Numerical Simulations of the ISM: What Good are They?

Size: px
Start display at page:

Download "Numerical Simulations of the ISM: What Good are They?"

Transcription

1 Numerical Simulations of the ISM: What Good are They? Alyssa A. Goodman Harvard-Smithsonian Center for Astrophysics Principal Collaborators Héctor Arce, CfA Javier Ballesteros-Paredes, AMNH Sungeun Kim, CfA Paolo Padoan, CfA Erik Rosolowsky, UC Berkeley Enrique Vazquez-Semadeni, UNAM Jonathan Williams, U. Florida David Wilner, CfA

2 Spectroscopy Velocity Information Observed Spectrum Telescope + Spectrometer Intensity "Velocity"

3 Radio Spectral-line Observations of Interstellar Clouds Spectral Line Observations

4 The Superstore: Learning More from Too Much Data Product (S/N)*N pixels *N channels N channels S/N N pixels N channels, S/N in 1 hour, N pixels Year

5 A Free Sample Data: Hartmann & Burton 1999; Figure: Ballesteros-Paredes, Vazquez-Semadeni & Goodman 2001

6 The Good Old Days Low Observational Resolution Models of spherical, Smooth, Long-lasting Cloud Structures And more structure came from fragmentation

7 The New Age High(er) Observational Resolution (at many λ s) Highly irregular structures, many of which are transient on long time scales

8 So, are numerical simulations physically illuminating in this New Age? If so, in what way(s)? How might simulations be improved (i.e. to better match observations)?

9 Numerical MHD: The State of the Art 25 Years Ago Two-dimensional CEL code 10 s of hours of CPU time Only possible to run 1 case Grid size ~96 x 188 (~128 2 ) No magnetic fields No gravity Heating & cooling treated R-T and K-H Instabilities traced well Star-formation triggered by a spiraldensity wave shock. (Woodward 1976)

10 Woodward s Conclusions (1976)

11 Y2K MHD β=0.01 β=1 Stone, Gammie & Ostriker 1999 β [ T /10 K] = [ nh 2 /100 cm -3 ][ B /1.4 µg] 2 Driven Turbulence; M K; no gravity Colors: log density Computational volume: Dark blue lines: B-field Red : isosurface of passive contaminant after saturation

12 But, recall what we actually observe Intensity(position, position,velocity) Falgarone et al. 1994

13 Velocity is the Observer s "Fourth" Dimension Spectral Line Observations Loss of 1 dimension Mountain Range No loss of information

14 Statistical Tools Can no longer examine large spectral-line maps or simulations by-eye Need powerful, discriminatory tools to quantify and intercompare data sets Previous attempts are numerous: ACF, Structure Functions, Structure Trees, Clumpfinding, Wavelets, PCA, -variance, Line parameter histograms Most previous attempts discard or compress either position or velocity information

15 1997 Goals of the Spectral Correlation Function Project Develop sharp tool for statistical analysis of ISM, using as much data of a data cube as possible! Compare information from this tool with other statistical tools applied to same cubes Incorporate continuum information! Use best suite of tools to compare real & simulated ISM! Adjust simulations to match, understanding physical inputs! Develop a (better) prescription for finding star-forming gas

16 The Spectral Correlation Function v.1.0 Simply measures similarity of neighboring spectra (Rosolowsky, Goodman, Wilner & Williams 1999) S/N equalized, observational/theoretical comparisons show discriminatory power After explaining v.1.0, I ll show: v.2.0 Measures spectral similarity as a function of spatial scale Applications

17 How SCF v.1.0 Works Measures similarity of neighboring spectra within a specified beam size lag & scaling adjustable signal-to-noise accounted for See: Rosolowsky, Goodman, Wilner & Williams 1999; Ballesteros-Paredes, Vazquez-Semadeni & Goodman 2001

18 Antenna Temperature Map greyscale: T A =0.04 to 0. 3 K Raw SCF Map Application of the Raw SCF greyscale: while=low correlation; black=high Data shown: C 18 O map of Rosette, courtesy M. Heyer et al. Results: Padoan, Rosolowsky & Goodman 2001

19 Antenna Temperature Map greyscale: T A =0.04 to 0. 3 K Normalized SCF Map Application of the SCF greyscale: while=low correlation; black=high Data shown: C 18 O map of Rosette, courtesy M. Heyer et al. Results: Padoan, Rosolowsky & Goodman 2001.

20 Randomized Positions Original Data SCF Distributions Normalized C 18 O Data for Rosette Molecular Cloud

21 Unbound High-Latitude Cloud Self-Gravitating, Star-Forming Region Insights from SCF v.1.0 Rosolowsky, Goodman, Williams & Wilner 1999 Lag & scaling adjustable Only lag adjustable Only scaling adjustable No adjustments Observations Simulations No gravity, No B field No gravity, Yes B field Yes gravity, Yes B field

22 Which of these is not like the others? Change in Mean SCF with Randomization Increasing Similarity of Spectra to Neighbors SNR H I Survey Rosette C 18 O Peaks G,O,S L134A 12 CO(2-1). MacLow et al. Rosette C 18 O Rosette 13 CO Rosette 13 CO Peaks HCl2 C 18 O L134A 13 CO(1-0) Pol. 13 CO(1-0) L CO(2-1) HCl2 C 18 O Peaks HLC Increasing Similarity of ALL Spectra in Map Falgarone et al Mean SCF Value

23 The Spectral Correlation Function v.1.0 Simply measures similarity of neighboring spectra (Rosolowsky, Goodman, Wilner & Williams 1999) S/N equalized, observational/theoretical comparisons show discriminatory power v.2.0 Measures spectral similarity as a function of spatial scale (Padoan, Rosolowsky & Goodman 2001) Noise normalization technique found SCF(lag) even more powerful discriminant Applications Finding the scale-height of face-on galaxies! (Padoan, Kim, Goodman & Stavely-Smith 2001) Understanding behavior of atomic ISM (e.g. Ballesteros-Paredes, Vazquez-Semadeni & Goodman 2001)

24 v.2.0: Scale-Dependence of the SCF Example for Simulated Data Padoan, Rosolowsky & Goodman 2001

