Ultra-High Energy n from Gamma-Ray Bursts

Size: px
Start display at page:

Download "Ultra-High Energy n from Gamma-Ray Bursts"

Transcription

1 Ultra-High Energy n from Gamma-Ray Bursts Peter Mészáros Pennsylvania State University

2 First Detection of GRB Vela 4a (US DoD) monitored nuclear (& cosmic!) explosions First GRB det: 1967 (pub: Klebesadel, Strong, Olson 1973 ApJ 182, L85) Vela 5a,b/6a,b det 73 GRB in Prognoz 2 (USSR) det GRB, and Konus/Venera det. 85 GRB (Mazets, Aptekhar& Golenetskii 1981)

3 Compton Gamma Ray Observatory (CGRO): g-ray detectors: -BATSE: 20keV-1MeV -OSSE: MeV -Comptel: MeV -EGRET: 30MeV-20GeV CGRO MAIN RESULTS: BATSE all-sky survey: 1) GRB isotropic distrib., implying cosmol. distance 2) Long (>2 s) & short (<2 s) 3) Non-thermal g- spectra

4 GRB Spectra BATSE EGRET Spectra are non-thermal (broken PL) E pk ~ 0.3 MeV, most energy above it Flux extends >10 GeV in some GRB GRB Durations: Range: t g ~ s short 2 s long bimodal (short/long)

5 BeppoSAX: g-ray wide-angle det. + XR NFI + UVO tel 1 st afterglow det! ~ 40 GRB XR/O/R afterglows det., and Æ Precise loc n host galaxy redshift dist. calibr. flux, energy ò GRB X-ray fading afterglow

6 GRB: basic numbers Distance: 0.35 d z d4.5 D ~ cm Fluence: F = flux. dt ~ erg/cm 2 ~ 1 ph/cm 2 Energy output: (Ω/4π) D F -5 erg jet: Ω ~ E γ,tot ~ erg E ~ L γ,tot Θ x 1010 year ~ L gal x 1 year Rate(GRB) ~ 1/day 10-6 (Ω/2π) -1 /yr/gal (whereas Rate[SN] ~ 10 7 /yr ~ 1/s at z d1)

7 Generic GRB model: Hyperaccreting BHs ôshort Note: should Also produce Neutrinos, Gravity waves ôlong

8 Explosion FIREBALL E γ t Ω -2 D F -5 erg R 0 ~ c t 0 ~ 10 7 t -3 cm Huge energy in very small volume τ γγ ~ (E γ /R 3 0m e c 2 )σ T R 0 >> 1 Fireball: e ±,γ,p relativistic gas L γ ~E γ /t 0 >> L Edd expanding (v~c) fireball (Cavallo & Rees, 1978 MN 183:359) Observe E γ > 10 GeV but γγ e ±, degrade 10 GeV 0.5 MeV? Eγ Et >2(m e c 2 ) 2 /(1-cosΘ)~4(m e c 2 ) 2 /Θ 2 Ultrarelativistic flow Γ t Θ -1 ~ 10 2 (Fenimore etal 93; Baring & Harding 94)

9 BH + accr. Torus Jet Collapsar or merger BH+accr.torus Nuclear density hot torus nn e ± Hot infall conv. Dynamo B~10 15 G, twisted (thread BH?) Alfvénic or e ± pγ jet (Note: magnetar might do similar)

10 Jet emergence from star Zhang, et al astro-ph/ Num.simulations: (Aloy et al 00 ; Zhang, Woosley, McFadyen 02) So far: 2D, SR; jet first v h dc, then v h c, in agreem t w. analytical calc s KH instab: variable power output, G Prelim. (num.) concl.: jets emerge only from stars of R ø d10 11 cm; but larger stars not calculated num ly; analyt. est. indicate larger radii may be possible (Meszaros, Rees 02, ApJ 556, L37) G t 150, OK

11 Shocks in Fireball Outflow external shock Internal shocks Shocks expected in any unsteady supersonic outflow (esp. in a nonvacuum environment) Internal shocks: fast shells catch up slower shells (unsteady flow) External Shock: flow slows down as plows into external medium NOTE: ext. termination shock & internal shocks can be expected also while jet is still inside star

12 Shock Acceleration Non-th. g-sp. Strong shocks accelerate charged particles (e ±,p + ) relativistic power law Post-shock turbulent dynamo mag.fields (e ±,B) e ± synchrotron, (g, e ± ) Inv.Compton g broken power-law (non-thermal) g-spectra from power-law e ± [Other possibilities: - magn.reconnect. lin.accel. (Drenkhahn); - wake-field accel. lin.accel. (Chen et al) ] N(g) N(E g ) E g 2 G p+ <G(m p /m e ) e ± -q : slope g e± IC e ± Sy (q-1)/2 E g

13 GeV-TeV photons from GRB Baring 1999 Internal shocks: gg e, t gg E g t G GeV pair cutoff in spectr ï get info about r sh (compactness,t gg ) In ext.shock, t gg 1 on GRB target g; test if shock is int. or ext; test bulk Lorentz factor, shock accel efficiency, magnetic field in shock (max. e energy? size of accel region)

14 gg Opacity of the Universe g Coppi & Aharonian 97 In ext.shock, t gg 1 for >TeV on GRB target g, but In Universe, t gg 1 for >TeV on IR bkg g (Dd100Mpc) test IR bkg spectral density, constrain early star formation rate & z-distr of SFR, LSS, cosmology

15 GeV-TeV g & GW Facilities Cherenkov Telescopes TeV Water Air HESS, VERITAS,.. MILAGRO GLAST Pair conv 20 MeV- 300 GeV ô LIGO Laser interf Grav wave Detector

16 CR s & n s : sub-tev to ZeV Universe opaque to g e g t10 12 ev due to gg e ± on IR backg. g U. also opaque to p at e p t10 20 ev due to pg p + + on CMB all p of e p d10 19 ev lose direction info (B gal ) n is only UHE witness from high z pointing back to its source! Æ (Halzen, Hooper 02)

