Searching for gravitational waves with LIGO

Size: px
Start display at page:

Download "Searching for gravitational waves with LIGO"

Transcription

1 Searching for gravitational waves with LIGO An introduction to LIGO and a few things gravity wave Michael Landry LIGO Hanford Observatory California Institute of Technology Spokane Astronomical Society Nov 2, 2007

2 LIGO in 30 seconds 1. Gravitational Waves: Not EM waves, not particles 2. Gravitational Waves: Never before directly detected 2

3 Gravitational wave astronomy in 30 seconds 3

4 Talk overview Sources» What are gravitational waves?» Why look for them?» Sources: what makes them? Observatories» LIGO. Networks. Interferometers» Overview of a Michelson interferometer» Some LIGO installations» Strain curves and Science mode running Briefly! Einstein@home: a search for continuous gravitational waves 4

5 Gravity: the Old School Sir Isaac Newton, who invented the theory of gravity and all the math needed to understand it 5

6 Newton s theory: good, but not perfect! Mercury s orbit precesses around the sun-each year the perihelion shifts 560 arcseconds per century But this is 43 arcseconds per century too much! (discovered 1859) This is how fast the second hand on a clock would move if one day lasted 4.3 billion years! Urbain Le Verrier, discoverer of Mercury s perihelion shift anomaly Image from St. Andrew s College Mercury Sun Image from Jose Wudka perihelion6

7 Einstein s Answer: General Relativity Picture from Northwestern U. Space and time (spacetime) are curved. Matter causes this curvature Space tells matter how to move This looks to us like gravity 7

8 Space is curved. Really. Not only the path of matter, but even the path of light is affected by gravity from massive objects A massive object shifts apparent position of a star Einstein Cross Photo credit: NASA and ESA 8

9 Important Signature of Gravitational Waves Gravitational waves shrink space along one axis perpendicular to the wave direction as they stretch space along another axis perpendicular both to the shrink axis and to the wave direction. 9

10 Why look for Gravitational Radiation? Because it s there! (presumably) Test General Relativity:» Quadrupolar radiation? Travels at speed of light?» Unique probe of strong-field gravity Gain different view of Universe:» Sources cannot be obscured by dust / stellar envelopes» Detectable sources some of the most interesting, least understood in the Universe» Opens up entirely new non-electromagnetic spectrum 10

11 What s left behind when a star dies? Stars live Stars die Ordinary star Supernova And sometimes they leave behind exotic corpses Neutron stars, pulsars (credit : W. Feimer/STSI) Black holes (credit : NASA/CXC/A. Hobart) 11

12 What might make Gravitational Waves? Compact binary inspiral: chirps» NS-NS waveforms are well described» BH-BH need better waveforms Supernovae / GRBs: bursts» burst signals in coincidence with signals in electromagnetic radiation / neutrinos» all-sky untriggered searches too Cosmological Signal: stochastic background Pulsars in our galaxy: periodic» search for observed neutron stars» all-sky search (computing challenge) 12

13 Compact binary inspirals Sources I Neutron-star binary inspiral: Black-hole binary inspiral: 13

14 Orbital decay : strong indirect evidence Neutron Binary System Hulse & Taylor PSR Timing of pulsars Emission of gravitational waves 17 / sec ~ 8 hr Neutron Binary System separated by ~2x10 6 km m 1 = 1.44m ; m 2 = 1.39m ; ε = Prediction from general relativity spiral in by 3 mm/orbit rate of change orbital period 14

15 Orbital decay : strong indirect evidence Neutron Binary System Hulse & Taylor PSR Timing of pulsars Emission of gravitational waves 17 / sec See Tests of General Relativity from Timing the Double Pulsar Science Express, Sep The only double-pulsar system know, PSR J A/B provides an update to this result. Orbital parameters of the double-pulsar system agree with those predicted by GR to 0.05% ~ 8 hr Neutron Binary System separated by ~2x10 6 km m 1 = 1.44m ; m 2 = 1.39m ; ε = Prediction from general relativity spiral in by 3 mm/orbit rate of change orbital period 15

16 Burst sources: supernovae Sources II Spacequake should preceed optical display by ½ day Leaves behind compact stellar core, e.g., neutron star, black hole Strength of waves depends on asymmetry in collapse Credit: Dana Berry, NASA Observed neutron star motions indicate some asymmetry present Simulations do not succeed from initiation to explosions 16

17 Supernova: Death of a Massive Star Spacequake should preceed optical display by ½ day Leaves behind compact stellar core, e.g., neutron star, black hole Strength of waves depends on asymmetry in collapse Credit: Dana Berry, NASA Observed neutron star motions indicate some asymmetry present Simulations do not succeed from initiation to explosions 17

18 Stochastic background Sources III A stochastic GW background may be: i) an analog of the CMB (discovered by Penzias and Wilson, measured by COBE and WMAP) ii) a summation of sources from a more recent (astrophysical) epoch Credit: Bell Telephone Laboratories Credit: WMAP science team, NASA 18

19 Neutron and quark stars Sources IV Continuous GW may be due to: i) neutron stars ii) quark stars with some form of asymmetry 19

20 Gravitational-Wave Emission May be the Regulator for Accreting Neutron Stars Neutron stars spin up when they accrete matter from a companion Observed neutron star spins max out at ~700 Hz Gravitational waves are suspected to balance angular momentum from accreting matter Credit: Dana Berry, NASA 20

21 Gravitational-Wave Emission May be the Regulator for Accreting Neutron Stars Neutron stars spin up when they accrete matter from a companion Observed neutron star spins max out at ~700 Hz Gravitational waves are suspected to balance angular momentum from accreting matter Credit: Dana Berry, NASA 21

