GASEOUS JETS IN COMET HALE BOPP (1995 O1) 1. Introduction

Size: px
Start display at page:

Download "GASEOUS JETS IN COMET HALE BOPP (1995 O1) 1. Introduction"

Transcription

1 GASEOUS JETS IN COMET HALE BOPP (1995 O1) SUSAN M. LEDERER, HUMBERTO CAMPINS and DAVID J. OSIP Department of Astronomy, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL 32611, USA ( lederer@astro.ufl.edu) DAVID G. SCHLEICHER Lowell Observatory, 1400 Mars Hill Road, Flagstaff, AZ 86001, USA (Received 16 February 1998; Accepted 13 April 1998) Abstract. We report the identification of gas jets in comet Hale Bopp in OH, NH, CN, C 2 and C 3. This is the first time OH and NH jets without an obvious optical dust jet counterpart have been identified in narrowband comet images. We also confirm the existence of CN jets as reported by Larson et al. (1997) and Mueller et al. (1998). Jet features can be seen in the March and April 1997 datasets, approximately a month before and after perihelion. Our results contribute to the understanding of both the chemical properties of the comet as well as the physical mechanisms necessary to produce these features. Keywords: Comets, Hale Bopp, coma morphology, narrowband imaging, jets 1. Introduction The first report of collimated gas jets without an associated dust jet was presented by A Hearn et al. (1986a) for Comet Halley. Since then, CN, C 2,andC 3 jets have been reported in Comet Halley by several authors (A Hearn et al., 1986a,b; Cosmovici et al., 1988; Hoban et al., 1988). A Hearn et al. (1986a,b) noted that one of these jets appears to correlate with a similar feature in the dust images while two others do not. Their examination of the former jet indicates that it originates from the same region of the nucleus as the dust jet, but follows a different path after ejection. These observations suggest that the gases in these jets are not emitted by the dust responsible for the scattered continuum. In fact, A Hearn et al. (1986a,b) attribute these to a sub micron CHON particle extended source which is not apparent at visible wavelengths. In contrast, two jets reported by Clairemidi et al. (1990a,b, 1992) were detected not only in CN, C 2,C 3, and dust, but also in OH and NH spectro-imaging (using the Vega 2 spectrometer) of Comet Halley. However, the same two jets identified by Clairemidi et al. in all the gas species have a dust counterpart. Jets have been detected in Comet Hale Bopp data as well. Sunward dust and C 2 jets were reported by Laffont et al. (1997). In addition, both Larson et al. (1997) Earth, Moon and Planets 78: , Kluwer Academic Publishers. Printed in the Netherlands.

2 132 SUSAN M. LEDERER ET AL. and Mueller et al. (1998) have identified CN and dust jets but indicate that certain CN jets (in the anti-sunward direction) do not overlap spatially with the dust jets. 2. Observations Data were obtained at Lowell Observatory with the 42 (1.1 m) Hall Telescope using a CCD camera on February 26, March 1 6, and April 23, 25 28, North is down and east is left. The position angle of the sun was during March and in April. The phase angle was 45 and 32 35, respectively. The scale of the resultant images is 1.14 /pixel (2 2 binned). The new Hale Bopp set of narrowband comet filters was used to isolate the continuum (at 3448Å, 4450 Å, 5260 Å, and 7128 Å) as well as emission from OH (3090 Å), NH (3362 Å), CN (3870 Å), C 3 (4062 Å) and C 2 (5141 Å). We estimate that the underlying continuum contributes 20 35%, 80 95%, 20 35%, 80 90%, and 60 75% of the total signal in these gas filters, respectively. These are estimates from multiaperture photometry (aperture sizes ) of Comet Hale Bopp obtained in March and April, While the ranges listed are representative of the measurement uncertainties, in general these values decrease with increasing aperture size. Because of the underlying continuum in the NH, C 2,andC 3 filters, the exposure times of each image were chosen to prevent saturation of the photo-center (where the signal from the dust is greatest). As a result, the signal to noise (S/N) of these gas jets is lower than the S/N of the OH and CN jets. This may partially explain why the gas jets are more evident in CN and OH. The images were bias subtracted, flat fielded and sky subtracted. However, no absolute calibration or continuum subtraction was applied because the new filters have not yet been calibrated; a proper calibration of the standard stars in the new filter set is expected by mid The images were then centered on the comet s photo-center and trimmed to assist in the comparison of each species with the others. The final field of view of the images presented is 171 (176,000 km) per side for March 6 and 285 (349,000 km) per side for April 26, The morphology of the gas and dust jets can be discerned in the raw images. We applied several processing techniques to increase the contrast of the jets. To insure that the weakest features were real and not artifacts of the processing, we compared unsharp masked images with azimuthally renormalized images (Larson et al., 1992). Both methods yielded the same conclusion: jets indeed exist in the anti-sunward direction of the gas images, but not in this direction in the dust images. (In rare instances, there is some indication of a very low signal, <1% of the surrounding signal in azimuthally renormalized images, anti-sunward dust jet within of the central condensation). The unsharp mask accentuates the jets most clearly and thus was applied to the images presented in Figure 1.