17 Thermal Proton-Neutron Effects in GRB Fireball p n p n r dec p-n in f ball move together while t pn > t exp (rad. press. acts on p, elastic scattering couples p,n) p-n decouple when t pn tt exp (also t pn ~1, v rel Øc) s pn Ø inelastic; occurs for GtG p ~400 (Derishev etal 99; Bahcall,Meszaros 00; Fuller etal 00) Inelastic pnøp ± Øm ±,n m Øe ±,n e,n m e nm ~5-10 GeV ICECUBE: z~1, R n ~7/yr from all GRB, in coinc.w. g -rays (but only if larger PMT density) GLAST: p 0 Ø2g, e g ~10 GeV, z~0.1 (Bahcall & Meszaros 2000 PRL 85:1362)

18 Relativistic Proton Effects in GRB J E 2.61 [ev 1.61 /m 2 sr s] N(E p ) GRB flux GRB flux + Fly s Eye consequences? g, n,.. E p Galactic (heavy) component AGASA Fly s Eye Yakutsk UHE CR spectrum E [ev] (Waxman, Neutrino 2000, hep-ph/ )æ Shocks: internal & ext. rev. shocks: mildy relativistic p-spectrum N(E)µE -2 Can reach E p d10 20 ev (& contr. to diff. CR flux: Waxman 95; Vietri 95) Other obs. effects? 1) p-synchrotron g ; but narrow param.space (Totani 98, Zhang & Mészáros 01) 2) photo-hadronic g s (Böttcher & Dermer 98; Fragile etal 02) 3) photo-hadronic n s (Waxman & Bahcall 97)

19 UHE n s from pg collisions Int. shocks: E p >10 16 ev, coll. with ~1 MeV g-rays, dn g /de E -b, b~1,2 pg π ± µ ±,n µ e ±,,n e,n µ E n ~ 5x10 14 ev G 300 (E g /1MeV) -1, ( -res.) E n 2 Φn 10-9 (En/En b ) GeV/cm 2 s sr (Waxman, Bahcall 97; Rachen, Meszaros 98) External shock: E p >10 19 ev, coll. with ~10 ev g s, E n ~ ev, (Waxman,Bahcall 00, Vietri 98) E 2 nφ n (E n /10 17 ev) b GeV/cm 2 s sr detect w. ICECUBE (& test shock acc) pg π 0 2g, Eg ~0.1-1 GeV GLAST

20 UHE n Fluxes & Limits MPR99 P97 HZ97 M95B E 2 ν Φ ν [GeV/cm2 s sr] GRB (burst) WB Limit GRB (afterglow) E ν [GeV] E 2 Φ n power/decade UHE n from GRB ( burst ) int.shocks, from GRB ( afterglow ) ext. reverse shocks, and from various AGN jet models; also Waxman-Bahcall WB 98 and MPR 99 CR limits Range of possible neutrino fluxes associated with the maximum energy CRs. Transparent : source From which CRs escape after one interaction; obscured : where CRs are trapped, only n s escape. (from Halzen & Hooper 02)

21 TeV n from bursting & choked GRB Star edge Mészáros, Waxman 01 PRL 87: Collapsar : jet has termination shock and internal shocks, also while inside the star Int. shocks accel. protons to E p >10 5 GeV, which collide with thermal X-rays in jet cavity Ent2(2/1+z) TeV F n 10-5 E 53 /D 282 erg/cm 2 N µ ~ 0.2/km 2 (avg., R~10 5 /yr) ~ 10 /km 2 (rare, R~ 3 /yr) n-precursor in g-bright GRB; n- burst in g-dark (choked)grb new unseen sources! e.g. first gen. (pop. III) stars?

22 Diffuse UHE n from pop.iii collapse At z~ 6-30(?): pop.iii ø, M * ~ M Ÿ, core coll. M BH ~ M Ÿ E iso ~ (?) erg Buried jets pg n m, n-bursts, AMANDA/ICECUBE Escaping jets? pg n m Schneider, Guetta, Ferrara aph/ n,g-bursts, ICECUBE, Swift e n ~1-50TeV, e g ~0.1-1MeV Detect highest -z øform n, get primordial IMF,

23 Prediction model-dependence & Detectability of GRB n E n ~100 TeV are least model dependent (use observed MeV g & same shocks as accelerate e ± ) E n ~1 TeV : more model dependent, (also assume collapsar model, and R ø t cm ) E n ~ ev : need assume reverse shock prompt opt flash is ubiquituous (?) E n ~ 5 GeV: likely, but need special instr t

24 Other Implications of GRB n Special relativity: simultaneity of arrival of n,g tested to Dt d 1 s (10-3 s in short bursts) Time delay due to n i mass: Dt (n i )~10-12 (D/100Mpc)(E ni /100TeV) -2 (m ni /ev) 2 s (whereas for SN 1987a Dt (n i )~ 10-8 s ) Vacuum oscillations: at source exp. Nn m ~ 2Nn e, at observer exp. º ratios, and upgoing t appear. sensitive to Dm 2 t10-16 (E n /100TeV)(100Mpc/D) ev 2 (for m n t0.1 ev due to finite pion life mixing is caused by decoherence rather than oscillation)

25 Summary GRB studied from radio to t GeV (so far) Working model (relat. fireball + shocks) works well (so far): will it continue to? Progress being made on central engine, progenitor Significant potential as cosmological tool TeV-EeV neutrino signals: new window - absorption & deflection-free UHE astrophys. probe - probe fund. interactions & E cm t PeV More surprises expected!