22 Sketch of a Michelson Interferometer End Mirror End Mirror Beam Splitter Laser Viewing Screen 22

23 Gravitational Wave Detection Suspended Interferometers» Suspended mirrors in free-fall» Michelson IFO is natural GW detector Fabry-Perot cavity 4km» Broad-band response (~50 Hz to few khz) g.w. output port» Waveform information (e.g., chirp reconstruction) power recycling mirror LIGO design length sensitivity: m 23

24 Sensing the Effect of a Gravitational Wave Gravitational wave changes arm lengths and amount of light in signal Change in arm length is meters, or about 2/10,000,000,000,000,000 inches Laser signal 24

25 LIGO sites LIGO (Washington) (4km and 2km) LIGO (Louisiana) (4km) Funded by the National Science Foundation; operated by Caltech and MIT; the research focus for more than 500 LIGO Scientific Collaboration members worldwide. 25

26 The LIGO Observatories LIGO Hanford Observatory (LHO) H1 : 4 km arms H2 : 2 km arms 10 ms LIGO Livingston Observatory (LLO) L1 : 4 km arms Adapted from The Blue Marble: Land Surface, Ocean Color and Sea Ice at visibleearth.nasa.gov NASA Goddard Space Flight Center Image by Reto Stöckli (land surface, shallow water, clouds). Enhancements by Robert Simmon (ocean color, compositing, 3D globes, animation). Data and technical support: MODIS Land Group; MODIS Science Data Support Team; MODIS Atmosphere Group; MODIS Ocean Group Additional data: USGS EROS Data Center (topography); USGS Terrestrial Remote Sensing Flagstaff Field Center (Antarctica); Defense Meteorological Satellite Program (city lights) 26

27 An International Network of Interferometers Simultaneously detect signal (within msec) LIGO GEO Virgo TAMA detection confidence locate the sources AIGO (proposed) decompose the polarization of gravitational waves 27

28 Vacuum Chambers Provide Quiet Homes for Mirrors View inside Corner Station Standing at vertex beam splitter 28

29 All-Solid-State Nd:YAG Laser Custom-built 10 W Nd:YAG Laser, joint development with Lightwave Electronics (now commercial product) Cavity for defining beam geometry, joint development with Stanford Frequency reference cavity (inside oven) 29

30 Core Optics Suspension and Control Optics suspended as simple pendulums Shadow sensors & voice-coil actuators provide damping and control forces Mirror is balanced on 30 micron diameter wire to 1/100 th degree of arc 30

31 Evacuated Beam Tubes Provide Clear Path for Light Vacuum required: <10-9 Torr 31

32 Evacuated Beam Tubes Provide Clear Path for Light Bakeout facts: 4 loops to return current, 1 gauge 1700 amps to reach temperature bake temp 140 degrees C for 30 days 400 thermocouples to ensure even heating each site has 4.8km of weld seams full vent of vacuum: ~ 1GJ of energy Vacuum required: <10-9 Torr 32

33 Seismic Isolation Springs and Masses damped spring cross section 33

34 LIGO detector facilities Seismic Isolation Multi-stage (mass & springs) optical table support gives 10 6 suppression Pendulum suspension gives additional 1 / f 2 suppression above ~1 Hz Transfer function Horizontal 10-6 Vertical Frequency (Hz) 34

35 Interferometer Length Control System (photodiode) 4km Multiple Input / Multiple Output Three tightly coupled cavities Employs adaptive control system that evaluates plant evolution and reconfigures feedback paths and gains during lock acquisition 35

36 Calibrated output: LIGO noise history 80kpc 1Mpc 15Mpc S1 S2 S3 S4 S5 - current Curves are calibrated interferometer output: spectral content of the gravity-wave channel 36

37 The road to design sensitivity 37

38 Time line Inauguration First Lock Full Lock all IFO Now 4K strain noise at 150 Hz [Hz-1/2] Engineering E2 Science E3 E5 E7 E8 E9 E10 E11 S1 S2 First Science Data S3 S4 Coincident science runs with GEO and TAMA S5 Runs 38

39 LIGO Hanford control room 39

40 Like but for LIGO/GEO data American Physical Society (APS) publicized as part of World Year of Physics (WYP) 2005 activities Use infrastructure/help from developers for the distributed computing parts (BOINC) Goal: pulsar searches using ~1 million clients. Support for Windows, Mac OSX, Linux clients From our own clusters we can get ~ thousands of CPUs. From Einstein@home hope to get order(s) of magnitude more at low cost Great outreach and science education tool Currently : ~160,000 active users corresponding to about 85Tflops, about 200 new users/day 40

41 What would a pulsar look like? Post-processing step: find points on the sky and in frequency that exceeded threshold in many of the sixty ten-hour segments Software-injected fake pulsar signal is recovered below Simulated (software) pulsar signal in S3 data 41

42 Final S3 analysis results WITH INJECTIONS WITHOUT INJECTIONS Data: hour stretches of the best H1 data Post-processing step on centralized server: find points in sky and frequency that exceed threshold in many of the sixty ten-hour segments analyzed Hz band shows no evidence of strong pulsar signals in sensitive part of the sky, apart from the hardware and software injections. There is nothing in our backyard. Outliers are consistent with instrumental lines. All significant artifacts away from r.n=0 are ruled out by follow-up studies. 42

43 Summary remarks LIGO achieved design sensitivity in Nov 05, a major milestone LIGO/GEO then launched the coincident S5 science run, which is to ran until Sep 30, 2007 Host of searches underway: analyses ongoing of S3, S4, and S5 data no detections yet! Future:» Enhanced LIGO upgrade slated for fall 2007-spring 2009, factor of 2-3 in sensitivity improvement» Advanced LIGO upgrade slated for ~2011 to dramatically improve sensitivity We should be detecting gravitational waves regularly within the next 10 years! 43