3 GASEOUS JETS IN COMET HALE BOPP (1995 O1) 133 Figure 1. CCD narrow band filter images of comet Hale Bopp. North is down, east is left. The position angle of the sun is 159 in March and 247 in April. The phase angle is 45 in March and 34 in April. After flat-fielding and bias subtraction, each image was processed with an unsharp masking technique to accentuate the jets. These images demonstrate that gas jets without an obvious dust jet counterpart are apparent in OH and (in March) NH for the first time, as well as in CN, C 2, and C 3. The single smooth spiral evident in the April OH and CN images suggests one active source on the nucleus is responsible for the gas jets.

4 134 SUSAN M. LEDERER ET AL. 3. Results We have identified both dust and gas jets in comet Hale Bopp (Figure 1). Further, we provide the first identification of OH or NH jets without an optical dust jet counterpart for any comet. OH is particularly important since it is often used as a tracer of the comet s water component. In addition, we have found C 2,C 3, and dust jets as well as confirmed the existence of CN jets in comet Hale Bopp (Larson et al., 1997; Mueller et al., 1998). In all cases, the extent of jet activity is limited to within 125,000 km or 125 of the central condensation in the March data, and within 125,000 km or 90 in April. This is consistent with the extent of the CN jets reported in comet Halley (A Hearn et al., 1986a). The continuum (dust) images show varying jet structure, but it is generally restricted to the projected sunward direction. This refers to approximately the upper half of the March images and the right half of the April images. The brightest of these jets is about twice as bright as the nearby background (in azimuthally renormalized images). In comparison, the brightest sunward structures in the CN and OH images (before continuum subtraction) are on the order of 40% and 15% above background, respectively. The greatest contrasts created by the antisunward gaseous jets are only approximately 20% and 7%, respectively. We also detected jets with contrasts as small as a few percent above the nearby background. While antisunward jet structure is evident due to gaseous fluorescent emission, if dust was entrained in these features, not enough light was scattered by it at visible wavelengths to be detected above the isotropically scattered light. An examination of the anti-sunward jets shows that the gas species have features that appear to connect smoothly with the sunward jets. These jets can be seen most easily in CN and OH fluorescence due in part to a proportionally smaller contribution from the underlying continuum. For example, in the March OH data (Figure 1) one s eye can connect the second loop in the sunward direction (that runs through the position (+30, +5) in both the OH and UV continuum images) counterclockwise through the lower half of the image. This suggests both that the sunward jets have a significant gas component in addition to the dust, and that these dust and gas jets may originate from the same location on the nucleus. The smooth spiral apparent in the OH April data (Figure 1) suggests that one primary active area is responsible for the majority of the spiral structure. A comparison of the April OH gas and dust morphologies shows that the width of a single OH shell is approximately equivalent to two dust shells. An additional comparison with the CN data suggests that the narrow sunward shells evident in the remaining gas species (NH, CN, C 3,andC 2 ) are primarily due to dust, and that the morphology due to the gas is much broader. Two interpretations of physical mechanisms capable of producing gas jets have been modeled by Combi (1987) and by Klavetter and A Hearn (1994). Combi s model suggested that an initially confined parent jet expanding radially away from the nucleus could be sustained by the daughter radicals. Alternatively, photosput-