Gamma-Ray bursts. Neutrinos. Peter Mészáros. Pennsylvania State University. Mészáros, NOW 04

Gamma-Ray bursts. Neutrinos. Peter Mészáros. Pennsylvania State University. Mészáros, NOW 04 Gamma-Ray bursts & Neutrinos Peter Mészáros Pennsylvania State University GRB Spatial & Temporal Distrib. Cosmological (isotropic) distribut. Out to z t 4.5 (20?) ~ 1/day @ z d few ~ 1/3 short (t g

More information

Neutrinos from GRB. Péter Mészáros Pennsylvania State University

Neutrinos from GRB. Péter Mészáros Pennsylvania State University TeV-EeV Neutrinos from GRB Péter Mészáros Pennsylvania State University Neutrino production in baryonic GRB 3 types of neutrino energy & timescale, depending on shock location Substellar shocks Shocks

More information

Particle Acceleration in the Universe

Particle Acceleration in the Universe Particle Acceleration in the Universe Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology on behalf of SLAC GLAST team June 7, 2006 SLAC DOE HEP Program

More information

Possible Implications of. GeV - TeV. observations of GRB. Peter Mészáros. Pennsylvania State University. Mészáros, Gla04

Possible Implications of. GeV - TeV. observations of GRB. Peter Mészáros. Pennsylvania State University. Mészáros, Gla04 Possible Implications of GeV - TeV observations of GRB Peter Mészáros Pennsylvania State University GeV g emission from GRB and other extragalactic, galactic & un-id d sources GeV: space obs. (SAS-2, HEAO-A4,

More information

High Energy Emission. Brenda Dingus, LANL HAWC

High Energy Emission. Brenda Dingus, LANL HAWC High Energy Emission from GRBs Brenda Dingus, LANL HAWC What are GRBs? Cosmological distance Typical observed z>1 Energy released is up to few times the rest mass of Sun (if isotropic) in a few seconds

More information

Gamma-Ray Astronomy. Astro 129: Chapter 1a

Gamma-Ray Astronomy. Astro 129: Chapter 1a Gamma-Ray Bursts Gamma-Ray Astronomy Gamma rays are photons with energies > 100 kev and are produced by sub-atomic particle interactions. They are absorbed by our atmosphere making observations from satellites

More information

Fermi: Highlights of GeV Gamma-ray Astronomy

Fermi: Highlights of GeV Gamma-ray Astronomy Fermi: Highlights of GeV Gamma-ray Astronomy Dave Thompson NASA GSFC On behalf of the Fermi Gamma-ray Space Telescope Large Area Telescope Collaboration Neutrino Oscillation Workshop Otranto, Lecce, Italy

More information

arxiv:astro-ph/ v1 6 May 2003

arxiv:astro-ph/ v1 6 May 2003 High Energy Photons, Neutrinos and Gravitational Waves from Gamma-Ray Bursts arxiv:astro-ph/0305066 v1 6 May 2003 P. Mészáros, S. Kobayashi, S. Razzaque & B. Zhang Dept. of Astronomy & Astrophysics and

More information

High-Energy Emission from GRBs: First Year Highlights from the Fermi Gamma-ray Space Telescope

High-Energy Emission from GRBs: First Year Highlights from the Fermi Gamma-ray Space Telescope High-Energy Emission from GRBs: First Year Highlights from the Fermi Gamma-ray Space Telescope Jonathan Granot University of Hertfordshire (Royal Society Wolfson Research Merit Award Holder) on behalf

More information

arxiv:astro-ph/ v1 7 Jul 1999

arxiv:astro-ph/ v1 7 Jul 1999 Gamma-ray Burst Energetics Pawan Kumar Institute for Advanced Study, Princeton, NJ 08540 Abstract arxiv:astro-ph/9907096v1 7 Jul 1999 We estimate the fraction of the total energy in a Gamma-Ray Burst (GRB)

More information

Gamma-ray bursts as the sources of the ultra-high energy cosmic rays?

Gamma-ray bursts as the sources of the ultra-high energy cosmic rays? Gamma-ray bursts as the sources of the ultra-high energy cosmic rays? ACP seminar, IPMU Kashiwa, Japan Oct. 30, 2013 Walter Winter Universität Würzburg Contents Introduction Simulation of sources Multi-messenger

More information

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002 Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002 n High Energy Astronomy Multi-Messanger Astronomy Cosmic Rays

More information

Gamma-ray Astrophysics

Gamma-ray Astrophysics Gamma-ray Astrophysics AGN Pulsar SNR GRB Radio Galaxy The very high energy -ray sky NEPPSR 25 Aug. 2004 Many thanks to Rene Ong at UCLA Guy Blaylock U. of Massachusetts Why gamma rays? Extragalactic Background

More information

High-Energy Neutrinos from Gamma-Ray Burst Fireballs

High-Energy Neutrinos from Gamma-Ray Burst Fireballs High-Energy Neutrinos from Gamma-Ray Burst Fireballs Irene Tamborra GRAPPA Center of Excellence, University of Amsterdam TAUP 2015 Turin, September 9, 2015 Outline IceCube detection of high-energy neutrinos

More information

Physics of Short Gamma-Ray Bursts Explored by CTA and DECIGO/B-DECIGO

Physics of Short Gamma-Ray Bursts Explored by CTA and DECIGO/B-DECIGO Physics of Short Gamma-Ray Bursts Explored by CTA and DECIGO/B-DECIGO Hiroyasu Tajima Institute for Space Earth Environmental Research Nagoya University 17th DECIGO Workshop Nov 1, 18 Nagoya University

More information

Cosmic Explosions. Greg Taylor (UNM ) Astro 421

Cosmic Explosions. Greg Taylor (UNM ) Astro 421 Cosmic Explosions Greg Taylor (UNM ) Astro 421 1 Cassiopeia A: Supernova Remnant E total ~ 10 46 J 2 An early gamma ray-burst Vela satellite 3 A Gamma Ray Burst Sampler 4 Burst Alert 5 The BeppoSAX Satellite

More information

Search for high-energy neutrinos from GRB130427A with the ANTARES neutrino telescope

Search for high-energy neutrinos from GRB130427A with the ANTARES neutrino telescope Journal of Physics: Conference Series PAPER OPEN ACCESS Search for high-energy neutrinos from GRB130427A with the ANTARES neutrino telescope To cite this article: Silvia Celli 2016 J. Phys.: Conf. Ser.