25 A Robust Statistic High-resolution data Low-resolution data, area of high-res map Low-resolution data, full map Padoan, Rosolowsky & Goodman 2001

26 The Spectral Correlation Function v.1.0 Simply measures similarity of neighboring spectra (Rosolowsky, Goodman, Wilner & Williams 1999) S/N equalized, observational/theoretical comparisons show discriminatory power v.2.0 Measures spectral similarity as a function of spatial scale (Padoan, Rosolowsky & Goodman 2001) Noise normalization technique found SCF(lag) even more powerful discriminant Applications Finding the scale-height of face-on galaxies! (Padoan, Kim, Goodman & Stavely-Smith 2001) Understanding behavior of atomic ISM (e.g. Ballesteros-Paredes, Vazquez-Semadeni & Goodman 2001)

27 Galactic Scale Heights from the SCF (v.2.0) HI map of the LMC from ATCA & Parkes Multi-Beam, courtesy Stavely-Smith, Kim, et al. Padoan, Kim, Goodman & Stavely-Smith 2001

28 The Behavior of the Atomic ISM Data: Hartmann & Burton 1999; Figure: Ballesteros-Paredes, Vazquez-Semadeni & Goodman 2001

29 Insights into Atomic ISM from SCF (v.1.0) Comparison with simulations of Vazquez-Semadeni & collaborators shows: Thermal Broadening of H I Line Profiles can hide much of the true velocity structure SCF v.1.0 good at picking out shock-like structure in H I maps (also gives low correlation tail) See Ballesteros-Paredes, Vazquez-Semadeni & Goodman 2001.

30 Revealing Shortcomings of a Simulation Thermally Broadened, very high T Velocity histogram, 16 bins Velocity histogram, 64 bins Ballesteros-Paredes, Vazquez-Semadeni & Goodman 2001

31 Insights into Atomic ISM from SCF (v.1.0) From v-histograms, 64 bins

32 Insights into Atomic ISM from SCF (v.1.0) Thermally Broadened, very high T

33 Insights into Atomic ISM from SCF (v.1.0) Thermally Broadened, equivalent of much lower T--best match!

34 A Success of the SCF Sample spectra after velocity scale expanded x6 (to mimic lower temperature, and give more importance to turbulence in determining line shape) Ballesteros-Paredes, Vazquez-Semadeni & Goodman 2001

35 The Spectral Correlation Function v.1.0 Simply measures similarity of neighboring spectra (Rosolowsky, Goodman, Wilner & Williams 1999) S/N equalized, observational/theoretical comparisons show discriminatory power v.2.0 Measures spectral similarity as a function of spatial scale (Padoan, Rosolowsky & Goodman 2001) Noise normalization technique found SCF(lag) even more powerful discriminant Applications Finding the scale-height of face-on galaxies! (Padoan, Kim, Goodman & Stavely-Smith 2001) Understanding behavior of atomic ISM (e.g. Ballesteros-Paredes, Vazquez-Semadeni & Goodman 2001)

36 How about applying the SCF to the ionized ISM? WHAM Results from Haffner, Reynolds & Tufte 1999

37 What good are they anyway?? (In case you re still not convinced:) MHD Simulations illumination of observed emission polarization maps MHD Simulations & the IMF (ask me later)

38 SCUBA Polarimetry of Dense Cores & Globules Polarization drops with submm flux (similar to p decreasing with A V ) Does polarization map give true field structure? Plots and data from Henning, Wolf, Launhart & Waters 2001

39 Simulated Polarized Emission 3-D simulation super-sonic super-alfvénic self-gravitating Model A: Uniform grainalignment efficiency C2 C3 C1 Padoan, Goodman, Draine, Juvela,Nordlund, Rögnvaldsson 2001

40 Simulated Polarized Emission 3-D simulation super-sonic super-alfvénic self-gravitating Model B: Poor Alignment at A V 3 mag C2 A V,0 =3 mag C3 C1 Padoan, Goodman, Draine, Juvela,Nordlund, Rögnvaldsson 2001

41 SCUBA-like Cores Core C1 Core C2 Core C3 Core C1; A V,0 =3 mag Core C2; A V,0 =3 mag Core C3; A V,0 =3 mag Padoan, Goodman, Draine, Juvela,Nordlund, Rögnvaldsson 2001

42 Core C1y 10 8 Core C1y (A V,0 =3 mag) Polarization vs. Intensity I/I max Core C2y I/I max I/I max Core C3y I/I max Core C2y (A V,0 =3 mag) I/I max I/I max Core C3y (A V,0 =3 mag) Padoan, Goodman, Draine, Juvela,Nordlund, Rögnvaldsson 2001

43 The Meaning of a Clump IMF, c What is a clump? +=dense core Typical Stellar IMF dn dm M 2.5±0.3 Salpeter 1955 Miller & Scalo 1979 Structure-Finding Algorithms What does the clump IMF look like? y dn dm M 16. v x CS (2 1) E. Lada 1992 E. Lada et al CLUMPFIND (Williams et al. 1994) Autocorrelations (e.g. Miesch & Bally 1994) Structure Trees (Houlahan & Scalo 1990,92) GAUSSCLUMPS (Stutzki & Güesten 1990) Wavelets (e.g. Langer et al. 1993) Complexity (Wiseman & Adams 1994) IR Star-Counting (C. Lada et al. 1994)

44 Simulating the IMF--in the Gas: Success? Includes ONLY: Simulated clumps massive enough to collapse and form a star Padoan, Nordlund, Rognvaldsson & Goodman 2001; see also Klessen 2001

45 Acheivements & Plans Acheievements SCF most discriminating descriptor of spectralline data cubes SCF used to map scale height in the LMC SCF used to revise/improve MHD simulations Plans Use the SCF to find star-forming gas observationally Try the SCF on the ionized ISM Study galaxy structure with SCF applied to extragalactic CO (BIMA SONG; ALMA) and H I (EVLA; SKA) maps

Where, Exactly, do Stars Form? (and how can SOFIA help with the answer)

Where, Exactly, do Stars Form? (and how can SOFIA help with the answer) Where, Exactly, do Stars Form? (and how can SOFIA help with the answer) Alyssa A. Goodman Harvard University Astronomy Department photo credit: Alves, Lada & Lada On a galactic scale Star Formation=Column

