In situ dust monitoring on the Moon an experimental approach

Size: px
Start display at page:

Download "In situ dust monitoring on the Moon an experimental approach"

Transcription

1 In situ dust monitoring on the Moon an experimental approach Luigi Colangeli 1, Pasquale Palumbo 2, Alessandro Aronica 1,3, Francesca Esposito 1, Elena Mazzotta Epifani 1, Vito Mennella 1, Alessandra Rotundi 2, Giampaolo Preti 4, Massimo Cosi 4, Roberto Destefanis 5, Marco Giuliani 5 1 INAF Osservatorio Astronomico di Capodimonte, Via Moiariello Napoli (Italy) 2 University Parthenope, Via A: De Gasperi Napoli (Italy) 3 University Federico II, Piazzale Tecchio 80, Napoli, Italy 4 Galileo Avionica, Via Albert Einstein 3, Campi Bisenzio (Fi), Italy 5 ThalesAlenia Space Functional Systems and Operations, Strada Antica di Collegno Torino (Italy) colangeli@na.astro.it

2 Content Dust on the Moon Dust types on the Moon Experimental approach for in situ analysis Every Apollo astronaut did it. They couldn't touch their noses to the lunar surface. But, after every moonwalk (or "EVA"), they would tramp the stuff back inside the lander. Moondust was incredibly clingy, sticking to boots, gloves and other exposed surfaces. No matter how hard they tried to brush their suits before re-entering the cabin, some dust (and sometimes a lot of dust) made its way inside. Once their helmets and gloves were off, the astronauts could feel, smell and even taste the Moon (The Smell of Moondust ).

3 Dust on the Moon Despite the fact that the Moon is an airless body, the space close to its surface is populated by different kinds of particles. Two main classes of particles can be identified: o meteoroids coming from interplanetary space and impinging onto the lunar surface o grains lifted from the regolithic surface, due to several local phenomena, Physical, chemical and dynamic properties of these particles are quite different.

4 Micro-meteorite impacts An impactor body of 10 cm at 20 km s -1 produces a plume 2.5 s has a conical shape; the density of the vapor core is gcm -3. After the plume expansion begins (Nemtchinov et al., 2000). During the expansion of the vapor plume, the process of condensation occurs condensation of grains (r» 3 μm) - speed ~ 3-5 km s -1 => escape from the moon surface (lunar escape velocity 2.38 km s -1 lunar dust grains (30 μm) lifted from the crater and the surrounding regolith layer - speed: km s -1. Mass ejected: times the impactor mass. Dust falls back in ~ 400 s / Max altitude ~ 130 km. L. Taylor

5 Meteoroid impacts on the Moon Meteoroid expected velocity: km s -1 (more recently 20 km s -1 ) Maximum reported velocity: 100 km s μm Cumulative meteoroid flux at Lunar surface Lunar secondary ejecta distribution West, Wright, and Euler, 1977

6 Meteoroid impacts on the Moon Laboratory simulations to calibrate microcrater size with impacting particle size, mass and energy. Cumulative meteoroid flux on the Moon of 4 (±3) x 10-5 particles m -2 s -1, fairly consistent with in situ satellite measurements Fechtig et al. 1977

7 Dust on the Moon L. Taylor

8 Dust on the Moon: regolith Size distribution for lunar regolith samples from Apollo 11,12, 14, and 15 all fall within this band (Smith and West, 1983)

9 Dust on the Moon: soil Mean grain sizes : μm Mean grain mass : 1 μg 1 g Mission Number of Analyses Medians * Means References Apollo μm Carrier (1973) Apollo μm Carrier (1973) Apollo μm McKay et al. (1972) Apollo μm Carrier (1973) Apollo μm Heiken et al. (1973) Apollo μm McKay et al. (1974) Luna μm Vinogradov (1971) Luna μm Vinogradov (1973)

10 Mc Coy Criswell 1974 Electrostatic lifting of dust Micron-sized dust can be transported by the interactions between charged dust particles and electric fields near the lunar surface (Borisov and Mall, 2006 and references within) Evidence: LEAM (Lunar Ejecta and Meteorite Experiment) sensor data from the Apollo 17, during its terminator passages It was argued that dust grains from the surface of the Moon acquire electric charges that allow them to levitate

11 Stubbs et al The dynamic fountain model Once the dust grain has attained sufficient charge to leave the lunar surface, it is accelerated upward through a sheath region with a height of order the plasma Debye length, λ D. The dust grains in question are so small that initially Fq >> Fg, such that the dust grains leave the sheath region with a large upward velocity (V exit ) and follow a near-parabolic trajectory back toward the lunar surface since the main force acting on them now is gravity. Surface charging in the model is driven by photoelectron currents on the dayside and plasma electron currents on the nightside. This reveals that dust can be lofted by the fountain effect at most locations on the lunar surface. At the terminator dust grains < 0.1 μm can be lofted to ~1 100 km.