More information

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays Short Course on High Energy Astrophysics Exploring the Nonthermal Universe with High Energy Gamma Rays Lecture 1: Introduction Felix Aharonian Dublin Institute for Advanced Studies, Dublin Max-Planck Institut

More information

Citation PHYSICAL REVIEW LETTERS (2006), 97( RightCopyright 2006 American Physical So

Citation PHYSICAL REVIEW LETTERS (2006), 97(   RightCopyright 2006 American Physical So Title High energy neutrino flashes from f flares in gamma-ray bursts Author(s) Murase, K; Nagataki, S Citation PHYSICAL REVIEW LETTERS (2006), 97( Issue Date 2006-08-04 URL http://hdl.handle.net/2433/50481

More information

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful Charged-particle astronomy coming of age How it is done The sources The signals What we have learned

More information

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts! Discovered 1967 Vela satellites classified! Published 1973! GRB history Ruderman 1974 Texas: More theories than bursts! Burst diversity E peak ~ 300 kev Non-thermal spectrum In some thermal contrib. Short

More information

GRB Spectra and their Evolution: - prompt GRB spectra in the γ-regime

GRB Spectra and their Evolution: - prompt GRB spectra in the γ-regime GRB Spectra and their Evolution: - prompt GRB spectra in the γ-regime Andreas von Kienlin MPE -Gamma 14. November 2003 1 Outline Time averaged GRB spectra Example spectra Instrumental response Band function

More information

Theory of the prompt emission of Gamma-Ray Bursts

Theory of the prompt emission of Gamma-Ray Bursts Theory of the prompt emission of Gamma-Ray Bursts Department of Physics, NC State University, Raleigh, NC 27695-8202 E-mail: davide_lazzati@ncsu.edu Since their discovery more than 40 years ago the origin

More information

High Energy Astrophysics

High Energy Astrophysics High Energy Astrophysics Gamma-ray Bursts Giampaolo Pisano Jodrell Bank Centre for Astrophysics - University of Manchester giampaolo.pisano@manchester.ac.uk May 2011 Gamma-ray Bursts - Observations - Long-duration

More information

neutrino astronomy francis halzen university of wisconsin

neutrino astronomy francis halzen university of wisconsin neutrino astronomy francis halzen university of wisconsin http://icecube.wisc.edu 50,000 year old sterile ice instead of water we built a km 3 neutrino detector 3 challenges: drilling optics of ice atmospheric

More information

(Fermi observations of) High-energy emissions from gamma-ray bursts

(Fermi observations of) High-energy emissions from gamma-ray bursts (Fermi observations of) High-energy emissions from gamma-ray bursts Hiroyasu Tajima on behalf of Fermi LAT and GBM Collaborations Kavli Institute of Particle Astrophysics and Cosmology SLAC National Accelerator

More information

Extreme high-energy variability of Markarian 421

Extreme high-energy variability of Markarian 421 Extreme high-energy variability of Markarian 421 Mrk 421 an extreme blazar Previous observations outstanding science issues 2001 Observations by VERITAS/Whipple 10 m 2001 Light Curve Energy spectrum is

More information

ON GRB PHYSICS REVEALED BY FERMI/LAT

ON GRB PHYSICS REVEALED BY FERMI/LAT Proceedings of the 3rd Galileo Xu Guangqi Meeting International Journal of Modern Physics: Conference Series Vol. 23 (2013) 223 227 c World Scientific Publishing Company DOI: 10.1142/S2010194513011343

More information

GRB : Modeling of Multiwavelength Data

GRB : Modeling of Multiwavelength Data GRB 090510: Modeling of Multiwavelength Data Soeb Razzaque NRC-NRL, Washington, DC Gamma Ray Bursts Workshop, Nov 8-12, GSFC Detection of GRB 090510 Fermi GBM and LAT observations Trigger on 2009 May 10

More information

Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale

Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale Angela V. Olinto A&A, KICP, EFI The University of Chicago Nature sends 10 20 ev particles QuickTime and a YUV420 codec decompressor are needed

More information

High-energy emission from Gamma-Ray Bursts. Frédéric Daigne Institut d Astrophysique de Paris, Université Pierre et Marie Curie

High-energy emission from Gamma-Ray Bursts. Frédéric Daigne Institut d Astrophysique de Paris, Université Pierre et Marie Curie High-energy emission from Gamma-Ray Bursts Frédéric Daigne Institut d Astrophysique de Paris, Université Pierre et Marie Curie HEPRO III High Energy Phenomena in Relativistic Outflows Barcelona, June 27

More information

Gravitational Waves and High Energy Neutrino coincidences : The gwhen Project

Gravitational Waves and High Energy Neutrino coincidences : The gwhen Project Gravitational Waves and High Energy Neutrino coincidences : The gwhen Project Thierry Pradier for the gwhen Group IPHC (IN2P3) & University of Strasbourg Antares : B. Baret, B. Bouhou, A. Kouchner, L.

