMY 460: PROJECT INTRO - GALACTIC ROTATION CURVE Snežana Stanimirović, October 6, 2014 1. Introduction This project has two goals: we want to measure the Milky Way (or Galactic) rotation curve by

More information

IN REPORT: Plate Scale and FOV of CCD for Each Telescope using Albireo Stars

IN REPORT: Plate Scale and FOV of CCD for Each Telescope using Albireo Stars USE ASTROIMAGEJ NOT AIP4WIN To download ALL the public data from Canvas, go to Files, then click the 3 dots next to the Public Data Folder and click Download. It will download all the files at once. 6.1

More information

DIMENSION REDUCTION AND CLUSTER ANALYSIS

DIMENSION REDUCTION AND CLUSTER ANALYSIS DIMENSION REDUCTION AND CLUSTER ANALYSIS EECS 833, 6 March 2006 Geoff Bohling Assistant Scientist Kansas Geological Survey geoff@kgs.ku.edu 864-2093 Overheads and resources available at http://people.ku.edu/~gbohling/eecs833

More information

Astrometry in Gaia DR1

Astrometry in Gaia DR1 Astrometry in Gaia DR1 Lennart Lindegren on behalf of the AGIS team and the rest of DPAC Gaia DR1 Workshop, ESAC 2016 November 3 1 Outline of talk The standard astrometric model kinematic and astrometric

More information

PARALLAX AND PROPER MOTION

PARALLAX AND PROPER MOTION PARALLAX AND PROPER MOTION What will you learn in this Lab? We will be introducing you to the idea of parallax and how it can be used to measure the distance to objects not only here on Earth but also

More information

Spectral Analysis of High Resolution X-ray Binary Data

Spectral Analysis of High Resolution X-ray Binary Data Spectral Analysis of High Resolution X-ray Binary Data Michael Nowak, mnowak@space.mit.edu X-ray Astronomy School; Aug. 1-5, 2011 Introduction This exercise takes a look at X-ray binary observations using

More information

Large Scale Structure of the Universe Lab

Large Scale Structure of the Universe Lab Large Scale Structure of the Universe Lab Introduction: Since the mid-1980 s astronomers have gathered data allowing, for the first time, a view of the structure of the Universe in three-dimensions. You

More information

Prelab 7: Sunspots and Solar Rotation

Prelab 7: Sunspots and Solar Rotation Name: Section: Date: Prelab 7: Sunspots and Solar Rotation The purpose of this lab is to determine the nature and rate of the sun s rotation by observing the movement of sunspots across the field of view

More information

Assignment #12 The Milky Way

Assignment #12 The Milky Way Name Date Class Assignment #12 The Milky Way For thousands of years people assumed that the stars they saw at night were the entire universe. Even after telescopes had been invented, the concept of a galaxy

More information

CS1110 Lab 3 (Feb 10-11, 2015)

CS1110 Lab 3 (Feb 10-11, 2015) CS1110 Lab 3 (Feb 10-11, 2015) First Name: Last Name: NetID: The lab assignments are very important and you must have a CS 1110 course consultant tell CMS that you did the work. (Correctness does not matter.)

More information

Math 515 Fall, 2008 Homework 2, due Friday, September 26.

Math 515 Fall, 2008 Homework 2, due Friday, September 26. Math 515 Fall, 2008 Homework 2, due Friday, September 26 In this assignment you will write efficient MATLAB codes to solve least squares problems involving block structured matrices known as Kronecker

More information

ENV101 EARTH SYSTEMS

ENV101 EARTH SYSTEMS ENV101 EARTH SYSTEMS Practical Exercise 2 Introduction to ArcMap and Map Projections 1. OVERVIEW This practical is designed to familiarise students with the use of ArcMap for visualising spatial data and

More information

Gaia Data Release 1: Datamodel description

Gaia Data Release 1: Datamodel description Gaia Data Release 1: Datamodel description Documentation release D.0 European Space Agency and GaiaData Processing and Analysis Consortium September 13, 2016 Contents 1 Main tables 3 1.1 gaia source...............................