5 GASEOUS JETS IN COMET HALE BOPP (1995 O1) 135 tering of sub-micron CHON grains has been proposed as an extended source for the CN and C 2 jets in Comet Halley (A Hearn et al., 1986; Schulz and A Hearn, 1995). At this time, we are unable to determine which model is more consistent with our comet Hale Bopp data. However, we will continue to analyze and model these data to determine the source(s) for the gaseous jets. 4. Conclusions We have identified jets in the OH, NH, CN, C 2,C 3, and continuum (dust) narrowband images of comet Hale Bopp. This is the first time OH and NH jets without an obvious optical dust counterpart have been identified in any comet. Specifically, while all the gas species display jets in both the sunward and anti-sunward directions, dust jets are only evident in approximately the sunward direction. This implies that while both the gas and dust jets may originate from the same location on the nucleus, optically scattering dust is not the source of the gases. An extended source may be able to maintain the collimation apparent in each of the species. This source must be capable of creating jets in all gas species while remaining transparent at optical wavelengths. CHON particles have been proposed as a candidate for similar gas jets identified in Comet Halley and may likewise be responsible for gas jets in comet Hale Bopp. Alternatively, the extensive gas-dust coupling in the coma may act to retain the enhancement created by a nuclear jet(s) which emits both the dust and the parent molecules of the observed gases. Further analysis of these features, including a comparison with models, will be used to constrain both formation mechanisms of the jets as well as the composition of the proposed parent particles. Acknowledgements We wish to thank M. F. A Hearn for helpful suggestions. This work was supported by NASA and a Grant-in-Aid of Research from the National Academy of Sciences, through Sigma Xi. References A Hearn, M. F., Hoban, S., Birch, P. V., Bowers, C., Martin, R., and Klinglesmith, D. A.: 1986a, Cyanogen Jets in Comet Halley, Nature 324, A Hearn, M. F., Birch, P. V., and Klinglesmith, D. A.: 1986b, Gaseous Jets in Comet P/Halley, Proc. of the 20th ESLAB Symposium on the Exploration of Halley s Comet, Heidelberg, West Germany 1, Clairemidi, J. and Moreels, G.: 1990a, Gaseous CN, C 2 and C 3 Jets in the Inner Coma of Comet P/Halley Observed from the Vega 2 Spacecraft, Icarus 86,

6 136 SUSAN M. LEDERER ET AL. Clairemidi, J., Moreels, G., and Krasnopolsky, V. A.: 1990b, Spectro-Imagery of P/Halley s Inner Coma in the OH and NH Ultraviolet Bands, Astron. Astrophys. 231(1), Clairemidi, J., Rousselot, P., Vernotte, F., and Moreels, G.: 1992, Dust and Gas Jets: Evidence for a Diffuse Source in Halley s Coma, in Lunar and Planetary Inst., Asteroids, Comets, Meteors 1991, pp Combi, M. R.: 1987, Sources of Cometary Radicals and their Jets Gases or Grains?, Icarus 71, Cosmovici, C. B., Schwarz, G., Ip, W. H., and Mack, P.: 1988, Gas and Dust Jets in the Inner Coma of Comet Halley, Nature 332, Hoban, S., Samarasinha, N. H., A Hearn, M. F., and Klinglesmith, D. A.: 1988, An Investigation into Periodicities in the Morphology of CN Jets in Comet P/Halley, Astron. Astrophys. 195, Klavetter, J. J. and A Hearn, M. F.: 1994, An Extended Source for CN Jets in Comet P/Halley, Icarus 107, Laffont, C., Rousselot, P., Clairemidi, J., Moreels, G., and Boice, D. C.: 1997, Jets and Arcs in the Coma of Comet Hale Bopp from August 1996 to April 1997, Earth, Moon, and Planets 78, Larson, S. M. and Slaughter, C. D.: 1992, Evaluating Some Computer Enhancement Algorithms that Improve the Visibility of Cometary Morphology, Asteroids, Comets, Meteors 1991, Larson, S. M., Hergenrother, C. W., and Brandt, J. C.: 1997, The Spatial and Temporal Distribution of CO+ and CN in C/1995 O1 (Hale Bopp), Bull. Am. Astron. Soc. 29, Mueller, B. E. A., Samarasinha, N. H., and Belton, M. J. S.: , Imaging of the Structure and Evolution of the Coma Morphology of Comet Hale Bopp (C/1995 O1), Earth, Moon, and Planets 77, Schulz, R. and A Hearn, M. F.: 1995, Shells in the C 2 Coma of Comet P/Halley, Icarus 115,