More information

Can we constrain GRB shock parameters using the Gamma Ray Large Area Space Telescope? Eduardo do Couto e Silva SLAC/KIPAC SABER Workshop Mar 15, 2006

Can we constrain GRB shock parameters using the Gamma Ray Large Area Space Telescope? Eduardo do Couto e Silva SLAC/KIPAC SABER Workshop Mar 15, 2006 Can we constrain GRB shock parameters using the Gamma Ray Large Area Space Telescope? Eduardo do Couto e Silva SLAC/KIPAC SABER Workshop Mar 15, 2006 The Main Questions Is there any connection between

More information

1. GAMMA-RAY BURSTS & 2. FAST RADIO BURSTS

1. GAMMA-RAY BURSTS & 2. FAST RADIO BURSTS 1. GAMMA-RAY BURSTS & 2. FAST RADIO BURSTS WITH TAM, Pak Hin (Sun Yat-sen University/ICRR) GAMMA-RAY BURST OBSERVATIONS WITH CTA LESSONS LEARNT FROM FERMI/LAT TAM, Pak Hin (Sun Yat-sen University/ICRR,

More information

High energy neutrino signals from NS-NS mergers

High energy neutrino signals from NS-NS mergers High energy neutrino signals from NS-NS mergers He Gao 高鹤 University of Nevada Las Vegas Collaborators: Bing Zhang, Xue-Feng Wu & Zi-Gao Dai 2013-05-08 Multi-Messenger Workshop @ KIAA EM signals for a

More information

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS STATUS OF ULTRA HIGH ENERGY COSMIC RAYS Esteban Roulet (Bariloche) COSMO / CosPA 2010, Tokyo Power law flux stochastic (Fermi) acceleration in shocks cosmic ray flux Small fractional energy gain after

More information

Milagro A TeV Observatory for Gamma Ray Bursts

Milagro A TeV Observatory for Gamma Ray Bursts Milagro A TeV Observatory for Gamma Ray Bursts B.L. Dingus and the Milagro Collaboration Los Alamos National Laboratory University of Maryland, University of California Santa Cruz, University of California

More information

GW from GRBs Gravitational Radiation from Gamma-Ray Bursts

GW from GRBs Gravitational Radiation from Gamma-Ray Bursts GW from GRBs Gravitational Radiation from Gamma-Ray Bursts Tsvi Piran Racah Inst. of Jerusalem, Israel Dafne Guetta,, Ehud Nakar, Reem Sari Once or twice a day we see a burst of low energy gamma-rays from

More information

Emission Model And GRB Simulations

Emission Model And GRB Simulations Emission Model And GRB Simulations Nicola Omodei (University of Siena, INFN Pisa) 1 ISSS-L Aquila 2001 N. Omodei Spectral Properties? Data collected Range (γ) 10 KeV 10 GeV In the BATSE energy range: (25

More information

Possible sources of very energetic neutrinos. Active Galactic Nuclei

Possible sources of very energetic neutrinos. Active Galactic Nuclei Possible sources of very energetic neutrinos Active Galactic Nuclei 1 What might we learn from astrophysical neutrinos? Neutrinos not attenuated/absorbed Information about central engines of astrophysical

More information

Particle Physics Beyond Laboratory Energies

Particle Physics Beyond Laboratory Energies Particle Physics Beyond Laboratory Energies Francis Halzen Wisconsin IceCube Particle Astrophysics Center Nature s accelerators have delivered the highest energy protons, photons and neutrinos closing

More information

GAMMA-RAYS FROM MASSIVE BINARIES

GAMMA-RAYS FROM MASSIVE BINARIES GAMMA-RAYS FROM MASSIVE BINARIES W lodek Bednarek Department of Experimental Physics, University of Lódź, Poland 1. Sources of TeV gamma-rays PSR 1259+63/SS2883 - (HESS) LS 5039 - (HESS) LSI 303 +61 o

More information

Ultra High Energy Cosmic Rays I

Ultra High Energy Cosmic Rays I Ultra High Energy Cosmic Rays I John Linsley (PRL 10 (1963) 146) reports on the detection in Vulcano Ranch of an air shower of energy above 1020 ev. Problem: the microwave background radiation is discovered

More information

Blazars as the Astrophysical Counterparts of the IceCube Neutrinos

Blazars as the Astrophysical Counterparts of the IceCube Neutrinos Blazars as the Astrophysical Counterparts of the IceCube Neutrinos Maria Petropoulou Department of Physics & Astronomy, Purdue University, West Lafayette, USA Einstein Fellows Symposium Harvard-Smithsonian

More information

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Lecture 20 High-Energy Astronomy HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Tut 5 remarks Generally much better. However: Beam area. T inst

More information

Two recent developments with Gamma Ray Burst Classification. And their implications for GLAST. Eric Charles. Glast Science Lunch Nov.

Two recent developments with Gamma Ray Burst Classification. And their implications for GLAST. Eric Charles. Glast Science Lunch Nov. Two recent developments with Gamma Ray Burst Classification And their implications for GLAST Eric Charles Glast Science Lunch Nov. 2, 2006 Outline Numerology, taxonomy and phrenology of GRBs Salient facts

More information

Multi-messenger light curves from gamma-ray bursts

Multi-messenger light curves from gamma-ray bursts Multi-messenger light curves from gamma-ray bursts 1409.2874, 1606.02325 Mauricio Bustamante Center for Cosmology and AstroParticle Physics (CCAPP) The Ohio State University 8th Huntsville Gamma-Ray Burst

More information

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

A New View of the High-Energy γ-ray Sky with the Fermi Telescope A New View of the High-Energy γ-ray Sky with the Fermi Telescope Aurelien Bouvier KIPAC/SLAC, Stanford University On behalf of the Fermi collaboration SNOWPAC, 2010 The Fermi observatory Launch: June 11

More information

Ultra-High Energy Cosmic Rays and the GeV-TeV Diffuse Gamma-Ray Flux

Ultra-High Energy Cosmic Rays and the GeV-TeV Diffuse Gamma-Ray Flux The 4th International Workshop on The Highest Energy Cosmic Rays and Their Sources INR, Moscow May 20-22, 2008 Ultra-High Energy Cosmic Rays and the GeV-TeV Diffuse Gamma-Ray Flux Oleg Kalashev* (INR RAS)

More information

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006 PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY Paolo Lipari Vulcano 27 may 2006 High Energy Neutrino Astrophysics will CERTAINLY become an essential field in a New Multi-Messenger Astrophysics What is

More information

Gamma-Ray Bursts and their Afterglows

Gamma-Ray Bursts and their Afterglows Seminar Ib Gamma-Ray Bursts and their Afterglows Mentor: Izr. prof. dr. Andreja Gomboc Author: Katja Bricman Ljubljana, May 2015 Abstract Gamma ray bursts (GRBs) are short flashes of gamma rays, that can