More information

FleXScan User Guide. for version 3.1. Kunihiko Takahashi Tetsuji Yokoyama Toshiro Tango. National Institute of Public Health

FleXScan User Guide. for version 3.1. Kunihiko Takahashi Tetsuji Yokoyama Toshiro Tango. National Institute of Public Health FleXScan User Guide for version 3.1 Kunihiko Takahashi Tetsuji Yokoyama Toshiro Tango National Institute of Public Health October 2010 http://www.niph.go.jp/soshiki/gijutsu/index_e.html User Guide version

More information

The Earth and the Sky

The Earth and the Sky The Earth and the Sky In this class, we want to understand why the objects in the sky as seen from the Earth - appear as they do. Even though we haven t yet discussed the details, I am assuming that there

More information

The IRS Flats. Spitzer Science Center

The IRS Flats. Spitzer Science Center Spitzer Science Center Table of Contents The IRS Flats 1 Chapter 1. The Purpose of this Document... 3 Chapter 2.... 4 2.1 Make a finely-spaced map of a star....4 2.2 Simulate an extended source...6 2.3

More information

Interacting Galaxies

Interacting Galaxies Interacting Galaxies Contents Introduction... 1 Downloads... 1 Selecting Interacting Galaxies to Observe... 2 Measuring the sizes of the Galaxies... 5 Making a Colour Image in IRIS... 8 External Resources...

More information

Best Pair II User Guide (V1.2)

Best Pair II User Guide (V1.2) Best Pair II User Guide (V1.2) Paul Rodman (paul@ilanga.com) and Jim Burrows (burrjaw@earthlink.net) Introduction Best Pair II is a port of Jim Burrows' BestPair DOS program for Macintosh and Windows computers.

More information

Life Cycle of Stars. Photometry of star clusters with SalsaJ. Authors: Daniel Duggan & Sarah Roberts

Life Cycle of Stars. Photometry of star clusters with SalsaJ. Authors: Daniel Duggan & Sarah Roberts Photometry of star clusters with SalsaJ Authors: Daniel Duggan & Sarah Roberts Photometry of star clusters with SalsaJ Introduction Photometry is the measurement of the intensity or brightness of an astronomical

More information

CONFIRMATION OF A SUPERNOVA IN THE GALAXY NGC6946

CONFIRMATION OF A SUPERNOVA IN THE GALAXY NGC6946 CONFIRMATION OF A SUPERNOVA IN THE GALAXY NGC6946 G. Iafrate and M. Ramella INAF - Astronomical Observatory of Trieste 1 Introduction Suddenly a star runs out its nuclear fuel. Its life as a normal star

More information

Electro Magnetic Field Dr. Harishankar Ramachandran Department of Electrical Engineering Indian Institute of Technology Madras

Electro Magnetic Field Dr. Harishankar Ramachandran Department of Electrical Engineering Indian Institute of Technology Madras Electro Magnetic Field Dr. Harishankar Ramachandran Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 7 Gauss s Law Good morning. Today, I want to discuss two or three

More information

Mimir NIR Spectroscopy Data Processing Cookbook V2.0 DPC

Mimir NIR Spectroscopy Data Processing Cookbook V2.0 DPC Mimir NIR Spectroscopy Data Processing Cookbook V2.0 DPC - 20111130 1. Fetch and install the software packages needed a. Get the MSP_WCT, MSP_CCS, MSP_SXC packages from the Mimir/Software web site: http://people.bu.edu/clemens/mimir/software.html

More information

0. Introduction 1 0. INTRODUCTION

0. Introduction 1 0. INTRODUCTION 0. Introduction 1 0. INTRODUCTION In a very rough sketch we explain what algebraic geometry is about and what it can be used for. We stress the many correlations with other fields of research, such as