44 A hope for the near future: The Beginning of a New Astronomy LIGO - Virgo LIGO+ Virgo+ AdvLIGO AdvVirgo 44

LIGO: The Laser Interferometer Gravitational Wave Observatory

LIGO: The Laser Interferometer Gravitational Wave Observatory LIGO: The Laser Interferometer Gravitational Wave Observatory Credit: Werner Benger/ZIB/AEI/CCT-LSU Michael Landry LIGO Hanford Observatory/Caltech for the LIGO Scientific Collaboration (LSC) http://www.ligo.org

More information

The Laser Interferometer Gravitational-Wave Observatory In Operation

The Laser Interferometer Gravitational-Wave Observatory In Operation The Laser Interferometer Gravitational-Wave Observatory In Operation "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) Reported on behalf of LIGO colleagues by Fred

More information

Expanding Horizons: Yours. Mine. The Universe s

Expanding Horizons: Yours. Mine. The Universe s Expanding Horizons: Yours. Mine. The Universe s Supernova remnant Cas A Credit: NASA/CXC/GSFC/U. Hwang et al. Dr. Michael Landry LIGO Hanford Observatory California Institute of Technology What this talk

More information

Searching for Ripples in Space-Time with Your Home Computer"

Searching for Ripples in Space-Time with Your Home Computer Einstein@Home: Searching for Ripples in Space-Time with Your Home Computer Eric Myers LIGO Hanford Observatory! Hanford, Washington! Amateur Astronomers Association of New York 11 April 2008 Overview q

More information

Gravitational Waves and LIGO

Gravitational Waves and LIGO Gravitational Waves and LIGO Ray Frey, University of Oregon 1. GW Physics and Astrophysics 2. How to detect GWs The experimental challenge 3. Prospects June 16, 2004 R. Frey QNet 1 General Relativity Some

More information

Gravity -- Studying the Fabric of the Universe

Gravity -- Studying the Fabric of the Universe Gravity -- Studying the Fabric of the Universe Barry C. Barish Caltech "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) AAAS Annual Meeting Denver, Colorado 17-Feb-03

More information

Discovery of Gravita/onal Waves

Discovery of Gravita/onal Waves Discovery of Gravita/onal Waves Avto Kharchilava QuarkNet Workshop, August 2016 https://www.ligo.caltech.edu/news/ligo20160211 Gravity Einstein s General theory of relativity: Gravity is a manifestation

More information

The Search for Gravitational Waves

The Search for Gravitational Waves The Search for Gravitational Waves Fred Raab, LIGO Hanford Observatory, on behalf of the LIGO Scientific Collaboration 21 October 2008 Outline What are gravitational waves? What do generic detectors look

More information

Looking for ripples of gravity with LIGO. Phil Willems, California Institute of Technology. LIGO Laboratory 1 G G

Looking for ripples of gravity with LIGO. Phil Willems, California Institute of Technology. LIGO Laboratory 1 G G Looking for ripples of gravity with LIGO Phil Willems, California Institute of Technology LIGO Laboratory 1 LIGO: -an experiment to measure gravitational waves from the cosmos LIGO Laboratory 2 Laser Interferometer

More information

The LIGO Experiment Present and Future

The LIGO Experiment Present and Future The LIGO Experiment Present and Future Keith Riles University of Michigan For the LIGO Scientific Collaboration APS Meeting Denver May 1 4, 2004 LIGO-G040239-00-Z What are Gravitational Waves? Gravitational

More information

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M Status of LIGO David Shoemaker LISA Symposium 13 July 2004 Ground-based interferometric gravitational-wave detectors Search for GWs above lower frequency limit imposed by gravity gradients» Might go as

More information

The Quest to Detect Gravitational Waves

The Quest to Detect Gravitational Waves The Quest to Detect Gravitational Waves Peter Shawhan California Institute of Technology / LIGO Laboratory What Physicists Do lecture Sonoma State University March 8, 2004 LIGO-G040055-00-E Outline Different

More information

Laser Interferometer Gravitationalwave Observatory LIGO Industrial Physics Forum. Barry Barish 7 November 2000 LIGO-G9900XX-00-M

Laser Interferometer Gravitationalwave Observatory LIGO Industrial Physics Forum. Barry Barish 7 November 2000 LIGO-G9900XX-00-M Laser Interferometer Gravitationalwave Observatory LIGO 2000 Industrial Physics Forum Barry Barish 7 November 2000 Sir Isaac Newton Perhaps the most important scientist of all time! Invented the scientific

More information

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04 LIGO Status and Advanced LIGO Plans Barry C Barish OSTP 1-Dec-04 Science Goals Physics» Direct verification of the most relativistic prediction of general relativity» Detailed tests of properties of gravitational

More information

Status and Prospects for LIGO

Status and Prospects for LIGO Status and Prospects for LIGO Crab Pulsar St Thomas, Virgin Islands Barry C. Barish Caltech 17-March-06 LIGO Livingston, Louisiana 4 km 17-March-06 Confronting Gravity - St Thomas 2 LIGO Hanford Washington

More information

Gravitars, GWENs, and LIGO

Gravitars, GWENs, and LIGO Gravitars, GWENs, and LIGO Michael Landry LIGO Hanford Observatory for the LIGO Scientific Collaboration (LSC) http://www.ligo.org Anasazi petroglyph: wikipedia.org Columbia Basin College April 22, 2009

More information

The Search for Gravitational Waves

The Search for Gravitational Waves The Search for Gravitational Waves Barry Barish Caltech University of Iowa 16-Sept-02 Newton Universal Gravitation! Three laws of motion and law of gravitation (centripetal force) disparate phenomena»