More information

The Fermi Zoo : GRB prompt spectra. Michael S. Briggs (Univ. Alabama in Huntsville) for the Fermi GBM & LAT Teams

The Fermi Zoo : GRB prompt spectra. Michael S. Briggs (Univ. Alabama in Huntsville) for the Fermi GBM & LAT Teams The Fermi Zoo : GRB prompt spectra Michael S. Briggs (Univ. Alabama in Huntsville) for the Fermi GBM & LAT Teams Multi-Messenger Workshop KIAA 2013 1 Multi-Messenger Workshop KIAA 2013 2 Before Fermi:

More information

Windows on the Cosmos

Windows on the Cosmos Windows on the Cosmos Three types of information carriers about what s out there arrive on Earth: Electromagnetic Radiation Visible light, UV, IR => telescopes (Earth/Space) Radio waves => Antennae ( Dishes

More information

Recent Advances in our Understanding of GRB emission mechanism. Pawan Kumar. Constraints on radiation mechanisms

Recent Advances in our Understanding of GRB emission mechanism. Pawan Kumar. Constraints on radiation mechanisms Recent Advances in our Understanding of GRB emission mechanism Outline Pawan Kumar Constraints on radiation mechanisms High energy emission from GRBs and our understanding of Fermi data. My goal is to

More information

Gamma-Ray Bursts in Pulsar Wind Bubbles: Putting the Pieces Together

Gamma-Ray Bursts in Pulsar Wind Bubbles: Putting the Pieces Together Gamma-Ray Bursts in Pulsar Wind Bubbles: Putting the Pieces Together Jonathan Granot 1 and Dafne Guetta 2 ABSTRACT arxiv:astro-ph/0211136v1 7 Nov 2002 We present the main observational features expected

More information

Cosmogenic neutrinos II

Cosmogenic neutrinos II Cosmogenic neutrinos II Dependence of fluxes on the cosmic ray injection spectra and the cosmological evolution of the cosmic ray sources Expectations from the cosmic ray spectrum measured by the Auger

More information

Special Topics in Nuclear and Particle Physics

Special Topics in Nuclear and Particle Physics Special Topics in Nuclear and Particle Physics Astroparticle Physics Lecture 5 Gamma Rays & x-rays Sept. 22, 2015 Sun Kee Kim Seoul National University Gamma ray astronomy gamma ray synchrotron radition

More information

Implications of recent cosmic ray results for ultrahigh energy neutrinos

Implications of recent cosmic ray results for ultrahigh energy neutrinos Implications of recent cosmic ray results for ultrahigh energy neutrinos Subir Sarkar Neutrino 2008, Christchurch 31 May 2008 Cosmic rays have energies upto ~10 11 GeV and so must cosmic neutrinos knee

More information

Gamma Ray Bursts. Progress & Prospects. Resmi Lekshmi. Indian Institute of Space Science & Technology Trivandrum

Gamma Ray Bursts. Progress & Prospects. Resmi Lekshmi. Indian Institute of Space Science & Technology Trivandrum Gamma Ray Bursts Progress & Prospects Resmi Lekshmi Indian Institute of Space Science & Technology Trivandrum Why study GRBs? to study GRBs end stages of massive star evolution jet launching, collimation

More information

High energy neutrino production in the core region of radio galaxies due to particle acceleration by magnetic reconnection

High energy neutrino production in the core region of radio galaxies due to particle acceleration by magnetic reconnection High energy neutrino production in the core region of radio galaxies due to particle acceleration by magnetic reconnection University of Sao Paulo) E-mail: bkhiali@usp Elisabete de Gouveia Dal Pino University

More information

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere for the HAWC collaboration E-mail: miguel@psu.edu Observations of high energy gamma rays are an

More information

Absorption and production of high energy particles in the infrared background

Absorption and production of high energy particles in the infrared background Roma I, 16 March 2007 Absorption and production of high energy particles in the infrared background Todor Stanev Bartol Research Institute University of Delaware Newark, DE19716 We discuss the role of

More information

Detectors for 20 kev 10 MeV

Detectors for 20 kev 10 MeV Gamma-Ray Bursts Detectors for 20 kev to 10 MeV Discovery The early years BATSE Fast versus slow bursts Uniformity and log N log S relation BeppoSAX and discovery of afterglows Redshift measurements Connection

More information

EBL Studies with the Fermi Gamma-ray Space Telescope

EBL Studies with the Fermi Gamma-ray Space Telescope EBL Studies with the Fermi Gamma-ray Space Telescope Luis C. Reyes KICP The Extragalactic Background Light (EBL) What is it? Accumulation of all energy releases in the form of electromagnetic radiation.

More information

Lobster X-ray Telescope Science. Julian Osborne

Lobster X-ray Telescope Science. Julian Osborne Lobster X-ray Telescope Science Julian Osborne What we want The whole high-energy sky right now 1.00E+13 1.00E+12 1 / f_lim (100 s) 1.00E+11 1.00E+10 1.00E+09 1.00E+08 0.0000001 0.000001 0.00001 0.0001

More information

Stochastic Wake Field particle acceleration in GRB

Stochastic Wake Field particle acceleration in GRB Stochastic Wake Field particle acceleration in GRB (image credits to CXO/NASA) G. Barbiellini (1), F. Longo (1), N.Omodei (2), P.Tommasini (3), D.Giulietti (3), A.Celotti (4), M.Tavani (5) (1) University

More information

GRB Recent Developments and Cosmological Context

GRB Recent Developments and Cosmological Context GRB Recent Developments and Cosmological Context Peter Mészáros Pennsylvania State University For a few seconds, a GRB dominates the gamma-ray brightness of the entire Universe Fig. Credit: Tyce DeYoung