12 Analysis of Dust Transport Rate of transport: ~ 6 x 10 7 times larger than the rate of primary meteoroids, and ~ 2 x 10 5 times larger than the rate of secondary micrometeoroids (Rennilson and Criswell, 1974). Better strategy to study lunar transient events: analysis instrumentation onboard lander and rover => lander would act as a control, while the rover investigated dust plasma-surface variations due to, for example, changes in topography and surface composition. The rover could reach not shaded regions of lunar surface to better investigate the phenomenon in case the landing site illumination should be compromised by darkened areas (e.g. caused by crater s edges). The mobility of the rover could place the experiment over regions characterized by finest regolith. Stubbs et al. 2005

13 Technologies from comet exploration 1P/Halley vista da Giotto (1986)

14 High speed dust capture in aerogel

15 DARLING Experiment (Direct Analysis and Retrieval in Low earth orbit of INterplanetary Grains) PI: P. Palumbo Approved by ESA (Life and Physical Sciences and Applied Research Projects) In situ active measurement + passive collection for return to Earth

16 GIADA Grain Impact Analyser and Dust Accumulator Quartz micro-balances for dust collection (MBS) Optical device for grain detection (GDS) Impact sensor (IS) Grain 5 Micro-balances (MBS) GDS lasers GDS receivers Electronics Impact sensor (IS)

17 Conclusion Scientific and operational importance of Moon dust characterisation is evident Technologies are already available for a thorough characterisation in situ of Moon dust families

18 Gerf Kern Particle hunters

Laboratory Studies of Lunar Dust Transport

Laboratory Studies of Lunar Dust Transport Laboratory Studies of Lunar Dust Transport X. Wang, M. Horanyi and S. Robertson Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) 4.15.2010 Lunar plasma Environment Evidence of electrostatic

More information

International Workshop on Cutting-Edge Plasma Physics July Plasma Physics of the Lunar Surface

International Workshop on Cutting-Edge Plasma Physics July Plasma Physics of the Lunar Surface 2155-8 International Workshop on Cutting-Edge Plasma Physics 5-16 July 2010 Plasma Physics of Mihaly Horanyi Dept. of Physics University of Colorado at Boulder USA Plasma Physics of Mihaly Horanyi Colorado

More information

Mian Abbas, Jim Spann, Andre LeClair NASA Marshall Space Flight Center, Huntsville, AL

Mian Abbas, Jim Spann, Andre LeClair NASA Marshall Space Flight Center, Huntsville, AL Lunar Dust Distributions From So Infrared Absorption Measurement With a Fourier Transform Spectrometer Mian Abbas, Jim Spann, Andre LeClair NASA Marshall Space Flight Center, Huntsville, AL John Brasunas,

More information

Electrostatic Dust Transport On Airless Planetary Bodies

Electrostatic Dust Transport On Airless Planetary Bodies Electrostatic Dust Transport On Airless Planetary Bodies Joseph Schwan Xu Wang, Hsiang-Wen Hsu, Eberhard Grün, Mihály Horányi Laboratory for Atmospheric and Space Physics (LASP), NASA/SSERVI s Institute

More information

Surface Charging g and Dust Transport Processes at the Moon and Mercury

Surface Charging g and Dust Transport Processes at the Moon and Mercury A Comparison between Surface Charging g and Dust Transport Processes at the Moon and Mercury Tim Stubbs Exploring Magnetosphere-Exosphere Coupling At Mercury: A Joint MESSENGER BepiColombo Workshop. University

More information

Modeling Spacecraft Charging and Charged Dust Particle Interactions on Lunar Surface

Modeling Spacecraft Charging and Charged Dust Particle Interactions on Lunar Surface Modeling Spacecraft Charging and Charged Dust Particle Interactions on Lunar Surface J. Wang 1, X. He 2, and Y. Cao 3 Virginia Polytechnic Institute and State University Blacksburg, VA 24061-0203 Abstract

More information

The Lunar Dust Cloud. Sascha Kempf 1,2, Mihaly Horanyi 1,2, Zoltan Sternovsky 1,2, Jürgen Schmidt 3, and Ralf Srama 4. Tuesday, June 26, 12

The Lunar Dust Cloud. Sascha Kempf 1,2, Mihaly Horanyi 1,2, Zoltan Sternovsky 1,2, Jürgen Schmidt 3, and Ralf Srama 4. Tuesday, June 26, 12 The Lunar Dust Cloud Sascha Kempf 1,2, Mihaly Horanyi 1,2, Zoltan Sternovsky 1,2, Jürgen Schmidt 3, and Ralf Srama 4 LDEX LDEX Prediction 10 1 10-1 10-3 Impact Rate (1/s) Terminators 120 80 40 Altitude

More information

Lunar Dust Levitation

Lunar Dust Levitation Lunar Dust Levitation Joshua E. Colwell 1 ; Scott R. Robertson 2 ; Mihály Horányi 3 ;XuWang 4 ; Andrew Poppe 5 ; and Patrick Wheeler 6 Abstract: Observations of a lunar horizon glow by several Surveyor

More information

Modeling, Theoretical and Observational Studies of the Lunar Photoelectron Sheath

Modeling, Theoretical and Observational Studies of the Lunar Photoelectron Sheath University of Colorado, Boulder CU Scholar Physics Graduate Theses & Dissertations Physics Spring 1-1-2011 Modeling, Theoretical and Observational Studies of the Lunar Photoelectron Sheath Andrew Reinhold

More information

Extralunar Materials in Lunar Regolith

Extralunar Materials in Lunar Regolith ExtralunarMaterialsinLunarRegolith AWhitePaperSubmittedfortheNRCDecadalSurvey Authors: MarcFries,JetPropulsionLaboratory,PasadenaCA JohnArmstrong,WeberStateUniversity,OgdenUT JamesAshley,ArizonaStateUniversity,TempeAZ

More information

Simulation of the lunar dusty plasma exosphere interactions with a lunar lander

Simulation of the lunar dusty plasma exosphere interactions with a lunar lander Simulation of the lunar dusty plasma exosphere interactions with a lunar lander Ilya A. Kuznetsov, S.L.G. Hess, Alexander V. Zakharov, Gennady G. Dolnikov, Andrey N. Lyash, Sergey I. Popel, S.I. Kopnin,