More information

Prosurv LLC Presents

Prosurv LLC Presents Prosurv LLC Presents An Enterprise-Level Geo-Spatial Data Visualizer Part IV Upload Data Upload Data Click the Upload Data menu item to access the uploading data page. Step #1: Select a Project All Projects

More information

9.6. Other Components of the Universe. Star Clusters. Types of Galaxies

9.6. Other Components of the Universe. Star Clusters. Types of Galaxies Other Components of the Universe 9.6 The most common type of celestial object astronomers see in space is a star. Most stars appear to be gravitationally bound together into groups, and some groups are

More information

Page # Astronomical Distances. Lecture 2. Astronomical Distances. Cosmic Distance Ladder. Distance Methods. Size of Earth

Page # Astronomical Distances. Lecture 2. Astronomical Distances. Cosmic Distance Ladder. Distance Methods. Size of Earth Size of Astronomical istances ecture 2 Astronomical istances istance to the Moon (1 sec) istance to the Sun (8 min) istance to other stars (years) istance to centre of our Galaxy ( 30,000 yr to centre)

More information

Conjugate-Gradient. Learn about the Conjugate-Gradient Algorithm and its Uses. Descent Algorithms and the Conjugate-Gradient Method. Qx = b.

Conjugate-Gradient. Learn about the Conjugate-Gradient Algorithm and its Uses. Descent Algorithms and the Conjugate-Gradient Method. Qx = b. Lab 1 Conjugate-Gradient Lab Objective: Learn about the Conjugate-Gradient Algorithm and its Uses Descent Algorithms and the Conjugate-Gradient Method There are many possibilities for solving a linear

More information

Sep 09, Overview of the Milky Way Structure of the Milky Way Rotation in the plane Stellar populations

Sep 09, Overview of the Milky Way Structure of the Milky Way Rotation in the plane Stellar populations Sep 09, 2015 Overview of the Milky Way Structure of the Milky Way Rotation in the plane Stellar populations PE#4: (pick up a copy; 1 page) Kinematics of stars in the Milky Way disk Matching datasets in

More information

Geographers Perspectives on the World

Geographers Perspectives on the World What is Geography? Geography is not just about city and country names Geography is not just about population and growth Geography is not just about rivers and mountains Geography is a broad field that

More information

CESAR Science Case. Jupiter Mass. Calculating a planet s mass from the motion of its moons. Teacher

CESAR Science Case. Jupiter Mass. Calculating a planet s mass from the motion of its moons. Teacher Jupiter Mass Calculating a planet s mass from the motion of its moons Teacher 2 Table of Contents Fast Facts... 4 Summary of activities... 5 Background... 7 Kepler s Laws... 8 Activity description... 9

More information

Ay 1 Lecture 2. Starting the Exploration

Ay 1 Lecture 2. Starting the Exploration Ay 1 Lecture 2 Starting the Exploration 2.1 Distances and Scales Some Commonly Used Units Distance: Astronomical unit: the distance from the Earth to the Sun, 1 au = 1.496 10 13 cm ~ 1.5 10 13 cm Light

More information

General Analytical. Telescope Pointing Model. Written by. Marc W. Buie

General Analytical. Telescope Pointing Model. Written by. Marc W. Buie General Analytical Telescope Pointing Model Written by Marc W. Buie Version dated February 16, 2003 Introduction Accurate pointing or positioning of a telescope is a common goal of any telescopic system

More information

LAB 6 SUPPLEMENT. G141 Earthquakes & Volcanoes

LAB 6 SUPPLEMENT. G141 Earthquakes & Volcanoes G141 Earthquakes & Volcanoes Name LAB 6 SUPPLEMENT Using Earthquake Arrival Times to Locate Earthquakes In last week's lab, you used arrival times of P- and S-waves to locate earthquakes from a local seismograph

More information

Yes, the Library will be accessible via the new PULSE and the existing desktop version of PULSE.