More information

On the GCR/EGCR transition and UHECR origin

On the GCR/EGCR transition and UHECR origin UHECR 2014 13 15 October 2014 / Springdale (Utah; USA) On the GCR/EGCR transition and UHECR origin Etienne Parizot 1, Noémie Globus 2 & Denis Allard 1 1. APC Université Paris Diderot France 2. Tel Aviv

More information

Potential Neutrino Signals from Galactic γ-ray Sources

Potential Neutrino Signals from Galactic γ-ray Sources Potential Neutrino Signals from Galactic γ-ray Sources, Christian Stegmann Felix Aharonian, Jim Hinton MPI für Kernphysik, Heidelberg Madison WI, August 28 31, 2006 TeV γ-ray Sources as Potential ν Sources

More information

Early Optical Afterglows of GRBs with 2-m Robotic Telescopes

Early Optical Afterglows of GRBs with 2-m Robotic Telescopes Early Optical Afterglows of GRBs with 2-m Robotic Telescopes Andreja Gomboc Faculty of Mathematics and Physics University of Ljubljana on behalf of a larger collaboration led by: ARI, Liverpool John Moores

More information

Ultrahigh Energy Cosmic Rays propagation II

Ultrahigh Energy Cosmic Rays propagation II Ultrahigh Energy Cosmic Rays propagation II The March 6th lecture discussed the energy loss processes of protons, nuclei and gamma rays in interactions with the microwave background. Today I will give

More information

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array FAPESP CUNY Week, New York, November 2018 M82 Star Formation- Clouds-SNRturbulence connection Sun & Stars

More information

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris Gamma rays from supernova remnants in clumpy environments!! Stefano Gabici APC, Paris Overview of the talk Galactic cosmic rays Gamma rays from supernova remnants Hadronic or leptonic? The role of gas

More information

Neutrino Astronomy. Ph 135 Scott Wilbur

Neutrino Astronomy. Ph 135 Scott Wilbur Neutrino Astronomy Ph 135 Scott Wilbur Why do Astronomy with Neutrinos? Stars, active galactic nuclei, etc. are opaque to photons High energy photons are absorbed by the CMB beyond ~100 Mpc 10 20 ev protons,

More information

On (shock. shock) acceleration. Martin Lemoine. Institut d Astrophysique d. CNRS, Université Pierre & Marie Curie

On (shock. shock) acceleration. Martin Lemoine. Institut d Astrophysique d. CNRS, Université Pierre & Marie Curie On (shock ( shock) acceleration of ultrahigh energy cosmic rays Martin Lemoine Institut d Astrophysique d de Paris CNRS, Université Pierre & Marie Curie 1 Acceleration Hillas criterion log 10 (B/1 G) 15

More information

Cosmic Rays, Photons and Neutrinos

Cosmic Rays, Photons and Neutrinos Cosmic Rays, Photons and Neutrinos Michael Kachelrieß NTNU, Trondheim [] Introduction Outline Plan of the lectures: Cosmic rays Galactic cosmic rays Basic observations Acceleration Supernova remnants Problems

More information

Observing GRB afterglows with SIMBOL-X

Observing GRB afterglows with SIMBOL-X Observing GRB afterglows with SIMBOL-X Frédéric Daigne (daigne@iap.fr) (Institut d Astrophysique de Paris - Université Paris 6) Gamma-ray bursts : prompt emission Highly variable time profile Non-thermal

More information

Galactic sources in GeV/TeV Astronomy and the new HESS Results

Galactic sources in GeV/TeV Astronomy and the new HESS Results Galactic sources in GeV/TeV Astronomy and the new HESS Results Martin Tluczykont for the HESS Collaboration LLR Ecole Polytechnique Joint Symposium on GeV-TeV Astrophysics in the GLAST Era Stanford, September

More information

Recent Observations of Supernova Remnants

Recent Observations of Supernova Remnants 1 Recent Observations of Supernova Remnants with VERITAS Tülün Ergin (U. of Massachusetts Amherst, MA) on behalf of the VERITAS Collaboration (http://veritas.sao.arizona.edu) 2 Contents Supernova Remnants

More information

The Secondary Universe

The Secondary Universe Secondary photons and neutrinos from distant blazars and the intergalactic magnetic fields UC Berkeley September 11, 2011 The talk will be based on A new interpretation of the gamma-ray observations of

More information

* What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made?

* What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made? * What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made? 1 * Galaxies contain massive black holes which power AGN * Gas accretes through a magnetized disk * Blazars are relativistically

More information

Models for the Spectral Energy Distributions and Variability of Blazars

Models for the Spectral Energy Distributions and Variability of Blazars Models for the Spectral Energy Distributions and Variability of Blazars Markus Böttcher Ohio University, Athens, OH, USA Fermi Meets Jansky Bonn, Germany, June 21, 2010 Outline: 1) Introduction to leptonic

More information

Cosmic Rays: Theory and Some Experimental Results.

Cosmic Rays: Theory and Some Experimental Results. Cosmic Rays: Theory and Some Experimental Results http://www.pp.rhul.ac.uk/~salvator/lectures/astro/index.html Some history first... Cosmic rays consist of high energy particles incident on Earth from

More information

High-energy neutrinos

High-energy neutrinos High-energy neutrinos Stefan Roth December 5, 2005 Abstract In the last decades, the interest in neutrinos raised strongly, not only because of the solution of the solar neutrino problem. This report is

More information

Ultrahigh Energy Cosmic Rays from Tidal Disruption Events: Origin, Survival, and Implications

Ultrahigh Energy Cosmic Rays from Tidal Disruption Events: Origin, Survival, and Implications arxiv: 1706.00391 accepted by PRD Ultrahigh Energy Cosmic Rays from Tidal Disruption Events: Origin, Survival, and Implications Bing T. Zhang Peking University, Penn State University Collaborator: Kohta