More information

Monitoring the atmospheric dust on Mars: the MicroMED sensor

Monitoring the atmospheric dust on Mars: the MicroMED sensor Monitoring the atmospheric dust on Mars: the MicroMED sensor Exomars Atmospheric Science and Missions Workshop Saariselka, Finland, 26-30 March 2017 F. Esposito(1), C.Molfese(1), F.Cozzolino(1), F.Cortecchia(2),

More information

Executive Summary (ES)

Executive Summary (ES) Executive Summary (ES) Document Ref: DPEM-ES Document Release date: 03/04/2015 Issue Name Function Date Signature Author(s) Esa Kallio Scientist 03.04.2015 Verified Jyri Heilimo Project Manager 03.04.2015

More information

Effect of Surface Topography on the Lunar Electrostatic Environment: 3D Plasma Particle Simulations

Effect of Surface Topography on the Lunar Electrostatic Environment: 3D Plasma Particle Simulations Effect of Surface Topography on the Lunar Electrostatic Environment: 3D Plasma Particle Simulations Yohei Miyake and Masaki N Nishino Education Center on Computational Science and Engineering, Kobe University

More information

ROSETTA. One Comet Rendezvous and two Asteroid Fly-bys. Rita Schulz Rosetta Project Scientist

ROSETTA. One Comet Rendezvous and two Asteroid Fly-bys. Rita Schulz Rosetta Project Scientist ROSETTA One Comet Rendezvous and two Asteroid Fly-bys Rita Schulz Rosetta Project Scientist Giotto Mission 1986 1P/Halley DS-1 Mission 2001 19P/Borrelly Stardust Mission 2004 81P/ Wild 2 Deep Impact Mission

More information

Robotic Lunar Exploration Scenario JAXA Plan

Robotic Lunar Exploration Scenario JAXA Plan Workshop May, 2006 Robotic Lunar Exploration Scenario JAXA Plan Tatsuaki HASHIMOTO JAXA 1 Question: What is Space Exploration? Answers: There are as many answers as the number of the people who answer

More information

Plasma and Dust-Plasma Environment at Bodies with and without Outgassing

Plasma and Dust-Plasma Environment at Bodies with and without Outgassing Plasma and Dust-Plasma Environment at Bodies with and without Outgassing Christine Hartzell University of Maryland 2018/10/29 Intro to Electrostatic Dust Motion Neutral PLasma E E Plasma Sheath λ D e -

More information

Moon and Mercury 3/8/07

Moon and Mercury 3/8/07 The Reading Assignment Chapter 12 Announcements 4 th homework due March 20 (first class after spring break) Reminder about term paper due April 17. Next study-group session is Monday, March 19, from 10:30AM-12:00Noon

More information

James Carpenter, Lunar Lander Office, Directorate of Human Spaceflight and Operations

James Carpenter, Lunar Lander Office, Directorate of Human Spaceflight and Operations The European Lunar Lander James Carpenter, Lunar Lander Office, Directorate of Human Spaceflight and Operations 1 International Context Apollo/Luna Era 1990-2006 2007-2012 2013-2020 Next Decade HITEN CLEMENTINE

More information

Appendix D. Thermal Modelling of Luna 27 Landing Site. Hannah Rana Vito Laneve Philipp Hager Thierry Tirolien (ESA/ESTEC, The Netherlands)

Appendix D. Thermal Modelling of Luna 27 Landing Site. Hannah Rana Vito Laneve Philipp Hager Thierry Tirolien (ESA/ESTEC, The Netherlands) 47 Appendix D Thermal Modelling of Luna 27 Landing Site Hannah Rana Vito Laneve Philipp Hager Thierry Tirolien (ESA/ESTEC, The Netherlands) 48 Thermal Modelling of Luna 27 Landing Site Abstract Luna 27,

More information

DUSTER. Aerosol collection in the stratosphere

DUSTER. Aerosol collection in the stratosphere Mem. S.A.It. Vol. 79, 853 c SAIt 2008 Memorie della DUSTER Aerosol collection in the stratosphere P. Palumbo 1, V. Della Corte 1, A. Rotundi 1, A. Ciucci 1, A. Aronica 2, J.R. Brucato 3, L. Colangeli 2,

More information

Spacecraft Environment Interaction Engineering

Spacecraft Environment Interaction Engineering Spacecraft Environment Interaction Engineering Electrodynamic Tether Lunar charging Future issues Mengu Cho Laboratory of Spacecraft Environment Interaction Engineering Kyushu Institute of Technology cho@ele.kyutech.ac.jp

More information

Phobos/Deimos State of Knowledge in Preparation for Future Exploration

Phobos/Deimos State of Knowledge in Preparation for Future Exploration Phobos/Deimos State of Knowledge in Preparation for Future Exploration Julie Castillo-Rogez Laboratory for Frozen Astromaterials, PI NIAC for Hybrid Rovers/Hoppers, Study Scientist Jet Propulsion Laboratory,

More information

Plans for an International Lunar Network

Plans for an International Lunar Network Science Mission Directorate Plans for an International Lunar Network Tom Morgan May 2008 ROBOTIC LUNAR EXPLORATION Starting no later than 2008, initiate a series of robotic missions to the Moon to prepare

More information

ESA s activities related to the meteoroid environment

ESA s activities related to the meteoroid environment ESA s activities related to the meteoroid environment G. Drolshagen, D. Koschny ESA/ESTEC, Noordwijk, The Netherlands Engineering flux models In-situ impacts Fireball database as part of SSA Sep 2010,

More information

Impact Age Dating. ASTRO 202 Lecture Thursday, February 14, Review. What is relative age dating? What is relative age dating?

Impact Age Dating. ASTRO 202 Lecture Thursday, February 14, Review. What is relative age dating? What is relative age dating? Review Impact Age Dating ASTRO 202 Lecture Thursday, February 14, 2008 Carbon-14, Potassium-Argon isotopic age determination: (1) Parent decays to daughter at some predictable rate (2) How much now? (3)

More information

Table of Contents Why? (10 min.) How? (2 min.) Q&A (3 min.)