More information

Watching the Interstellar Medium Move. Alyssa A. Goodman Harvard University

Watching the Interstellar Medium Move. Alyssa A. Goodman Harvard University Watching the Interstellar Medium Move Alyssa A. Goodman Harvard University Bart Bok and the Dark Nebulae They are no good, and only a damn fool would be bothered by such a thing. A sensible person does

More information

Theory of star formation

Theory of star formation Theory of star formation Monday 8th 17.15 18.00 Molecular clouds and star formation: Introduction Tuesday 9th 13.15 14.00 Molecular clouds: structure, physics, and chemistry 16.00 16.45 Cloud cores: statistics

More information

PROJECT SUMMARY. clumps

PROJECT SUMMARY. clumps PROJECT SUMMARY This project will offer quantitative new measures of how the material between the stars, known as the Interstellar Medium, or ISM is distributed. Recently, it has become technically feasible

More information

Star Formation Taste Tests. Alyssa A. Goodman Harvard-Smithsonian Center for Astrophysics & Initiative for Innovative Computing at Harvard

Star Formation Taste Tests. Alyssa A. Goodman Harvard-Smithsonian Center for Astrophysics & Initiative for Innovative Computing at Harvard Star Formation Taste Tests Alyssa A. Goodman Harvard-Smithsonian Center for Astrophysics & Initiative for Innovative Computing at Harvard Taste Tests? Taste Tests? We frame this project by analogy. How

More information

Statistical Analyses of Data Cubes

Statistical Analyses of Data Cubes Statistical Analyses of Data Cubes Erik Rosolowsky University of British Columbia, Okanagan Campus FCRAO survey of Taurus 1. Whence datacubes 2. Things that I m not going to talk about 3. Analyses from

More information

Magnetic Fields & Turbulence: Observations. Mark Heyer University of Massachusetts

Magnetic Fields & Turbulence: Observations. Mark Heyer University of Massachusetts Magnetic Fields & Turbulence: Observations Mark Heyer University of Massachusetts Protostellar/Cluster Cores Alves etal 2 Tafalla etal 2006 Decoupled Cores Lombardi etal 2006 Goodman etal 1998 SIZE SIZE

More information

Gravity or Turbulence?

Gravity or Turbulence? Gravity or Turbulence? On the dynamics of Molecular Clouds Javier Ballesteros-Paredes On Sabbatical at Institut für Theoretische Astrophysik, University of Heidelberg Instituto de Radioastronomía y Astrofísica,

More information

Hierarchical Structure of Magnetohydrodynamic Turbulence in Position-Position-Velocity Space

Hierarchical Structure of Magnetohydrodynamic Turbulence in Position-Position-Velocity Space Hierarchical Structure of Magnetohydrodynamic Turbulence in Position-Position-Velocity Space The Harvard community has made this article openly available. Please share how this access benefits you. Your

More information

arxiv:astro-ph/ v2 23 Oct 2001

arxiv:astro-ph/ v2 23 Oct 2001 Kolmogorov Burgers Model for Star Forming Turbulence Stanislav Boldyrev 1 Institute for Theoretical Physics, Santa Barbara, CA 93106 arxiv:astro-ph/0108300v2 23 Oct 2001 ABSTRACT The process of star formation

More information

arxiv: v2 [astro-ph] 26 Aug 2008

arxiv: v2 [astro-ph] 26 Aug 2008 DRAFT VERSION OCTOBER 29, 2018 Preprint typeset using LATEX style emulateapj v. 08/22/09 THE SUPER-ALFVÉNIC MODEL OF MOLECULAR CLOUDS: PREDICTIONS FOR ZEEMAN SPLITTING MEASUREMENTS TUOMAS LUNTTILA 1, PAOLO

More information

Stellar Populations: Resolved vs. unresolved

Stellar Populations: Resolved vs. unresolved Outline Stellar Populations: Resolved vs. unresolved Individual stars can be analyzed Applicable for Milky Way star clusters and the most nearby galaxies Integrated spectroscopy / photometry only The most

More information

Lecture 23 Internal Structure of Molecular Clouds

Lecture 23 Internal Structure of Molecular Clouds Lecture 23 Internal Structure of Molecular Clouds 1. Location of the Molecular Gas 2. The Atomic Hydrogen Content 3. Formation of Clouds 4. Clouds, Clumps and Cores 5. Observing Molecular Cloud Cores References

More information

arxiv:astro-ph/ v1 26 Sep 2003

arxiv:astro-ph/ v1 26 Sep 2003 Star Formation at High Angular Resolution ASP Conference Series, Vol. S-221, 2003 M.G. Burton, R. Jayawardhana & T.L. Bourke The Turbulent Star Formation Model. Outline and Tests arxiv:astro-ph/0309717v1

More information

igure 4 of McMullin et al McMullin et al Testi & Sargent 1998 Figure 1 of Testi & Sargent 1998:

igure 4 of McMullin et al McMullin et al Testi & Sargent 1998 Figure 1 of Testi & Sargent 1998: igure 4 of McMullin et al. 1994. Figure 1 of Testi & Sargent 1998: McMullin et al. 1994 BIMA with (only!) three elements Eight configurationsàcoverage of 2 kλ to 30 kλ Naturally wtd. Beam of 11" x 6" (for

More information

The Magnetic Field of GMCs. Paolo Padoan (ICREA & Institute of Cosmos Sciences - University of Barcelona)

The Magnetic Field of GMCs. Paolo Padoan (ICREA & Institute of Cosmos Sciences - University of Barcelona) The Magnetic Field of GMCs Paolo Padoan (ICREA & Institute of Cosmos Sciences - University of Barcelona) Two different views of the magnetic field in MCs: 1. The old view (Shu et al. 1987) Strong mean

More information

Enrique Vázquez-Semadeni. Instituto de Radioastronomía y Astrofísica, UNAM, México

Enrique Vázquez-Semadeni. Instituto de Radioastronomía y Astrofísica, UNAM, México Enrique Vázquez-Semadeni Instituto de Radioastronomía y Astrofísica, UNAM, México 1 Collaborators: CRyA UNAM: Javier Ballesteros-Paredes Pedro Colín Gilberto Gómez Manuel Zamora-Avilés Abroad: Robi Banerjee