More information

Gearing up for Gravitational Waves: the Status of Building LIGO

Gearing up for Gravitational Waves: the Status of Building LIGO Gearing up for Gravitational Waves: the Status of Building LIGO Frederick J. Raab, LIGO Hanford Observatory LIGO s Mission is to Open a New Portal on the Universe In 1609 Galileo viewed the sky through

More information

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 1 Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 Joan Centrella Chief, Gravitational Astrophysics Laboratory NASA/GSFC Summer School on Nuclear and Particle Astrophysics: Connecting

More information

Probing for Gravitational Waves

Probing for Gravitational Waves Probing for Gravitational Waves LIGO Reach with LIGO AdLIGO Initial LIGO Barry C. Barish Caltech YKIS2005 Kyoto University 1-July-05 Einstein s Theory of Gravitation a necessary consequence of Special

More information

Probing the Universe for Gravitational Waves

Probing the Universe for Gravitational Waves Probing the Universe for Gravitational Waves Barry C. Barish Caltech Crab Pulsar Georgia Tech 26-April-06 General Relativity the essential idea G μν = 8πΤ μν Gravity is not a force, but a property of space

More information

LIGO: On the Threshold of Gravitational-wave Astronomy

LIGO: On the Threshold of Gravitational-wave Astronomy LIGO: On the Threshold of Gravitational-wave Astronomy Stan Whitcomb LIGO/Caltech IIT, Kanpur 18 December 2011 Outline of Talk Quick Review of GW Physics and Astrophysics LIGO Overview» Initial Detectors»

More information

The Present Gravitational Wave Detection Effort

The Present Gravitational Wave Detection Effort The Present Gravitational Wave Detection Effort Keith Riles University of Michigan LIGO Scientific Collaboration International Conference on Topics in Astroparticle and Underground Physics Rome July 1,

More information

LIGO Present and Future. Barry Barish Directory of the LIGO Laboratory

LIGO Present and Future. Barry Barish Directory of the LIGO Laboratory LIGO Present and Future Barry Barish Directory of the LIGO Laboratory LIGO I Schedule and Plan LIGO I has been built by LIGO Lab (Caltech & MIT) 1996 Construction Underway (mostly civil) 1997 Facility

More information

LIGO and the Quest for Gravitational Waves

LIGO and the Quest for Gravitational Waves LIGO and the Quest for Gravitational Waves "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) LIGO-G030523-00-M Barry C. Barish Caltech UT Austin 24-Sept-03 1 A Conceptual

More information

+56'0+0)614#8+6#6+10#.#8'5U +056'+0510).+0'5(41/6*'0+8'45' Barry C. Barish

+56'0+0)614#8+6#6+10#.#8'5U +056'+0510).+0'5(41/6*'0+8'45' Barry C. Barish +56'0+0)614#8+6#6+10#.#8'5U +056'+0510).+0'5(41/6*'0+8'45' Barry C. Barish .$'46 +056'+0 +45##%'9610 Perhaps the most important scientist of all time! Invented the scientific method in Principia Greatest

More information

Long-term strategy on gravitational wave detection from European groups

Long-term strategy on gravitational wave detection from European groups Longterm strategy on gravitational wave detection from European groups Barry Barish APPEC Meeting London, UK 29Jan04 International Interferometer Network Simultaneously detect signal (within msec) LIGO

More information

Gravitational Waves: From Einstein to a New Science

Gravitational Waves: From Einstein to a New Science Gravitational Waves: From Einstein to a New Science LIGO-G1602199 Barry C Barish Caltech - LIGO 1.3 Billion Years Ago 2 Black Holes Regions of space created by super dense matter from where nothing can

More information

Gravity. Newtonian gravity: F = G M1 M2/r 2

Gravity. Newtonian gravity: F = G M1 M2/r 2 Gravity Einstein s General theory of relativity : Gravity is a manifestation of curvature of 4- dimensional (3 space + 1 time) space-time produced by matter (metric equation? g μν = η μν ) If the curvature

More information

Probing the Universe for Gravitational Waves

Probing the Universe for Gravitational Waves Probing the Universe for Gravitational Waves "Colliding Black Holes" Credit: National Center for Supercomputing Applications (NCSA) Barry C. Barish Caltech Argonne National Laboratory 16-Jan-04 LIGO-G030523-00-M

More information

Overview Ground-based Interferometers. Barry Barish Caltech Amaldi-6 20-June-05

Overview Ground-based Interferometers. Barry Barish Caltech Amaldi-6 20-June-05 Overview Ground-based Interferometers Barry Barish Caltech Amaldi-6 20-June-05 TAMA Japan 300m Interferometer Detectors LIGO Louisiana 4000m Virgo Italy 3000m AIGO Australia future GEO Germany 600m LIGO

More information

Newtonian instantaneous action at a distance General Relativity information carried by gravitational radiation at the speed of light

Newtonian instantaneous action at a distance General Relativity information carried by gravitational radiation at the speed of light Modern View of Gravitation Newtonian instantaneous action at a distance G µ = 8 µ # General Relativity information carried by gravitational radiation at the speed of light Gravitational Waves GR predicts

More information

Probing the Universe for Gravitational Waves

Probing the Universe for Gravitational Waves Probing the Universe for Gravitational Waves Barry C. Barish Caltech Crab Pulsar University of Illinois 16-Feb-06 General Relativity the essential idea G μν = 8πΤ μν Gravity is not a force, but a property

More information

LIGO and the Search for Gravitational Waves

LIGO and the Search for Gravitational Waves LIGO and the Search for Gravitational Waves Barry Barish Caltech Princeton University 2-May-02 Einstein s Theory of Gravitation Newton s Theory instantaneous action at a distance Einstein s Theory information