Table of Contents Why? (10 min.) How? (2 min.) Q&A (3 min.) Table of Contents Why? (10 min.) How? (2 min.) Q&A (3 min.) Stanford University Dept. of Aeronautics & Astronautics 1 Modeling ADEOS-III Failure E = 10kV/m Assume magnetic field penetration into slots

More information

Jovian Meteoroid Environment Model JMEM: Dust from the Galilean Satellites

Jovian Meteoroid Environment Model JMEM: Dust from the Galilean Satellites Jovian Meteoroid Environment Model JMEM: Dust from the Galilean Satellites J. Schmidt, X. Liu (U Oulu) M. Sachse, F. Spahn (U Potsdam) R. Soja, R. Srama (U Stuttgart) N. Altobelli, C. Vallat (ESA) (images:

More information

Project report. Spacecraft Charging and Mitigation Methods. By Muhammad Azam. Abstract

Project report. Spacecraft Charging and Mitigation Methods. By Muhammad Azam. Abstract Umeå University October 7, 2009 Department of physics Space physics 7.5 ECTS. Project report Spacecraft Charging and Mitigation Methods By Muhammad Azam Muhammad.azam1@yahoo.com Supervisor Kjell Rönnmark

More information

Lunar Exploration Requirements and Data Acquisition Architectures

Lunar Exploration Requirements and Data Acquisition Architectures Lunar Exploration Requirements and Data Acquisition Architectures J. Plescia P. Spudis B. Bussey Johns Hopkins University / Applied Physics Laboratory 2005 International Lunar Conference The Vision and

More information

Stas Barabash 1 Yoshifumi Futaana 1 and the SELMA Team. Swedish Institute of Space Physics Kiruna, Sweden. DAP, Boulder, January, 2017

Stas Barabash 1 Yoshifumi Futaana 1 and the SELMA Team. Swedish Institute of Space Physics Kiruna, Sweden. DAP, Boulder, January, 2017 Stas Barabash 1 Yoshifumi Futaana 1 and the SELMA Team 1 Swedish Institute of Space Physics Kiruna, Sweden DAP, Boulder, January, 2017 1 SELMA core team 2 SELMA main scientific questions SELMA (Surface,

More information

Dusty plasmas in the lunar exosphere: Effects of meteoroids

Dusty plasmas in the lunar exosphere: Effects of meteoroids Journal of Physics: Conference Series PAPER OPEN ACCESS Dusty plasmas in the lunar exosphere: Effects of meteoroids To cite this article: S I Popel et al 2018 J. Phys.: Conf. Ser. 946 012142 View the article

More information

Giant Impact Theory Fission Theory Capture Theory Condensation Theory Colliding Planetisimals Theory Regolith Mountain and Mounds Craters and Impacts

Giant Impact Theory Fission Theory Capture Theory Condensation Theory Colliding Planetisimals Theory Regolith Mountain and Mounds Craters and Impacts By The Terminators Giant Impact Theory Fission Theory Capture Theory Condensation Theory Colliding Planetisimals Theory Regolith Mountain and Mounds Craters and Impacts Marias Rills and Rays Sources The

More information

GIADA: ITS STATUS AFTER THE ROSETTA CRUISE PHASE AND ON-GROUND ACTIVITY IN SUPPORT OF THE ENCOUNTER WITH COMET 67P/CHURYUMOV-GERASIMENKO

GIADA: ITS STATUS AFTER THE ROSETTA CRUISE PHASE AND ON-GROUND ACTIVITY IN SUPPORT OF THE ENCOUNTER WITH COMET 67P/CHURYUMOV-GERASIMENKO Journal of Astronomical Instrumentation (2014) 1350011 (11 pages) c World Scientific Publishing Company DOI: 10.1142/S2251171713500116 GIADA: ITS STATUS AFTER THE ROSETTA CRUISE PHASE AND ON-GROUND ACTIVITY

More information

German Aerospace Center, DLR, Institute of Planetary Research, Berlin, Germany 2. INAF Osservatorio Astronomico di Capodimonte Napoli, Italy 3

German Aerospace Center, DLR, Institute of Planetary Research, Berlin, Germany 2. INAF Osservatorio Astronomico di Capodimonte Napoli, Italy 3 EJSM Instrument Workshop, 18 20 January 2010, ESA/ESTEC Noordwijk (The Netherlands) Update on the study for a High Resolution Camera onboard the Jupiter Europa Orbiter (JEO) Proposing Institutions: DLR,

More information

Moon Express Advancing Commerce and Science

Moon Express Advancing Commerce and Science Moon Express Advancing Commerce and Science Paul D. Spudis Bob Richards Jack Burns Moon Express Inc. October, 2013 1 Moon Express Landers Possible Missions Surface Network 2 Mission Types: Small lander

More information

Scaling forces to asteroid surfaces: The role of cohesion

Scaling forces to asteroid surfaces: The role of cohesion arxiv:1002.2478v1 [astro-ph.ep] 12 Feb 2010 Scaling forces to asteroid surfaces: The role of cohesion D.J. Scheeres, C.M. Hartzell, P. Sánchez Department of Aerospace Engineering Sciences The University

More information

The Moon. Tidal Coupling Surface Features Impact Cratering Moon Rocks History and Origin of the Moon

The Moon. Tidal Coupling Surface Features Impact Cratering Moon Rocks History and Origin of the Moon The Moon Tidal Coupling Surface Features Impact Cratering Moon Rocks History and Origin of the Moon Earth Moon Semi-major Axis 1 A.U. 384 x 10 3 km Inclination 0 Orbital period 1.000 tropical year 27.32