More information

Molecular Cloud Turbulence and Star Formation

Molecular Cloud Turbulence and Star Formation Molecular Cloud Turbulence and Star Formation Javier Ballesteros-Paredes1, Ralf Klessen2, MordecaiMark Mac Low3, Enrique Vazquez-Semadeni1 1UNAM Morelia, Mexico, 2AIP, Potsdam, Germany, 3AMNH New York,

More information

Frédérique Motte and Nicola Schneider (AIM Paris-Saclay, Obs. Bordeaux) Coordinated by Frédérique Motte, Annie Zavagno, and Sylvain Bontemps

Frédérique Motte and Nicola Schneider (AIM Paris-Saclay, Obs. Bordeaux) Coordinated by Frédérique Motte, Annie Zavagno, and Sylvain Bontemps Cloud structure and high-mass star formation in HOBYS, the Herschel imaging survey of OB Young Stellar objects Frédérique Motte and Nicola Schneider (AIM Paris-Saclay, Obs. Bordeaux) http://hobys-herschel.cea.fr

More information

A super-alfvénic model of dark clouds

A super-alfvénic model of dark clouds A super-alfvénic model of dark clouds Paolo Padoan Instituto Nacional de Astrofísica, Óptica y Electrónica, Apartado Postal 216, 72000 Puebla, México Åke Nordlund Astronomical Observatory and Theoretical

More information

THE PERILS OF CLUMPFIND: THE MASS SPECTRUM OF SUB-STRUCTURES IN MOLECULAR CLOUDS

THE PERILS OF CLUMPFIND: THE MASS SPECTRUM OF SUB-STRUCTURES IN MOLECULAR CLOUDS DRAFT VERSION 8.0, MAY/29/2009, JEP Preprint typeset using LATEX style emulateapj v. 03/07/07 THE PERILS OF CLUMPFIND: THE MASS SPECTRUM OF SUB-STRUCTURES IN MOLECULAR CLOUDS JAIME E. PINEDA 1, ERIK W.

More information

ISM Structure: Order from Chaos

ISM Structure: Order from Chaos ISM Structure: Order from Chaos Philip Hopkins with Eliot Quataert, Norm Murray, Lars Hernquist, Dusan Keres, Todd Thompson, Desika Narayanan, Dan Kasen, T. J. Cox, Chris Hayward, Kevin Bundy, & more The

More information

Maria Cunningham, UNSW. CO, CS or other molecules?

Maria Cunningham, UNSW. CO, CS or other molecules? Maria Cunningham, UNSW CO, CS or other molecules? Wide field Surveys at mm wavelengths: pu8ng the whole picture together Follow chemical abundances through the whole ISM. Follow energy transfer through

More information

Early Stages of (Low-Mass) Star Formation: The ALMA Promise

Early Stages of (Low-Mass) Star Formation: The ALMA Promise Early Stages of (Low-Mass) Star Formation: The ALMA Promise Philippe André, CEA/SAp Saclay Outline Introduction: Prestellar cores and the origin of the IMF Identifying proto-brown dwarfs Bate et al. 1995

More information

The Effect of Projection on Derived Mass- Size and Linewidth-Size Relationships

The Effect of Projection on Derived Mass- Size and Linewidth-Size Relationships The Effect of Projection on Derived Mass- Size and Linewidth-Size Relationships The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

More information

Reflections on Modern Work Simulated Zeeman Measurements and Magnetic Equilibrium in Molecular Clouds

Reflections on Modern Work Simulated Zeeman Measurements and Magnetic Equilibrium in Molecular Clouds Reflections on Modern Work Simulated Zeeman Measurements and Magnetic Equilibrium in Molecular Clouds Paolo Padoan University of California, San Diego ICREA - University of Barcelona (Spring 2010) Collaborators:

More information

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2 Next Generation Very Large Array Working Group 2 HI in M74: Walter+ 08 CO in M51: Schinnerer+ 13 Continuum in M82: Marvil & Owen Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of

More information

arxiv: v1 [astro-ph.ga] 5 Feb 2010

arxiv: v1 [astro-ph.ga] 5 Feb 2010 Astronomy & Astrophysics manuscript no. ms c ESO 2010 February 5, 2010 The Density Variance Mach Number Relation in the Taurus Molecular Cloud C. M. Brunt Astrophysics Group, School of Physics, University

More information

Turbulence, kinematics & galaxy structure in star formation in dwarfs. Mordecai-Mark Mac Low Department of Astrophysics

Turbulence, kinematics & galaxy structure in star formation in dwarfs. Mordecai-Mark Mac Low Department of Astrophysics Turbulence, kinematics & galaxy structure in star formation in dwarfs Mordecai-Mark Mac Low Department of Astrophysics Outline Turbulence inhibits star formation, but slowly Interplay between turbulence

More information

Stellar evolution Part I of III Star formation

Stellar evolution Part I of III Star formation Stellar evolution Part I of III Star formation The interstellar medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

Lecture 26 Clouds, Clumps and Cores. Review of Molecular Clouds

Lecture 26 Clouds, Clumps and Cores. Review of Molecular Clouds Lecture 26 Clouds, Clumps and Cores 1. Review of Dense Gas Observations 2. Atomic Hydrogen and GMCs 3. Formation of Molecular Clouds 4. Internal Structure 5. Observing Cores 6. Preliminary Comments on

More information

Enrique Vázquez-Semadeni. Centro de Radioastronomía y Astrofísica, UNAM, México

Enrique Vázquez-Semadeni. Centro de Radioastronomía y Astrofísica, UNAM, México Enrique Vázquez-Semadeni Centro de Radioastronomía y Astrofísica, UNAM, México 1 Collaborators: CRyA UNAM: Abroad: Javier Ballesteros-Paredes Pedro Colín Gilberto Gómez Recent PhDs: Alejandro González

More information

The Physics of the Interstellar Medium

The Physics of the Interstellar Medium The Physics of the Interstellar Medium Ulrike Heiter Contact: 471 5970 ulrike@astro.uu.se www.astro.uu.se Matter between stars Average distance between stars in solar neighbourhood: 1 pc = 3 x 1013 km,