More information

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics Gravitational Wave Astronomy the sound of spacetime Marc Favata Kavli Institute for Theoretical Physics What are gravitational waves? Oscillations in the gravitational field ripples in the curvature of

More information

LIGO Observational Results

LIGO Observational Results LIGO Observational Results Patrick Brady University of Wisconsin Milwaukee on behalf of LIGO Scientific Collaboration LIGO Science Goals Direct verification of two dramatic predictions of Einstein s general

More information

LIGO and the Search for Gravitational Waves

LIGO and the Search for Gravitational Waves LIGO and the Search for Gravitational Waves Barry Barish University of Toronto 26-March-02 Sir Isaac Newton Universal Gravitation! Three laws of motion and law of gravitation (centripetal force) disparate

More information

Gravitational Wave Astronomy. Lee Lindblom California Institute of Technology

Gravitational Wave Astronomy. Lee Lindblom California Institute of Technology Gravitational Wave Astronomy Lee Lindblom California Institute of Technology Los Angeles Valley College Astronomy Group 20 May 2007 What is Einstein s picture of gravity? What are gravitational waves?

More information

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G

Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy. Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G Advanced LIGO, Advanced VIRGO and KAGRA: Precision Measurement for Astronomy Stefan Ballmer For the LVC Miami 2012 Dec 18, 2012 LIGO-G1201293 Outline Introduction: What are Gravitational Waves? The brief

More information

The LIGO Project: a Status Report

The LIGO Project: a Status Report The LIGO Project: a Status Report LIGO Hanford Observatory LIGO Livingston Observatory Laura Cadonati LIGO Laboratory, MIT for the LIGO Scientific Collaboration Conference on Gravitational Wave Sources

More information

Gravitational Wave Astronomy

Gravitational Wave Astronomy Gravitational Wave Astronomy Giles Hammond SUPA, University of Glasgow, UK on behalf of the LIGO Scientific Collaboration and the Virgo Collaboration 14 th Lomonosov conference on Elementary Particle Physics

More information

AN OVERVIEW OF LIGO Adapted from material developed by Brock Wells Robert L. Olds Junior High School, Connell, WA August 2001

AN OVERVIEW OF LIGO Adapted from material developed by Brock Wells Robert L. Olds Junior High School, Connell, WA August 2001 AN OVERVIEW OF LIGO Adapted from material developed by Brock Wells Robert L. Olds Junior High School, Connell, WA August 2001 The purpose of this guide is to provide background about the LIGO project at

More information

State of LIGO. Barry Barish. S1 sensitivities. LSC Meeting LLO Hanford, WA 10-Nov GEO -- L 2km -- H 4km -- L 4km LIGO-G M

State of LIGO. Barry Barish. S1 sensitivities. LSC Meeting LLO Hanford, WA 10-Nov GEO -- L 2km -- H 4km -- L 4km LIGO-G M S1 sensitivities -- GEO -- L 2km -- H 4km -- L 4km State of h 0 LIGO Barry Barish LSC Meeting LLO Hanford, WA 10-Nov-03 Goals and Priorities LSC -Aug 02 Interferometer performance» Integrate commissioning

More information

LIGO and Detection of Gravitational Waves Barry Barish 14 September 2000

LIGO and Detection of Gravitational Waves Barry Barish 14 September 2000 LIGO and Detection of Gravitational Waves Barry Barish 14 September 2000 Einstein s Theory of Gravitation Newton s Theory instantaneous action at a distance Einstein s Theory information carried by gravitational

More information

Advanced LIGO, LIGO-Australia and the International Network

Advanced LIGO, LIGO-Australia and the International Network Advanced LIGO, LIGO-Australia and the International Network Stan Whitcomb LIGO/Caltech IndIGO - ACIGA meeting on LIGO-Australia 8 February 2011 Gravitational Waves Einstein in 1916 and 1918 recognized

More information

Gravitational wave cosmology Lecture 2. Daniel Holz The University of Chicago

Gravitational wave cosmology Lecture 2. Daniel Holz The University of Chicago Gravitational wave cosmology Lecture 2 Daniel Holz The University of Chicago Thunder and lightning Thus far we ve only seen the Universe (and 95% of it is dark: dark matter and dark energy). In the the

More information

Exploring the Warped Side of the Universe

Exploring the Warped Side of the Universe Exploring the Warped Side of the Universe Nergis Mavalvala Department of Physics Massachusetts Institute of Technology MIT Alumni Club, Washington DC October 2014 Einstein s legacies A story about our

More information

Development of ground based laser interferometers for the detection of gravitational waves

Development of ground based laser interferometers for the detection of gravitational waves Development of ground based laser interferometers for the detection of gravitational waves Rahul Kumar ICRR, The University of Tokyo, 7 th March 2014 1 Outline 1. Gravitational waves, nature & their sources

More information

Gravitational Wave Detectors: Back to the Future

Gravitational Wave Detectors: Back to the Future Gravitational Wave Detectors: Back to the Future Raffaele Flaminio National Astronomical Observatory of Japan University of Tokyo, March 12th, 2017 1 Summary Short introduction to gravitational waves (GW)

More information

The Advanced LIGO detectors at the beginning of the new gravitational wave era

The Advanced LIGO detectors at the beginning of the new gravitational wave era The Advanced LIGO detectors at the beginning of the new gravitational wave era Lisa Barsotti MIT Kavli Institute LIGO Laboratory on behalf of the LIGO Scientific Collaboration LIGO Document G1600324 LIGO

More information

LISA: Probing the Universe with Gravitational Waves. Tom Prince Caltech/JPL. Laser Interferometer Space Antenna LISA