More information

Jovian Meteoroid Environment Model JMEM

Jovian Meteoroid Environment Model JMEM Jovian Meteoroid Environment Model JMEM J. Schmidt, X Liu (U Oulu) M. Sachse, F. Spahn (U Potsdam) R. Soja, R. Srama (U Stuttgart) images: NASA) 1 Some Background 2 ring system and ring moons 3 four large

More information

Dust charging issues. Fabrice Cipriani, David Rodgers, Alain Hilgers. SPINE Meeting, ESTEC, 19/03/2013. ESA UNCLASSIFIED For Official Use

Dust charging issues. Fabrice Cipriani, David Rodgers, Alain Hilgers. SPINE Meeting, ESTEC, 19/03/2013. ESA UNCLASSIFIED For Official Use Dust charging issues Fabrice Cipriani, David Rodgers, Alain Hilgers SPINE Meeting, ESTEC, 19/03/2013 Dust issues in the context of Human and Robotic Exploration I think dust is probably one of our greatest

More information

Rationale of NASA Lunar Precursor Robotic Program (LPRP) for the VSE

Rationale of NASA Lunar Precursor Robotic Program (LPRP) for the VSE Rationale of NASA Lunar Precursor Robotic Program (LPRP) for the VSE (vs. I don t need nuthin but a map) Jeff Plescia, Ben Bussey, Paul Spudis, Tony Lavoie Applied Physics Laboratory, Johns Hopkins University

More information

9/15/16. Guiding Questions. Our Barren Moon. The Moon s Orbit

9/15/16. Guiding Questions. Our Barren Moon. The Moon s Orbit Our Barren Moon Guiding Questions 1. Is the Moon completely covered with craters? 2. Has there been any exploration of the Moon since the Apollo program in the 1970s? 3. Does the Moon s interior have a

More information

Brooks Observatory telescope observing

Brooks Observatory telescope observing Brooks Observatory telescope observing Mon. - Thurs., March 22 55, 8:30 to about 9:45 PM See the class web page for weather updates. This evening s session has been cancelled. Present your blue ticket

More information

Upgraded Program of Russian Lunar Landers: Studying of Lunar Poles

Upgraded Program of Russian Lunar Landers: Studying of Lunar Poles Upgraded Program of Russian Lunar Landers: Studying of Lunar Poles I.G.Mitrofanov, L.M.Zelenyi and V.I.Tret yakov Institute for Space Research, Moscow, Russia Slide - 1 Main Goals of the Program: 1. To

More information

A Study of Experimental Facility for Lunar Rover Development

A Study of Experimental Facility for Lunar Rover Development A Study of Experimental Facility for Lunar Rover Development S. C. Fan, Y. Q. Feng, Q. J. Zheng Beijing Institute of Spacecraft Environment Engineering, Beijing, China, 100029 fanshichao@tsinghua.org.cn

More information

NASA: BACK TO THE MOON

NASA: BACK TO THE MOON NASA: BACK TO THE MOON Don Campbell Cornell University "I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the moon and returning him

More information

Moon/Apollo. Question 1. Quiz, Quiz, Trade. Name the side of the moon that we can see from Earth. The NEAR Side

Moon/Apollo. Question 1. Quiz, Quiz, Trade. Name the side of the moon that we can see from Earth. The NEAR Side Moon/Apollo Quiz, Quiz, Trade Questions created by Liz LaRosa www.middleschoolscience.com 2015 Question 1 Name the side of the moon that we can see from Earth. The NEAR Side Question 2 Name the side of

More information

Moon Observation by means of Microwave Instruments on board of Small Lunar Orbiter. A preliminary Study

Moon Observation by means of Microwave Instruments on board of Small Lunar Orbiter. A preliminary Study Moon Observation by means of Microwave Instruments on board of Small Lunar Orbiter. A preliminary Study Gemma Manoni (1), Marco D Errico (2), Maria Rosaria Santovito (3), Luigi Colangeli (4), Claudio Scarchilli

More information

China s Chang E Program

China s Chang E Program China s Chang E Program --- Missions Objectives, Plans, Status, and Opportunity for Astronomy Maohai Huang Science and Application Research Center for Lunar and Deepspace Explorations National Astronomical

More information

Student Briefing: Lunar Electric Rover (LER) and Crew Activities, Black Point Lava Flow David A. Kring

Student Briefing: Lunar Electric Rover (LER) and Crew Activities, Black Point Lava Flow David A. Kring Student Briefing: Lunar Electric Rover (LER) and Crew Activities, Black Point Lava Flow David A. Kring December 2009 2009 Desert Research and Technology Studies (Desert RATS) Joe Kosmo, Mission Manager

More information

Our Barren Moon. Chapter Ten. Guiding Questions

Our Barren Moon. Chapter Ten. Guiding Questions Our Barren Moon Chapter Ten Guiding Questions 1. Is the Moon completely covered with craters? 2. Has there been any exploration of the Moon since the Apollo program in the 1970s? 3. Does the Moon s interior

More information

The SPE Foundation through member donations and a contribution from Offshore Europe

The SPE Foundation through member donations and a contribution from Offshore Europe Primary funding is provided by The SPE Foundation through member donations and a contribution from Offshore Europe The Society is grateful to those companies that allow their professionals to serve as

More information

Problem Set 3: Crater Counting

Problem Set 3: Crater Counting Problem Set 3: Crater Counting Introduction Impact craters are the dominant landforms on most of the solid surfaces in our solar system. These impact craters have formed on the surfaces over the 4.6 billion