More information

Radio Nebulae around Luminous Blue Variable Stars

Radio Nebulae around Luminous Blue Variable Stars Radio Nebulae around Luminous Blue Variable Stars Claudia Agliozzo 1 G. Umana 2 C. Trigilio 2 C. Buemi 2 P. Leto 2 A. Ingallinera 1 A. Noriega-Crespo 3 J. Hora 4 1 University of Catania, Italy 2 INAF-Astrophysical

More information

Ionization Feedback in Massive Star Formation

Ionization Feedback in Massive Star Formation Ionization Feedback in Massive Star Formation Thomas Peters Institut für Theoretische Astrophysik Zentrum für Astronomie der Universität Heidelberg Ralf Klessen, Robi Banerjee (ITA, Heidelberg) Mordecai-Mark

More information

QUIESCENT AND COHERENT CORES FROM GRAVOTURBULENT FRAGMENTATION

QUIESCENT AND COHERENT CORES FROM GRAVOTURBULENT FRAGMENTATION The Astrophysical Journal, 620:786 794, 2005 February 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. QUIESCENT AND COHERENT CORES FROM GRAVOTURBULENT FRAGMENTATION

More information

Fourier phase analysis in radio-interferometry

Fourier phase analysis in radio-interferometry Fourier phase analysis in radio-interferometry François Levrier Ecole Normale Supérieure de Paris In collaboration with François Viallefond Observatoire de Paris Edith Falgarone Ecole Normale Supérieure

More information

Polarization simulations of cloud cores

Polarization simulations of cloud cores Polarization simulations of cloud cores Veli-Matti Pelkonen 1 Contents 1. Introduction 2. Grain alignment by radiative torques (RATs) 3. Observational evidence for RATs 4. Radiative transfer modelling,

More information

Enrique Vázquez-Semadeni. Centro de Radioastronomía y Astrofísica, UNAM, México

Enrique Vázquez-Semadeni. Centro de Radioastronomía y Astrofísica, UNAM, México Enrique Vázquez-Semadeni Centro de Radioastronomía y Astrofísica, UNAM, México 1 Javier Ballesteros-Paredes Centro de Radioastronomía y Astrofísica, UNAM, México 2 Collaborators: Javier Ballesteros-Paredes

More information

Turbulence in the (Cold) ISM

Turbulence in the (Cold) ISM Turbulence in the (Cold) ISM P. Hily-Blant IPAG April 14th, 2011 Outline 1 Introduction 2 Introduction to turbulence 3 Turbulent Cascade 4 Structures 5 Dissipation 6 Flavors 7 Perspectives failed to catch

More information

Lec 22 Physical Properties of Molecular Clouds

Lec 22 Physical Properties of Molecular Clouds Lec 22 Physical Properties of Molecular Clouds 1. Giant Molecular Clouds 2. Orion s Clouds 3. Correlations of Observed Properties 4. The X-Factor References Origins of Stars & Planetary Systems eds. Lada

More information

Probing the formation mechanism of prestellar cores and the origin of the IMF: First results from Herschel

Probing the formation mechanism of prestellar cores and the origin of the IMF: First results from Herschel Probing the formation mechanism of prestellar cores and the origin of the IMF: First results from Herschel Philippe André, CEA/SAp Saclay Herschel GB survey Ophiuchus 70/250/500 µm composite With: A. Menshchikov,

More information

Star systems like our Milky Way. Galaxies

Star systems like our Milky Way. Galaxies Galaxies Star systems like our Milky Way Galaxies Contain a few thousand to tens of billions of stars,as well as varying amounts of gas and dust Large variety of shapes and sizes Gas and Dust in

More information

! what determines the initial mass function of stars (IMF)? dn /dm

! what determines the initial mass function of stars (IMF)? dn /dm ! what determines the initial mass function of stars (IMF)? dn /dm M ! what determines the initial mass function of stars (IMF)?! What determines the total mass of stars that can form in the cloud? dn

More information

The Jeans mass and the origin of the knee in the IMF

The Jeans mass and the origin of the knee in the IMF Mon. Not. R. Astron. Soc. 368, 1296 1300 (2006) doi:10.1111/j.1365-2966.2006.10214.x The Jeans mass and the origin of the knee in the IMF I. A. Bonnell, 1 C. J. Clarke 2 and M. R. Bate 3 1 School of Physics

More information

Molecular Clouds and Star Formation in the Magellanic Clouds and Milky Way

Molecular Clouds and Star Formation in the Magellanic Clouds and Milky Way Molecular Clouds and Star Formation in the Magellanic Clouds and Milky Way Outline 1. Introduction 2. Surveys of the molecular clouds in the Milky Way and the Magellanic clouds 3. Molecular cloud cores

More information

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)?

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)? How Long do Stars Live (as Main Sequence Stars)? A star on Main Sequence has fusion of H to He in its core. How fast depends on mass of H available and rate of fusion. Mass of H in core depends on mass

More information

RAMPS: The Radio Ammonia Mid-Plane Survey. James Jackson Institute for Astrophysical Research Boston University

RAMPS: The Radio Ammonia Mid-Plane Survey. James Jackson Institute for Astrophysical Research Boston University RAMPS: The Radio Ammonia Mid-Plane Survey James Jackson Institute for Astrophysical Research Boston University High Frequency Workshop, Green Bank, 21 September 2015 Collaborators (partial list) Taylor

More information

The formation of super-stellar clusters

The formation of super-stellar clusters The formation of super-stellar clusters François Boulanger Institut d Astrophysique Spatiale Cynthia Herrera, Edith Falgarone, Pierre Guillard, Nicole Nesvadba, Guillaume Pineau des Forets Outline How

More information

Theory of Star Formation

Theory of Star Formation Theory of Star Formation 1 Theory of Star Formation Christopher F. McKee Departments of Physics and Astronomy, University of California, Berkeley, CA 94720; cmckee@astro.berkeley.edu arxiv:0707.3514v2

More information

!From the filamentary structure of the ISM! to prestellar cores to the IMF:!! Results from the Herschel Gould Belt survey!