Yes, the Library will be accessible via the new PULSE and the existing desktop version of PULSE. F R E Q U E N T L Y A S K E D Q U E S T I O N S THE LIBRARY GENERAL W H A T I S T H E L I B R A R Y? The Library is the new, shorter, simpler name for the Business Development (Biz Dev) Library. It s your

More information

EEE161 Applied Electromagnetics Laboratory 1

EEE161 Applied Electromagnetics Laboratory 1 Dr. Milica Marković Applied Electromagnetics Laboratory page 1 EEE161 Applied Electromagnetics Laboratory 1 Instructor: Dr. Milica Marković Office: Riverside Hall 3028 Email: milica@csus.edu Web:http://gaia.ecs.csus.edu/

More information

Hubble's Law and the Age of the Universe

Hubble's Law and the Age of the Universe Hubble's Law and the Age of the Universe Procedure: Name: 1. Login into the network using your user ID and your password. 2. Double click on the Astronomy shortcuts folder on the desktop. 3. Double click

More information

Assignment #0 Using Stellarium

Assignment #0 Using Stellarium Name: Class: Date: Assignment #0 Using Stellarium The purpose of this exercise is to familiarize yourself with the Stellarium program and its many capabilities and features. Stellarium is a visually beautiful

More information

Global Atmospheric Circulation Patterns Analyzing TRMM data Background Objectives: Overview of Tasks must read Turn in Step 1.

Global Atmospheric Circulation Patterns Analyzing TRMM data Background Objectives: Overview of Tasks must read Turn in Step 1. Global Atmospheric Circulation Patterns Analyzing TRMM data Eugenio Arima arima@hws.edu Hobart and William Smith Colleges Department of Environmental Studies Background: Have you ever wondered why rainforests

More information

Data Visualization with GIS, Dr. Chris Badurek Visualization and Computing Teacher s Workshop. Part 1: Getting Started with Tectonic Hot Spot Mapping

Data Visualization with GIS, Dr. Chris Badurek Visualization and Computing Teacher s Workshop. Part 1: Getting Started with Tectonic Hot Spot Mapping Data Visualization with GIS, Dr. Chris Badurek Visualization and Computing Teacher s Workshop Part 1: Getting Started with Tectonic Hot Spot Mapping Lesson Overview This lesson is designed to help students

More information

MASS DETERMINATIONS OF POPULATION II BINARY STARS

MASS DETERMINATIONS OF POPULATION II BINARY STARS MASS DETERMINATIONS OF POPULATION II BINARY STARS Kathryn E. Williamson Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602-2451 James N. Heasley Institute for Astronomy, University

More information

TOPCAT basics. Modern Astrophysics Techniques. Contact: Mladen Novak,

TOPCAT basics. Modern Astrophysics Techniques. Contact: Mladen Novak, TOPCAT basics Modern Astrophysics Techniques Contact: Mladen Novak, mlnovak@phy.hr What is TOPCAT? TOPCAT= Tool for OPeraBons on Catalogues And Tables hep://www.star.bris.ac.uk/~mbt/topcat/ Useful, because

More information

Astrophysics I - HS 2017 H.M. Schmid, Institute for Particle Physics and Astrophysics, ETH Zurich HIT J22.2

Astrophysics I - HS 2017 H.M. Schmid, Institute for Particle Physics and Astrophysics, ETH Zurich HIT J22.2 Astrophysics I - HS 2017 H.M. Schmid, Institute for Particle Physics and Astrophysics, ETH Zurich HIT J22.2 Astrophysics courses, D-Phys 1. Semester Bachelor Einführung in die Astronomie 2V (2 KE) 5. Semester

More information

Lab 5. Parallax Measurements and Determining Distances. 5.1 Overview

Lab 5. Parallax Measurements and Determining Distances. 5.1 Overview Lab 5 Parallax Measurements and Determining Distances 5.1 Overview Exercise five centers on a hands-on activity where students perform their own parallax measurements, measuring angular shifts in nearby

More information