More information

Collectible Projectosats

Collectible Projectosats Collectible Projectosats Darin Ragozzine Harvard University 03-05- 04 California Institute of Technology NASA Institute for Advanced Concepts Student Visions of the Future Program Advisor: Dr. Sarah Stewart

More information

Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA

Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA IAU340 1-day School, Saturday 24th February 2018 Jaipur India CMEs & their Consequences

More information

Earth s Moon. Origin and Properties of the Moon. The Moon s Motions

Earth s Moon. Origin and Properties of the Moon. The Moon s Motions Earth s Moon Earth s Moon Origin and Properties of the Moon The Moon s Motions Facts about the Moon We see the moon changes its appearances and position in the sky with approximately 30- day cycle. Unlike

More information

What is there in thee, moon, That thou shouldst move My heart so potently? By John Keats

What is there in thee, moon, That thou shouldst move My heart so potently? By John Keats What is there in thee, moon, That thou shouldst move My heart so potently? By John Keats The most popular view about how the moon formed was that a space object collided with the Earth. The material that

More information

The Moon. Part II: Solar System. The Moon. A. Orbital Motion. The Moon s Orbit. Earth-Moon is a Binary Planet

The Moon. Part II: Solar System. The Moon. A. Orbital Motion. The Moon s Orbit. Earth-Moon is a Binary Planet Part II: Solar System The Moon Audio update: 2014Feb23 The Moon A. Orbital Stuff B. The Surface C. Composition and Interior D. Formation E. Notes 2 A. Orbital Motion 3 Earth-Moon is a Binary Planet 4 1.

More information

Orbital evolution of meteoroids from short period comets

Orbital evolution of meteoroids from short period comets Astron. Astrophys. 324, 77 777 (1997) ASTRONOMY AND ASTROPHYSICS Orbital evolution of meteoroids from short period comets G. Cremonese 1, M. Fulle 2, F. Marzari 3, and V. Vanzani 3 1 Osservatorio Astronomico,

More information

A geologic process An erosional force A chronological tool An influence on biology

A geologic process An erosional force A chronological tool An influence on biology Impact Cratering: Physics and Chronology A geologic process An erosional force A chronological tool An influence on biology Impact features are common All solar system bodies with solid surfaces show evidence

More information

Where we are now. The Moon Chapters 8.2, 9. Topography. Outline

Where we are now. The Moon Chapters 8.2, 9. Topography. Outline Where we are now Introduction Little things - comets, asteroids, KBOs Slightly larger things - Moon Larger still - Terrestrial planets Really large - Jovian planets Jovian moons + Pluto Extrasolar Planets

More information

Traveling Into Space. Use Target Reading Skills. How Do Rockets Work? Building Vocabulary

Traveling Into Space. Use Target Reading Skills. How Do Rockets Work? Building Vocabulary Traveling Into Space This section explains how rockets work. It also describes the history of space exploration and explains how space shuttles, space stations, and space probes are used in exploring space

More information

The Solar System. Tour of the Solar System

The Solar System. Tour of the Solar System The Solar System Tour of the Solar System The Sun more later 8 planets Mercury Venus Earth more later Mars Jupiter Saturn Uranus Neptune Various other objects Asteroids Comets Pluto The Terrestrial Planets

More information

Assignment 2. Due March 4, 2019

Assignment 2. Due March 4, 2019 Assignment 2 Due March 4, 2019 Show all work and turn in answers on separate pages, not on these pages. Circle your final answers for clarity. Be sure to show/explain all of your reasoning and that your

More information

U.S. ROSETTA MISSION. October 9, 2014

U.S. ROSETTA MISSION. October 9, 2014 1 The Chase is On U.S. ROSETTA MISSION October 9, 2014 2 Rosetta is here today 3 Credit: NASA/JPL Caltech Comet Hale-Bopp NASA 4 ISON Composite Photo Nov 15, 2013; credit European Southern Observatory

More information

The Moon. Tides. Tides. Mass = 7.4 x 1025 g = MEarth. = 0.27 REarth. (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth

The Moon. Tides. Tides. Mass = 7.4 x 1025 g = MEarth. = 0.27 REarth. (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth The Moon Mass = 7.4 x 1025 g = 0.012 MEarth Radius = 1738 km = 0.27 REarth Density = 3.3 g/cm3 (Earth 5.5 g/cm3) Gravity = 1/6 that of Earth Dark side of the moon We always see the same face of the Moon.

More information

Priorities in Lunar Science

Priorities in Lunar Science Priorities in Lunar Science Dr. Barbara Cohen VP40, Lunar Precursor Robotics Program MSFC Barbara.A.Cohen@nasa.gov mare/maria basaltic Impact basins highlands feldspathic Aitken crater Impact craters

More information

67P/C-G inner coma dust properties from 2.2 au inbound to 2.0 au outbound to the Sun

67P/C-G inner coma dust properties from 2.2 au inbound to 2.0 au outbound to the Sun Advance Access publication 2016 October 4 doi:10.1093/mnras/stw2529 67P/C-G inner coma dust properties from 2.2 au inbound to 2.0 au outbound to the Sun V. Della Corte, 1 A. Rotundi, 1,2 M. Fulle, 3 S.