!From the filamentary structure of the ISM! to prestellar cores to the IMF:!! Results from the Herschel Gould Belt survey! !From the filamentary structure of the ISM! to prestellar cores to the IMF:!! Results from the Herschel Gould Belt survey! Philippe André CEA Lab. AIM Paris- Saclay PACS! Part of Orion B! 70/250/500 µm!

More information

The dynamics of photon-dominated regions (PDRs)

The dynamics of photon-dominated regions (PDRs) The dynamics of photon-dominated regions (PDRs) V. Ossenkopf, M. Röllig, N. Schneider, B. Mookerjea, Z. Makai, O. Ricken, P. Pilleri, Y. Okada, M. Gerin Page 1 Main question: What happens here? Impact

More information

The Formation of Star Clusters

The Formation of Star Clusters The Formation of Star Clusters Orion Nebula Cluster (JHK) - McCaughrean Jonathan Tan University of Florida & KITP In collaboration with: Brent Buckalew (ERAU), Michael Butler (UF u-grad), Jayce Dowell

More information

From Filaments to Stars: a Theoretical Perspective

From Filaments to Stars: a Theoretical Perspective From Filaments to Stars: a Theoretical Perspective NRAO Filaments. Oct. 10-11, 2014 Ralph E. Pudritz Origins Institute, McMaster U. Collaborators McMaster: Mikhail Klassen, Corey Howard, (Ph.D.s) Helen

More information

Centimeter Wave Star Formation Studies in the Galaxy from Radio Sky Surveys

Centimeter Wave Star Formation Studies in the Galaxy from Radio Sky Surveys Centimeter Wave Star Formation Studies in the Galaxy from Radio Sky Surveys W. J. Welch Radio Astronomy Laboratory, Depts of EECS and Astronomy University of California Berkeley, CA 94720 Tel: (510) 643-6543

More information

Observing Magnetic Field In Molecular Clouds. Kwok Sun Tang Hua-Bai Li The Chinese University of Hong Kong

Observing Magnetic Field In Molecular Clouds. Kwok Sun Tang Hua-Bai Li The Chinese University of Hong Kong Observing Magnetic Field In Molecular Clouds Kwok Sun Tang Hua-Bai Li The Chinese University of Hong Kong B t = v B + η 2 B (Induction Equation) Coupling between gas and B-field Image courtesy: of NASA

More information

Mass loss from stars

Mass loss from stars Mass loss from stars Can significantly affect a star s evolution, since the mass is such a critical parameter (e.g., L ~ M 4 ) Material ejected into interstellar medium (ISM) may be nuclear-processed:

More information

ASTRONOMY AND ASTROPHYSICS The distribution of shock waves in driven supersonic turbulence

ASTRONOMY AND ASTROPHYSICS The distribution of shock waves in driven supersonic turbulence Astron. Astrophys. 362, 333 341 (2000) ASTRONOMY AND ASTROPHYSICS The distribution of shock waves in driven supersonic turbulence M.D. Smith 1, M.-M. Mac Low 2, and F. Heitsch 3 1 Armagh Observatory, College

More information

X-ray observations of neutron stars and black holes in nearby galaxies

X-ray observations of neutron stars and black holes in nearby galaxies X-ray observations of neutron stars and black holes in nearby galaxies Andreas Zezas Harvard-Smithsonian Center for Astrophysics The lives of stars : fighting against gravity Defining parameter : Mass

More information

Frédérique Motte (AIM Paris-Saclay)

Frédérique Motte (AIM Paris-Saclay) Clusters of high-mass protostars: From extreme clouds to minibursts of star formation Frédérique Motte (AIM Paris-Saclay) Special thanks to S. Bontemps, T. Csengeri, P. Didelon, M. Hennemann, T. Hill,

More information

Theory of star formation

Theory of star formation Theory of star formation Monday 8th 17.15 18.00 Molecular clouds and star formation: Introduction Tuesday 9th 13.15 14.00 Molecular clouds: structure, physics, and chemistry 16.00 16.45 Cloud cores: statistics

More information

The Origin of the Initial Mass Function

The Origin of the Initial Mass Function The Origin of the Initial Mass Function Ian A. Bonnell University of St Andrews Richard B. Larson Yale University Hans Zinnecker Astrophysikalisches Institut Potsdam Bonnell et al.: Origin of the Initial

More information

arxiv:astro-ph/ v1 17 Mar 2006

arxiv:astro-ph/ v1 17 Mar 2006 The Origin of the Initial Mass Function Ian A. Bonnell University of St Andrews Richard B. Larson Yale University Hans Zinnecker Astrophysikalisches Institut Potsdam arxiv:astro-ph/0603447v1 17 Mar 2006

More information

The Spectral Correlation Function { A New Tool for Analyzing Spectral Line Maps. Erik W. Rosolowsky

The Spectral Correlation Function { A New Tool for Analyzing Spectral Line Maps. Erik W. Rosolowsky The Spectral Correlation Function { A New Tool for Analyzing Spectral Line Maps Erik W. Rosolowsky July 21, 1998 Contents 1 Historical Background and the State of the Art 1 1.1 The Interstellar Medium

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Lecture11; November 1, 2016 Previously on Astro-1 Introduction to stars Measuring distances Inverse square law: luminosity vs brightness Colors and spectral types, the H-R diagram

More information

arxiv: v1 [astro-ph] 25 May 2007

arxiv: v1 [astro-ph] 25 May 2007 Cold Dark Clouds 1 COLD DARK CLOUDS: The Initial Conditions for Star Formation arxiv:0705.3765v1 [astro-ph] 25 May 2007 Edwin A. Bergin Department of Astronomy, University of Michigan, 500 Church St. Ann

More information

Structure Function Scaling in the Taurus and Perseus Molecular Cloud Complexes.