LISA: Probing the Universe with Gravitational Waves. Tom Prince Caltech/JPL.  Laser Interferometer Space Antenna LISA : Probing the Universe with Gravitational Waves Tom Caltech/JPL Laser Interferometer Space Antenna http://lisa.nasa.gov Gravitational Wave Astronomy is Being Born LIGO, VIRGO, GEO, TAMA 4000m, 3000m, 2000m,

More information

Gravitational Wave Detection from the Ground Up

Gravitational Wave Detection from the Ground Up Gravitational Wave Detection from the Ground Up Peter Shawhan (University of Maryland) for the LIGO Scientific Collaboration LIGO-G080393-00-Z From Simple Beginnings Joe Weber circa 1969 AIP Emilio Segre

More information

Searching for gravitational waves. with LIGO detectors

Searching for gravitational waves. with LIGO detectors Werner Berger, ZIB, AEI, CCT Searching for gravitational waves LIGO Hanford with LIGO detectors Gabriela González Louisiana State University On behalf of the LIGO Scientific Collaboration KITP Colloquium,

More information

Searching for Stochastic Gravitational Wave Background with LIGO

Searching for Stochastic Gravitational Wave Background with LIGO Searching for Stochastic Gravitational Wave Background with LIGO Vuk Mandic University of Minnesota 09/21/07 Outline LIGO Experiment:» Overview» Status» Future upgrades Stochastic background of gravitational

More information

GRAVITATIONAL WAVES MOHAMMAD ISHTIAQ

GRAVITATIONAL WAVES MOHAMMAD ISHTIAQ GRAVITATIONAL WAVES MOHAMMAD ISHTIAQ Introduction It all started with Einstein s theory of general relativity What is Einstein s theory of general relativity? Theory which predicted that objects cause

More information

Synergy with Gravitational Waves

Synergy with Gravitational Waves Synergy with Gravitational Waves Alexandre Le Tiec and Jérôme Novak Laboratoire Univers et Théories Observatoire de Paris / CNRS LIGO, Virgo, ( elisa, ET,... ( What is a gravitational wave? A gravitational

More information

Gravity Waves and Black Holes

Gravity Waves and Black Holes Gravity Waves and Black Holes Mike Whybray Orwell Astronomical Society (Ipswich) 14 th March 2016 Overview Introduction to Special and General Relativity The nature of Black Holes What to expect when Black

More information

LIGO Detection of Gravitational Waves. Dr. Stephen Ng

LIGO Detection of Gravitational Waves. Dr. Stephen Ng LIGO Detection of Gravitational Waves Dr. Stephen Ng Gravitational Waves Predicted by Einstein s general relativity in 1916 Indirect confirmation with binary pulsar PSR B1913+16 (1993 Nobel prize in physics)

More information

Searching for gravitational waves

Searching for gravitational waves Searching for gravitational waves Matteo Barsuglia (barsuglia@apc.univ-paris7.fr) CNRS - Laboratoire Astroparticule et Cosmologie 1 The gravitational waves (GW) Perturbations of the space-time metrics

More information

AJW, CERN, Aug 11, 2006 NASA / GSFC

AJW, CERN, Aug 11, 2006 NASA / GSFC NASA / GSFC Gravitational Waves and LIGO Gravitational waves Detection of GW s The LIGO project and its sister projects Astrophysical sources Conclusions "Colliding Black Holes" National Center for Supercomputing

More information

The gravitational wave detector VIRGO

The gravitational wave detector VIRGO The gravitational wave detector VIRGO for the VIRGO collaboration Raffaele Flaminio Laboratoire d Annecy-le-Vieux de Physique des Particules (LAPP) IN2P3 - CNRS Summary I. A bit of gravitational wave physics

More information

Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers

Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers Prospects for joint transient searches with LOFAR and the LSC/Virgo gravitational wave interferometers Ed Daw - University of Sheffield On behalf of the LIGO Scientific Collaboration and the Virgo collaboration

More information

LIGO Status and Plans. Barry Barish / Gary Sanders 13-May-02

LIGO Status and Plans. Barry Barish / Gary Sanders 13-May-02 LIGO Status and Plans Barry Barish / Gary Sanders 13-May-02 LIGO overall strategy! Strategy presented to NSB by Thorne / Barish in 1994! Search with a first generation interferometer where detection of

More information

On the minimum flexing of arms of LISA (Laser Interferometer Space Antenna)

On the minimum flexing of arms of LISA (Laser Interferometer Space Antenna) On the minimum flexing of arms of LISA (Laser Interferometer Space Antenna) Dr. SUCHETA KOSHTI IISER, Pune, India. ICSW-7, IPM, Tehran,Iran Jun4, 27 Motivation Einstein s General theory of relativity (GR)

More information

Present and Future. Nergis Mavalvala October 09, 2002

Present and Future. Nergis Mavalvala October 09, 2002 Gravitational-wave Detection with Interferometers Present and Future Nergis Mavalvala October 09, 2002 1 Interferometric Detectors Worldwide LIGO TAMA LISA LIGO VIRGO GEO 2 Global network of detectors

More information

Results from LIGO Searches for Binary Inspiral Gravitational Waves

Results from LIGO Searches for Binary Inspiral Gravitational Waves Results from LIGO Searches for Binary Inspiral Gravitational Waves Peter Shawhan (LIGO Laboratory / Caltech) For the LIGO Scientific Collaboration American Physical Society April Meeting May 4, 2004 Denver,

More information

Overview of Gravitational Wave Physics [PHYS879]

Overview of Gravitational Wave Physics [PHYS879] Overview of Gravitational Wave Physics [PHYS879] Alessandra Buonanno Maryland Center for Fundamental Physics Joint Space-Science Institute Department of Physics University of Maryland Content: What are

More information

Gravitational Waves Listening to the Universe. Teviet Creighton LIGO Laboratory California Institute of Technology

Gravitational Waves Listening to the Universe. Teviet Creighton LIGO Laboratory California Institute of Technology Gravitational Waves Listening to the Universe Teviet Creighton LIGO Laboratory California Institute of Technology Summary So far, nearly all our knowledge of the Universe comes from electromagnetic radiation.