More information

Future Gamma-Ray Observations of Pulsars and their Environments

Future Gamma-Ray Observations of Pulsars and their Environments Future Gamma-Ray Observations of Pulsars and their Environments David J. Thompson NASA Goddard Space Flight Center GLAST Large Area Telescope Collaboration djt@egret.gsfc.nasa.gov D. Thompson 363 rd Heraeus

More information

Gamma-Ray Bursts - I. Stellar Transients / Gamma Ray Bursts I 1

Gamma-Ray Bursts - I. Stellar Transients / Gamma Ray Bursts I 1 Gamma-Ray Bursts - I Stellar Transients / Gamma Ray Bursts I 1 Gamma-ray bursts (GRBs).. are brief (10-2 10 +3 s) and bright transients of ~1-10 3 kev radiation happening a few times per day at arbitrary

More information

Cosmic Ray Astronomy. Qingling Ni

Cosmic Ray Astronomy. Qingling Ni Cosmic Ray Astronomy Qingling Ni What is Cosmic Ray? Mainly charged particles: protons (hydrogen nuclei)+helium nuclei+heavier nuclei What s the origin of them? What happened during their propagation?

More information

The Extreme Universe Rene A. Ong Univ. of Michigan Colloquium University of California, Los Angeles 23 March 2005

The Extreme Universe Rene A. Ong Univ. of Michigan Colloquium University of California, Los Angeles 23 March 2005 The Extreme Universe Rene A. Ong Univ. of Michigan Colloquium University of California, Los Angeles 23 March 2005 OUTLINE Introduction Messengers,, energy scales, & questions. Detecting Very High Energy

More information

TeV gamma-rays from UHECR sources 22 radio log10(e /ev ) 16 photon horizon γγ e + e CMB 14 IR kpc 10kpc 100kpc M pc Virgo 10M pc 100M pc G

TeV gamma-rays from UHECR sources 22 radio log10(e /ev ) 16 photon horizon γγ e + e CMB 14 IR kpc 10kpc 100kpc M pc Virgo 10M pc 100M pc G Gamma-rays from CR sources Michael Kachelrieß NTNU, Trondheim [] TeV gamma-rays from UHECR sources 22 radio 20 18 log10(e /ev ) 16 photon horizon γγ e + e CMB 14 IR 12 10 kpc 10kpc 100kpc M pc Virgo 10M

More information

The Discovery of Gamma-Ray Bursts

The Discovery of Gamma-Ray Bursts The Discovery of Gamma-Ray Bursts The serendipitous discovery of Gamma-Ray Bursts (GRBs) in the late sixties puzzled astronomers for several decades: GRBs are pulses of gamma-ray radiation (typically lasting

More information

The 2006 Giant Flare in PKS and Unidentified TeV Sources. Justin Finke Naval Research Laboratory 5 June 2008

The 2006 Giant Flare in PKS and Unidentified TeV Sources. Justin Finke Naval Research Laboratory 5 June 2008 The 2006 Giant Flare in PKS 2155-304 and Unidentified TeV Sources Justin Finke Naval Research Laboratory 5 June 2008 Outline Part I: The SSC Model Part II: The giant flare in PKS 2155-304 Part III: Blazars

More information

Probing the Structure of Jet Driven Core-Collapse Supernova and Long Gamma Ray Burst Progenitors with High Energy Neutrinos

Probing the Structure of Jet Driven Core-Collapse Supernova and Long Gamma Ray Burst Progenitors with High Energy Neutrinos Probing the Structure of Jet Driven Core-Collapse Supernova and Long Gamma Ray Burst Progenitors with High Energy Neutrinos Imre Bartos, 1, Basudeb Dasgupta, 2, and Szabolcs Márka 1 1 Department of Physics,

More information

Detection of transient sources with the ANTARES telescope. Manuela Vecchi CPPM

Detection of transient sources with the ANTARES telescope. Manuela Vecchi CPPM Detection of transient sources with the ANTARES telescope Manuela Vecchi CPPM Multimessenger Astronomy CRs astronomy feasible at energies higher than 1019 ev extragalactic origin UHECRs horizon limited

More information

High energy neutrinos from astrophysical sources: An upper bound

High energy neutrinos from astrophysical sources: An upper bound PHYSICAL REVIEW D, VOLUME 59, 023002 High energy neutrinos from astrophysical sources: An upper bound Eli Waxman* and John Bahcall Institute for Advanced Study, Princeton, New Jersey 08540 Received 10

More information

Diversity of Multi-wavelength Behavior of Relativistic Jet in 3C 279 Discovered During the Fermi Era

Diversity of Multi-wavelength Behavior of Relativistic Jet in 3C 279 Discovered During the Fermi Era Diversity of Multi-wavelength Behavior of Relativistic Jet in 3C 279 Discovered During the Fermi Era Rapid Variability of Blazar 3C 279 during Flaring States in 2013-2014 with Joint Fermi-LAT, NuSTAR,

More information

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector IceCube francis halzen why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector the discovery (and confirmation) of cosmic neutrinos from discovery to astronomy

More information

Interpretation of Early Bursts

Interpretation of Early Bursts Gamma-Ray Bursts Discovery The early years BATSE Fast versus slow bursts Uniformity and log N log S relation BeppoSAX and discovery of afterglows Redshift measurements Connection of long GRBs to supernovae

More information

arxiv:astro-ph/ v1 13 May 1999

arxiv:astro-ph/ v1 13 May 1999 Photomeson production in astrophysical sources arxiv:astro-ph/9905153v1 13 May 1999 1. Introduction A. Mücke 1, J.P. Rachen 2,3, R. Engel 4, R.J. Protheroe 1 and T. Stanev 4 (1) University of Adelaide

More information

The Mystery of Fast Radio Bursts and its possible resolution. Pawan Kumar

The Mystery of Fast Radio Bursts and its possible resolution. Pawan Kumar The Mystery of Fast Radio Bursts and its possible resolution Outline Pawan Kumar FRBs: summary of relevant observations Radiation mechanism and polarization FRB cosmology Wenbin Lu Niels Bohr Institute,

More information