Structure Function Scaling in the Taurus and Perseus Molecular Cloud Complexes. Structure Function Scaling in the Taurus and Perseus Molecular Cloud Complexes. Paolo Padoan Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 169-506, Pasadena, CA

More information

Stars, Galaxies & the Universe Lecture Outline

Stars, Galaxies & the Universe Lecture Outline Stars, Galaxies & the Universe Lecture Outline A galaxy is a collection of 100 billion stars! Our Milky Way Galaxy (1)Components - HII regions, Dust Nebulae, Atomic Gas (2) Shape & Size (3) Rotation of

More information

Widespread star formation throughout the Galactic center cloud Sgr B2

Widespread star formation throughout the Galactic center cloud Sgr B2 Widespread star formation throughout the Galactic center cloud Sgr B2 and its implications for SF theory Adam Ginsburg Adam Ginsburg, 1, 2 John Bally, 3 Ashley Barnes, 4 Nate Bastian, 4 Cara Battersby,

More information

TWO REGIMES OF TURBULENT FRAGMENTATION AND THE STELLAR INITIAL MASS FUNCTION FROM PRIMORDIAL TO PRESENT-DAY STAR FORMATION

TWO REGIMES OF TURBULENT FRAGMENTATION AND THE STELLAR INITIAL MASS FUNCTION FROM PRIMORDIAL TO PRESENT-DAY STAR FORMATION The Astrophysical Journal, 661:972Y981, 2007 June 1 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. A TWO REGIMES OF TURBULENT FRAGMENTATION AND THE STELLAR INITIAL MASS

More information

Revealing the Large Scale Distribution of Star Formation in the Milky Way with WISE

Revealing the Large Scale Distribution of Star Formation in the Milky Way with WISE Revealing the Large Scale Distribution of Star Formation in the Milky Way with WISE Xavier Koenig Yale University WISE @ 5 Conference Feb 11 2015 Collaborators: David Leisawitz Debbie Padgett Luisa Rebull

More information

A Far-ultraviolet Fluorescent Molecular Hydrogen Emission Map of the Milky Way Galaxy

A Far-ultraviolet Fluorescent Molecular Hydrogen Emission Map of the Milky Way Galaxy A Far-ultraviolet Fluorescent Molecular Hydrogen Emission Map of the Milky Way Galaxy (The Astrophysical Journal Supplement Series, 231:21 (16pp), 2017 August) November 14, 2017 Young-Soo Jo Young-Soo

More information

Revealing new optically-emitting extragalactic Supernova Remnants

Revealing new optically-emitting extragalactic Supernova Remnants 10 th Hellenic Astronomical Conference Ioannina, September 2011 Revealing new optically-emitting extragalactic Supernova Remnants Ioanna Leonidaki (NOA) Collaborators: P. Boumis (NOA), A. Zezas (UOC, CfA)

More information

Numerical Study of Compressible Isothermal Magnetohydrodynamic Turbulence

Numerical Study of Compressible Isothermal Magnetohydrodynamic Turbulence Numerical Study of Compressible Isothermal Magnetohydrodynamic Turbulence Junseong Park, Dongsu Ryu Dept. of Physics, Ulsan National Institute of Science and Technology. Ulsan, Korea 2016 KNAG meeting

More information

Three Major Components

Three Major Components The Milky Way Three Major Components Bulge young and old stars Disk young stars located in spiral arms Halo oldest stars and globular clusters Components are chemically, kinematically, and spatially distinct

More information

THE INFLUENCE OF MAGNETIC FIELD ON THE CNM MASS FRACTION AND ITS ALIGNMENT WITH DENSITY STRUCTURES.

THE INFLUENCE OF MAGNETIC FIELD ON THE CNM MASS FRACTION AND ITS ALIGNMENT WITH DENSITY STRUCTURES. THE INFLUENCE OF MAGNETIC FIELD ON THE CNM MASS FRACTION AND ITS ALIGNMENT WITH DENSITY STRUCTURES. MARCO A. VILLAGRAN* Colaborator: Adriana Gazol *m.villagran@irya.unam.mx INTRODUCTION: CNM MASS FRACTION

More information

Energy. mosquito lands on your arm = 1 erg. Firecracker = 5 x 10 9 ergs. 1 stick of dynamite = 2 x ergs. 1 ton of TNT = 4 x ergs

Energy. mosquito lands on your arm = 1 erg. Firecracker = 5 x 10 9 ergs. 1 stick of dynamite = 2 x ergs. 1 ton of TNT = 4 x ergs Energy mosquito lands on your arm = 1 erg Firecracker = 5 x 10 9 ergs 1 stick of dynamite = 2 x 10 13 ergs 1 ton of TNT = 4 x 10 16 ergs 1 atomic bomb = 1 x 10 21 ergs Magnitude 8 earthquake = 1 x 10 26

More information

Summary and Future work

Summary and Future work 299 Chapter 7 Summary and Future work 7.1 Summary In this thesis I have utilized large-scale millimeter and mid- to far-infrared surveys to address a number of outstanding questions regarding the formation

More information

arxiv:astro-ph/ v1 17 Mar 2006

arxiv:astro-ph/ v1 17 Mar 2006 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 21 January 2014 (MN LaT E X style file v2.2) The Jeans mass and the origin of the knee in the IMF arxiv:astro-ph/0603444v1 17 Mar 2006 I. A. Bonnell

More information

arxiv:astro-ph/ v1 7 Apr 2001

arxiv:astro-ph/ v1 7 Apr 2001 (ACCEPTED FOR PUBLICATION IN APJ) Preprint typeset using L A TEX style emulateapj v. 04/03/99 THE FORMATION OF STELLAR CLUSTERS: MASS SPECTRA FROM TURBULENT MOLECULAR CLOUD FRAGMENTATION RALF S. KLESSEN

More information

Turbulence simulations with ENZO and FLASH3

Turbulence simulations with ENZO and FLASH3 Turbulence simulations with ENZO and FLASH3... not yet Adaptive-mesh simulations with FLASH Christoph Federrath Institute for Theoretical Astrophysics Heidelberg Collaborators: Ralf Klessen, Robi Banerjee,

More information

Cold Dark Clouds: The Initial Conditions for Star Formation

Cold Dark Clouds: The Initial Conditions for Star Formation I ANRV320-AA45-09 ARI 12 May 2007 15:39 R E V I E W S First published online as a Review in Advance on May 21, 2007 E C N A D V A N Annu. Rev. Astron. Astrophys. 2007. 45:339 96 The Annual Review of Astrophysics

More information

How do protostars get their mass?