More information

Probing Gravity with 2nd Generation Lunar Laser Ranging

Probing Gravity with 2nd Generation Lunar Laser Ranging Probing Gravity with 2nd Generation Lunar Laser Ranging Manuele Martini (INFN-LNF) for the MoonLIGHT Collaboration D. G. Currie (PI) University of Maryland at College Park, MD, USA R. Vittori ESA-EAC Astronaut,

More information

Launch Completion Chapter Name Type date date[ described

Launch Completion Chapter Name Type date date[ described Reference Material ]60 Appendix I Appendix I. Lunar Spaceflights. Successful missions are indicate d by an asterisk; dates are Greenwich Mean T im e. 1958 Launch Completion Chapter Name Type date date[

More information

LUNAR SURFACE: DUST DYNAMICS AND REGOLITH MECHANICS

LUNAR SURFACE: DUST DYNAMICS AND REGOLITH MECHANICS LUNAR SURFACE: DUST DYNAMICS AND REGOLITH MECHANICS J. E. Colwell, 1,2 S. Batiste, 3 M. Horányi, 3,4 S. Robertson, 4 and S. Sture 5 Received 16 September 2005; revised 2 August 2006; accepted 4 December

More information

ROSETTA: ESA's Comet Orbiter and Lander Mission. Hermann Boehnhardt Max-Planck Institute for Solar System Research Katlenburg-Lindau, Germany

ROSETTA: ESA's Comet Orbiter and Lander Mission. Hermann Boehnhardt Max-Planck Institute for Solar System Research Katlenburg-Lindau, Germany ROSETTA: ESA's Comet Orbiter and Lander Mission Hermann Boehnhardt Max-Planck Institute for Solar System Research Katlenburg-Lindau, Germany ROSETTA in a Nutshell Science goal: Understanding the origin

More information

Investigations of the Photoemission from Glass Dust Grains

Investigations of the Photoemission from Glass Dust Grains WDS'14 Proceedings of Contributed Papers Physics, 361 37, 214. ISBN 978-8-7378-276-4 MATFYZPRESS Investigations of the Photoemission from Glass Dust Grains L. Nouzák, I. Richterová, J. Pavlů, Z. Němeček,

More information

Lecture Outlines. Chapter 8. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 8. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 8 Astronomy Today 7th Edition Chaisson/McMillan Chapter 8 The Moon and Mercury Units of Chapter 8 8.1 Orbital Properties 8.2 Physical Properties 8.3 Surface Features on the Moon

More information

The escape speed for an object leaving the surface of any celestial body of mass M and radius d is

The escape speed for an object leaving the surface of any celestial body of mass M and radius d is 8-3 Escape Speed Vocabulary Escape Speed: The minimum speed an object must possess in order to escape from the gravitational pull of a body. In Chapter 6, you worked with gravitational potential energy

More information

The 3MV Dust Accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

The 3MV Dust Accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies The 3MV Dust Accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies Anthony Shu University of Colorado Colorado Center for Lunar Dust and Atmospheric Studies CIPS Seminar April 22 nd,

More information

Planetary ENA imaging:! where we are, where to go! Stas Barabash Swedish Institute of Space Physics Kiruna, Sweden

Planetary ENA imaging:! where we are, where to go! Stas Barabash Swedish Institute of Space Physics Kiruna, Sweden Planetary ENA imaging:! where we are, where to go! Stas Barabash Swedish Institute of Space Physics Kiruna, Sweden 1 Planetary ENA imaging overview. Where we are now! Object ---------! Difficulties: from

More information

Photoelectron Energy Distribution from an Au Target Measured by a Gridless Faraday Cup

Photoelectron Energy Distribution from an Au Target Measured by a Gridless Faraday Cup WDS'3 Proceedings of Contributed Papers, Part II, 48 53, 23. ISBN 978-8-7378-25- MATFYZPRESS Photoelectron Energy Distribution from an Au Target Measured by a Gridless Faraday Cup L. Nouzák, J. Pavlů,

More information

LUSCAT (Lunar Soil Composition Analysis Telescope): An Instrument To Detect X And Gamma Ray From The Moon

LUSCAT (Lunar Soil Composition Analysis Telescope): An Instrument To Detect X And Gamma Ray From The Moon (Lunar Soil Composition Analysis Telescope): An Instrument To Detect X And Gamma Ray From The Moon P. Battaglia 1, A. Bonati 1, P.H. Leutenegger 1, M. Pecora 1,F.Perotti 2, G. Villa 2, C. Labanti 3 Template

More information

Laboratory Report. Customer s Name. Academic Institution

Laboratory Report. Customer s Name. Academic Institution Running head: LABORATORY REPORT Laboratory Report Customer s Name Academic Institution LABORATORY REPORT 2 Laboratory Report 1. The accepted value for gravity (g) on Earth is 9.8 m/s 2. Is gravity constant?

More information

9.2 Worksheet #3 - Circular and Satellite Motion

9.2 Worksheet #3 - Circular and Satellite Motion 9.2 Worksheet #3 - Circular and Satellite Motion 1. A car just becomes airborne as it comes off the crest of a bridge that has circular cross section of radius 78.0 m. What is the speed of the car? 2.

More information

4.8 Space Research and Exploration. Getting Into Space

4.8 Space Research and Exploration. Getting Into Space 4.8 Space Research and Exploration Getting Into Space Astronauts are pioneers venturing into uncharted territory. The vehicles used to get them into space are complex and use powerful rockets. Space vehicles

More information

THE EUROPEAN LUNAR LANDER: ROBOTIC OPERATIONS IN A HARSH ENVIRONMENT

THE EUROPEAN LUNAR LANDER: ROBOTIC OPERATIONS IN A HARSH ENVIRONMENT THE EUROPEAN LUNAR LANDER: ROBOTIC OPERATIONS IN A HARSH ENVIRONMENT ESA/ESTEC, NOORDWIJK, THE NETHERLANDS / 12 14 APRIL 2011 Richard Fisackerly (1), James Carpenter (1), Diego De Rosa (1), Bérengère Houdou

More information

CHAPTER 11. We continue to Learn a lot about the Solar System by using Space Exploration

CHAPTER 11. We continue to Learn a lot about the Solar System by using Space Exploration CHAPTER 11 We continue to Learn a lot about the Solar System by using Space Exploration Section 11.1 The Sun page 390 -Average sized star -Millions of km away -300,000 more massive then Earth, 99% of all

More information

LADEE Science Results and Implications for Exploration

LADEE Science Results and Implications for Exploration LADEE Science Results and Implications for Exploration R. C. Elphic 1, M. Horanyi 2, A. Colaprete 1, M. Benna 3, P. R. Mahaffy 3, G. T. Delory 1,7, S. K. Noble 4, J. S. Halekas 5, D. M. Hurley 6, T. J.