More information

How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves

How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves M. Tacca Laboratoire AstroParticule et Cosmologie (APC) - Paris Journée GPhys - 2016 July 6th General

More information

AN OVERVIEW OF LIGO Brock Wells Robert L. Olds Junior High School, Connell, WA August 2001 LIGO

AN OVERVIEW OF LIGO Brock Wells Robert L. Olds Junior High School, Connell, WA August 2001 LIGO AN OVERVIEW OF LIGO Brock Wells Robert L. Olds Junior High School, Connell, WA August 2001 The purpose of this guide is to provide background about the LIGO project at the Hanford site. Hopefully this

More information

What can LIGO detect? Abstract

What can LIGO detect? Abstract What can LIGO detect? Adam Getchell Physics Department, University of California, Davis, 95616 Abstract This briey reviews the literature on gravitational wave astronomy, including theoretical basis, experimental

More information

832 Barry C. Barish interesting applications is the search for dark matter in the form of dark massive objects called Machos. Such dark objects are be

832 Barry C. Barish interesting applications is the search for dark matter in the form of dark massive objects called Machos. Such dark objects are be Brazilian Journal of Physics, vol. 32, no. 4, December, 2002 831 The Science and Detection of Gravitational Waves Barry C. Barish California Institute of Technology LIGO 18-34 1201 E. California Blvd.

More information

Preparation of the data analysis of the gravitational wave space antenna.

Preparation of the data analysis of the gravitational wave space antenna. Preparation of the data analysis of the gravitational wave space antenna. 1) LISA (Laser Interferometer Space Antenna) Why? 2)How? 1 Frequency Limitation Seismic noise cannot be cancelled at low-frequency

More information

Gravitational Waves & Intermediate Mass Black Holes. Lee Samuel Finn Center for Gravitational Wave Physics

Gravitational Waves & Intermediate Mass Black Holes. Lee Samuel Finn Center for Gravitational Wave Physics Gravitational Waves & Intermediate Mass Black Holes Lee Samuel Finn Center for Gravitational Wave Physics Outline What are gravitational waves? How are they produced? How are they detected? Gravitational

More information

Gravitational wave detection. K.A. Strain

Gravitational wave detection. K.A. Strain Gravitational wave detection K.A. Strain Contents gravitational waves: introduction sources of waves, amplitudes and rates basics of GW detection current projects future plans and hopes Gravitational Waves:

More information

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves July 25, 2017 Bonn Seoul National University Outline What are the gravitational waves? Generation of

More information

The Detection of Gravitational Waves with LIGO. Barry C. Barish. California Institute of Technology, Pasadena, CA 91125

The Detection of Gravitational Waves with LIGO. Barry C. Barish. California Institute of Technology, Pasadena, CA 91125 The Detection of Gravitational Waves with LIGO Barry C. Barish California Institute of Technology, Pasadena, CA 91125 Gravitational wave emission is expected to arise from a variety of astrophysical phenomena.

More information

Cracking the Mysteries of the Universe. Dr Janie K. Hoormann University of Queensland

Cracking the Mysteries of the Universe. Dr Janie K. Hoormann University of Queensland Cracking the Mysteries of the Universe Dr Janie K. Hoormann University of Queensland Timeline of Cosmological Discoveries 16c BCE: flat earth 5-11c CE: Sun at the centre 1837: Bessel et al. measure distance

More information

GRAVITATIONAL COLLAPSE

GRAVITATIONAL COLLAPSE GRAVITATIONAL COLLAPSE Landau and Chandrasekhar first realised the importance of General Relativity for Stars (1930). If we increase their mass and/or density, the effects of gravitation become increasingly

More information

Gravitational Waves: Sources and Detection

Gravitational Waves: Sources and Detection Anthony Alberti 1 Gravitational Waves: Sources and Detection Artist s rendition of LISA Anthony Alberti 2 Einstein s theory of general relativity describes the force of gravity as the physical warping

More information

Gravity s Standard Sirens. B.S. Sathyaprakash School of Physics and Astronomy

Gravity s Standard Sirens. B.S. Sathyaprakash School of Physics and Astronomy Gravity s Standard Sirens B.S. Sathyaprakash School of Physics and Astronomy What this talk is about Introduction to Gravitational Waves What are gravitational waves Gravitational wave detectors: Current

More information

Binary Pulsar Discovery using Global Volunteer Compu9ng. How has already jumped from physics to astronomy

Binary Pulsar Discovery using Global Volunteer Compu9ng. How has already jumped from physics to astronomy Binary Pulsar Discovery using Global Volunteer Compu9ng How Einstein@Home has already jumped from physics to astronomy Eric Myers June 2012 Summary: LIGO is a physics experiment which is attempting to

More information

Squeezed Light Techniques for Gravitational Wave Detection

Squeezed Light Techniques for Gravitational Wave Detection Squeezed Light Techniques for Gravitational Wave Detection July 6, 2012 Daniel Sigg LIGO Hanford Observatory Seminar at TIFR, Mumbai, India G1200688-v1 Squeezed Light Interferometry 1 Abstract Several

More information

Gravitational Waves & Precision Measurements

Gravitational Waves & Precision Measurements Gravitational Waves & Precision Measurements Mike Smith 1 -20 2 HOW SMALL IS THAT? Einstein 1 meter 1/1,000,000 3 1,000,000 smaller Wavelength of light 10-6 meters 1/10,000 4 10,000 smaller Atom 10-10

More information

5/7/2018. Black Holes. Type II.