How do protostars get their mass? How do protostars get their mass? Phil Myers Harvard-Smithsonian Center for Astrophysics Origin of Stellar Masses Tenerife, Spain October 18, 2010 Introduction How does nature make a star? a star of particular

More information

The physics of star formation

The physics of star formation INSTITUTE OF PHYSICS PUBLISHING Rep. Prog. Phys. 66 (2003) 1651 1697 REPORTS ON PROGRESS IN PHYSICS PII: S0034-4885(03)07916-8 The physics of star formation Richard B Larson Department of Astronomy, Yale

More information

The Effects of Radiative Transfer on Low-Mass Star Formation

The Effects of Radiative Transfer on Low-Mass Star Formation The Effects of Radiative Transfer on Low-Mass Star Formation Stella Offner NSF Fellow, ITC Dense Cores in Dark Clouds Oct 23 2009 Collaborators: Chris McKee (UC Berkeley), Richard Klein (UC Berkeley; LLNL),

More information

Diagnosing the Role of MHD Turbulence in Massive Star Forma:on

Diagnosing the Role of MHD Turbulence in Massive Star Forma:on Diagnosing the Role of MHD Turbulence in Massive Star Forma:on Blakesley Burkhart Einstein Fellow Harvard- Smithsonian Center for Astrophysics With Min Young- Lee, Alex Lazarian, David Collins, Jonathan

More information

Today in Milky Way. Clicker on deductions about Milky Way s s stars. Why spiral arms? ASTR 1040 Accel Astro: Stars & Galaxies

Today in Milky Way. Clicker on deductions about Milky Way s s stars. Why spiral arms? ASTR 1040 Accel Astro: Stars & Galaxies ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Nick Featherstone Lecture 21 Tues 3 Apr 07 zeus.colorado.edu/astr1040-toomre toomre Superbubble NGC 3079 Today in Milky Way Look at why spiral

More information

Polarimetry with the SMA

Polarimetry with the SMA Polarimetry with the SMA Ramprasad Rao Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA) Collaborators: J. M. Girart (IEEC-CSIC), D. P. Marrone (NRAO/U. Chicago), Y. Tang (ASIAA), and a

More information

Spectral Line Observing

Spectral Line Observing Spectral Line Observing Measurement goals Spectral line formation processes Line Shapes / Doppler effect Spectrometers Observing techniques Calibration Data reduction / Data products Data visualization

More information

arxiv:astro-ph/ v1 17 Feb 1999

arxiv:astro-ph/ v1 17 Feb 1999 THE STRUCTURE AND EVOLUTION OF MOLECULAR CLOUDS: FROM CLUMPS TO CORES TO THE IMF JONATHAN P. WILLIAMS Harvard Smithsonian Center for Astrophysics LEO BLITZ and CHRISTOPHER F. MCKEE University of California

More information

Molecular clouds (see review in astro-ph/990382) (also CO [12.1,12.2])

Molecular clouds (see review in astro-ph/990382) (also CO [12.1,12.2]) Molecular clouds (see review in astro-ph/990382) (also CO [12.1,12.2]) Massive interstellar gas clouds Up to ~10 5 M 100 s of LY in diameter. Giant Molecular Clouds (GMCs) defined to be M > 10 4 M High

More information

Theory of Star Formation

Theory of Star Formation Annu. Rev. Astron. Astrophys. 2007. 45:565 687 The Annual Review of Astronomy and Astrophysics is online at astro.annualreviews.org This article s doi: 10.1146/annurev.astro.45.051806.110602 Copyright

More information

The Turbulent WIM: Distribution and MHD Simulations

The Turbulent WIM: Distribution and MHD Simulations The Turbulent WIM: Distribution and MHD Simulations Alex S. Hill University of Wisconsin-Madison Collaborators: Robert A. Benjamin, Grzegorz Kowal, Ronald J. Reynolds, L. Matthew Haffner, Alex Lazarian

More information

The turbulent formation of stars

The turbulent formation of stars The turbulent formation of stars Christoph Federrath Citation: Physics Today 71, 6, 38 (2018); doi: 10.1063/PT.3.3947 View online: https://doi.org/10.1063/pt.3.3947 View Table of Contents: http://physicstoday.scitation.org/toc/pto/71/6

More information

Observational Programme in Kent

Observational Programme in Kent Observational Programme in Kent ASTRO-F, WFCAM, SCUBA-2, SALT UKIRT: individual protostellar outflows SAO/MMT/LBT: individual high- mass protostars NTT/Calar Alto + SEST: rho Ophiuchus 2MASS/NTT: Rosette

More information

Lecture 2: Molecular Clouds: Galactic Context and Observational Tracers. Corona Australis molecular cloud: Andrew Oreshko

Lecture 2: Molecular Clouds: Galactic Context and Observational Tracers. Corona Australis molecular cloud: Andrew Oreshko Lecture 2: Molecular Clouds: Galactic Context and Observational Tracers Corona Australis molecular cloud: Andrew Oreshko Classification of Young Stellar Objects (YSOs) Spectral Index Hartmann: Accretion

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Bernard F. Burke Massachusetts Institute of Technology and Francis Graham-Smith Jodrell Bank, University of Manchester CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements

More information

An overview of star formation

An overview of star formation An overview of star formation Paul Clark ITA: Ralf Klessen Robi Banerjee Simon Glover Ian Bonnell Clare Dobbs Jim Dale Why study star formation? Stars chemically the enrich the Universe, so star formation

More information

Near-Infrared Spectroscopic Study of Supernova Ejecta and Supernova Dust in Cassiopeia A

Near-Infrared Spectroscopic Study of Supernova Ejecta and Supernova Dust in Cassiopeia A Supernova Remnants: An Odyssey in Space after Stellar Death 2016 June Near-Infrared Spectroscopic Study of Supernova Ejecta and Supernova Dust in Cassiopeia A Yong Hyun Lee 1 Supervisor: Bon-Chul Koo 1

More information

Distant galaxies: a future 25-m submm telescope

Distant galaxies: a future 25-m submm telescope Distant galaxies: a future 25-m submm telescope Andrew Blain Caltech 11 th October 2003 Cornell-Caltech Workshop Contents Galaxy populations being probed Modes of investigation Continuum surveys Line surveys

More information