More information

Assignment 4. Due TBD

Assignment 4. Due TBD Assignment 4 Due TBD Show all work and turn in answers on separate pages, not on these pages. Circle your final answers for clarity. Be sure to show/explain all of your reasoning and that your work is

More information

Sodium recycling at Europa: what do we learn from the sodium cloud variability?

Sodium recycling at Europa: what do we learn from the sodium cloud variability? Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L19201, doi:10.1029/2008gl035061, 2008 Sodium recycling at Europa: what do we learn from the sodium cloud variability? F. Cipriani, 1

More information

Luna Resource / Glob Missions: Starting list of potential landing sites

Luna Resource / Glob Missions: Starting list of potential landing sites Luna Resource / Glob Missions: Starting list of potential landing sites A.T. Basilevsky, A.M. Abdrakhimov, M.A. Ivanov, R.O. Kuzmin, E.N. Slyuta Vernadsky Institute of Geochemistry & Analytical Chemistry,

More information

Exploring the Moon & Asteroids: A Synergistic Approach

Exploring the Moon & Asteroids: A Synergistic Approach Exploring the Moon & Asteroids: A Synergistic Approach Clive R. Neal Dept. Civil Eng. & Geological Sci. University of Notre Dame Notre Dame, IN 46556, USA neal.1@nd.edu Perspective Perspective SCIENCE

More information

General Properties of the Moon *

General Properties of the Moon * OpenStax-CNX module: m59831 1 General Properties of the Moon * OpenStax Astronomy This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 1 Learning Objectives

More information

ASTRONOMY. Chapter 9 CRATERED WORLDS PowerPoint Image Slideshow

ASTRONOMY. Chapter 9 CRATERED WORLDS PowerPoint Image Slideshow ASTRONOMY Chapter 9 CRATERED WORLDS PowerPoint Image Slideshow FIGURE 9.1 Apollo 11 Astronaut Edwin Buzz Aldrin on the Surface of the Moon. Because there is no atmosphere, ocean, or geological activity

More information

LUNAR STRATIGRAPHY AND SEDIMENTOLOGY.

LUNAR STRATIGRAPHY AND SEDIMENTOLOGY. LUNAR STRATIGRAPHY AND SEDIMENTOLOGY. Developments in Solar System- and Space Science, 3 Editors: Z. KOPAL and A.G.W. CAMERON Developments in Solar System- and Space Science, 3 LUNAR STRATIGRAPHY AND SEDIMENTOLOGY

More information

Overview of Solar System

Overview of Solar System Overview of Solar System The solar system is a disk Rotation of sun, orbits of planets all in same direction. Most planets rotate in this same sense. (Venus, Uranus, Pluto are exceptions). Angular momentum

More information

The ESA scientific program

The ESA scientific program The ESA scientific program Luigi Colangeli Science and Robotic Exploration Directorate Head, ESA Solar System Missions Division and Coordinator, ESA Solar System Missions ESA-ESTEC 1 The ESA fleet in Astronomy

More information

Icarus. Scaling forces to asteroid surfaces: The role of cohesion. D.J. Scheeres a, *, C.M. Hartzell a, P. Sánchez a, M. Swift b.

Icarus. Scaling forces to asteroid surfaces: The role of cohesion. D.J. Scheeres a, *, C.M. Hartzell a, P. Sánchez a, M. Swift b. Icarus 210 (2010) 968 984 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Scaling forces to asteroid surfaces: The role of cohesion D.J. Scheeres a, *,

More information

Mercury = Hermes Mythology. Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff

Mercury = Hermes Mythology. Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff Mercury = Hermes Mythology Planet Mercury, Element, Mercredi God of Commerce, Messenger God, guide to Hades Winged sandals and staff Mercury s Orbit Mercury never seen more than 28 from the sun Revolves/orbits

More information

Dust Mitigation Technologies for Lunar Exploration

Dust Mitigation Technologies for Lunar Exploration Dust Mitigation Technologies for Lunar Exploration Carlos I. Calle, Ph.D., NASA Kennedy Space Center J.M. McFall, ASRC Aerospace, Kennedy Space Center C.R. Buhler, Ph.D. ASRC Aerospace, Kennedy Space Center

More information

Planetary Impacts Planetary Impacts

Planetary Impacts Planetary Impacts Planetary Impacts Planetary Impacts Impacts between planets & asteroid-sized bodies have played an important role in determining the planets properties. In the case of Mercury, a large head-on impact is

More information

Lecture Outlines. Chapter 14. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 14. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 14 Astronomy Today 7th Edition Chaisson/McMillan Chapter 14 Solar System Debris Units of Chapter 14 14.1 Asteroids What Killed the Dinosaurs? 14.2 Comets 14.3 Beyond Neptune 14.4

More information

Analysis of impact craters on Mercury s surface

Analysis of impact craters on Mercury s surface Mem. S.A.It. Suppl. Vol. 11, 124 c SAIt 2007 Memorie della Supplementi Analysis of impact craters on Mercury s surface E. Martellato 1, G. Cremonese 1, F. Marzari 2, M. Massironi 3, M.T. Capria 4 (1) INAF

More information