5/7/2018. Black Holes. Type II. Black Holes Type II https://www.youtube.com/watch?v=ctnkk7tnkq8 1 Scientific American 22, 82 (2013) Scientific American 22, 82 (2013) 2 First detection of gravitational waves Recommended reading Physics

More information

Gravitational-Wave Astronomy - a Long Time Coming Livia Conti, for the Virgo Collaboration Fred Raab, for the LIGO Scientific Collaboration

Gravitational-Wave Astronomy - a Long Time Coming Livia Conti, for the Virgo Collaboration Fred Raab, for the LIGO Scientific Collaboration Gravitational-Wave Astronomy - a Long Time Coming Livia Conti, for the Virgo Collaboration Fred Raab, for the LIGO Scientific Collaboration LIGO Hanford, WA LIGO Livingston, LA Virgo (Cascina, Italy) What

More information

Figure 1: An example of the stretching and contracting of space-time caused by a gravitational wave.

Figure 1: An example of the stretching and contracting of space-time caused by a gravitational wave. SEARCHING FOR GRAVITATIONAL WAVES Nelson Christensen, for the LIGO Scientific Collaboration Physics and Astronomy, Carleton College, Northfield, Minnesota 55057 USA Abstract The search for gravitational

More information

Gravitational Waves and LIGO

Gravitational Waves and LIGO Gravitational Waves and LIGO Gravitational waves Detection of GW s The LIGO project and its sister projects Astrophysical sources LIGO search for GWs Conclusions "Colliding Black Holes" National Center

More information

Finding Black Holes with Lasers

Finding Black Holes with Lasers Finding Black Holes with Lasers Andreas Freise Royal Institute of Great Brtitain 18.02.2013 [Image shows guide laser at Allgäu Public Observatory in Ottobeuren, Germany. Credit: Martin Kornmesser] LIGO-G1300827

More information

LIGO s continuing search for gravitational waves

LIGO s continuing search for gravitational waves LIGO s continuing search for gravitational waves Patrick Brady University of Wisconsin-Milwaukee LIGO Scientific Collaboration LIGO Interferometers LIGO is an interferometric detector» A laser is used

More information

LIGO I status and advanced LIGO proposal

LIGO I status and advanced LIGO proposal LIGO I status and advanced LIGO proposal Hiro Yamamoto LIGO Lab / Caltech LIGO I» basic design» current status advanced LIGO» outline of the proposal» technical issues GW signals and data analysis ICRR

More information

LIGO s Detection of Gravitational Waves from Two Black Holes

LIGO s Detection of Gravitational Waves from Two Black Holes LIGO s Detection of Gravitational Waves from Two Black Holes Gregory Harry Department of Physics, American University February 17,2016 LIGO-G1600274 GW150914 Early History of Gravity Aristotle Kepler Laplace

More information

The structure of spacetime. Eli Hawkins Walter D. van Suijlekom

The structure of spacetime. Eli Hawkins Walter D. van Suijlekom The structure of spacetime Eli Hawkins Walter D. van Suijlekom Einstein's happiest thought After Einstein formulated Special Relativity, there were two problems: Relativity of accelerated motion The monstrous

More information

Confronting Theory with Gravitational Wave Observations

Confronting Theory with Gravitational Wave Observations Gravitation: A Decennial Perspective Confronting Theory with Gravitational Wave Observations B F Schutz Max Planck Institute for Gravitational Physics () Golm/Potsdam Germany The AEI congratulates The

More information

11/1/17. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard

11/1/17. Important Stuff (Section 001: 9:45 am) Important Stuff (Section 002, 1:00 pm) 14.1 White Dwarfs. Chapter 14: The Bizarre Stellar Graveyard 11/1/17 Important Stuff (Section 001: 9:45 am) The Second Midterm is Thursday, November 9 The Second Midterm will be given in a different room: Willey 175 Bring 2 pencils and a photo-id. In accordance

More information

LIGO Update

LIGO Update LIGO Update ------------ The Search for Gravitational Waves Barry Barish Caltech Trustees 10-Sept-02 ! Goals Laser Interferometer Gravitational-wave Observatory» First direct detection of gravitational

More information

Laser Interferometer Gravitational-Wave Observatory (LIGO)! A Brief Overview!

Laser Interferometer Gravitational-Wave Observatory (LIGO)! A Brief Overview! Laser Interferometer Gravitational-Wave Observatory (LIGO) A Brief Overview Sharon Brunett California Institute of Technology Pacific Research Platform Workshop October 15, 2015 Credit: AEI, CCT, LSU LIGO

More information

Large-scale Cryogenic Gravitational wave Telescope (LCGT) TAMA/CLIO/LCGT Collaboration Kazuaki KURODA

Large-scale Cryogenic Gravitational wave Telescope (LCGT) TAMA/CLIO/LCGT Collaboration Kazuaki KURODA 29-March, 2009 JPS Meeting@Rikkyo Univ Large-scale Cryogenic Gravitational wave Telescope (LCGT) TAMA/CLIO/LCGT Collaboration Kazuaki KURODA Overview of This talk Science goal of LCGT First detection of

More information

Advanced LIGO: Context and Overview

Advanced LIGO: Context and Overview Advanced LIGO Advanced LIGO: Context and Overview Gravitational waves offer a remarkable opportunity to see the universe from a new perspective, providing access to astrophysical insights that are available

More information

Gravitational wave detection with Virgo and LIGO experiment - Case of the long bursts

Gravitational wave detection with Virgo and LIGO experiment - Case of the long bursts Gravitational wave detection with Virgo and LIGO experiment - Case of the long bursts Samuel Franco Supervisor: Patrice Hello Laboratoire de l Accélérateur Linéaire (Orsay) 06/12/2013 Samuel Franco (LAL)

More information