CYANOGEN JETS AND THE ROTATION STATE OF COMET MACHHOLZ (C/2004 Q2)

CYANOGEN JETS AND THE ROTATION STATE OF COMET MACHHOLZ (C/2004 Q2) The Astronomical Journal, 133:2001Y2007, 2007 May # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. CYANOGEN JETS AND THE ROTATION STATE OF COMET MACHHOLZ (C/2004 Q2) Tony

More information

CURRICULUM VITAE. Nalin H. Samarasinha

CURRICULUM VITAE. Nalin H. Samarasinha CURRICULUM VITAE Nalin H. Samarasinha CONTACT INFORMATION: Planetary Science Institute (PSI) 1700 East Fort Lowell Road Suite 106 Tucson, AZ 85719 USA. Telephone: 520-622-6300 Fax: 520-795-3697 E-Mail:

More information

Optical observations of comet P/Tempel 1

Optical observations of comet P/Tempel 1 Optical observations of comet P/Tempel 1 Heike Rauer, Jörg Knollenberg, Michael Weiler DLR, Institut für Planetenforschung Berlin-Adlershof Observations of comet P/Tempel 1 at optical wavelengths Before

More information

Spin Axis Direction of Comet 19P/Borrelly Based on Observations from 2000 and 2001

Spin Axis Direction of Comet 19P/Borrelly Based on Observations from 2000 and 2001 Spin Axis Direction of Comet 19P/Borrelly Based on Observations from 2000 and 2001 Nalin H. Samarasinha and Béatrice E.A. Mueller National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson AZ 85719,

More information

line in cometary comæ that results primarily from the photodissociation of water

line in cometary comæ that results primarily from the photodissociation of water 10000 which for conventional grating spectrographs implies a slit width of order one arcsecond. Maximum slit length limited by practical considerations is therefore of order a few arcminutes. For a typical

More information

Cometary Spectroscopy

Cometary Spectroscopy Cometary Spectroscopy Nicolas Biver LESIA, UMR8109 du CNRS, Observatoire de Paris-Meudon, 5 Place Jules Janssen, 92195 Meudon Cedex, France Email: nicolas.biver@obspm.fr Abstract. Cometary spectroscopy

More information

Circular polarization in comets: calibration of measurements

Circular polarization in comets: calibration of measurements Circular polarization in comets: calibration of measurements Vera Rosenbush, Nikolai Kiselev Main Astronomical Observatory of the National Academy of Sciences of Ukraine, rosevera@mao.kiev.ua Kyiv 1 Outline

More information

Spectroscopic observations of new Oort cloud comet 2006 VZ13 and four other comets

Spectroscopic observations of new Oort cloud comet 2006 VZ13 and four other comets Mon. Not. R. Astron. Soc. 401, 2399 2405 (2010) doi:10.1111/j.1365-2966.2009.15822.x Spectroscopic observations of new Oort cloud comet 2006 VZ13 and four other comets A. M. Gilbert, 1 P. A. Wiegert, 1

More information

Comet Measurement Techniques. Karen Meech Institute for Astronomy Session 27 1/18/05

Comet Measurement Techniques. Karen Meech Institute for Astronomy Session 27 1/18/05 Comet Measurement Techniques Karen Meech Institute for Astronomy Session 27 1/18/05 Image copyright, R. Wainscoat, IfA Image courtesy K. Meech Techniques Summary Imaging & Detectors Photometry Deep Imaging

More information

Comet Machholz. This image is a 6 minute exposure at 05:00 U.T. taken on January 2, 2005 taken with a 7.5 cm telescope.

Comet Machholz. This image is a 6 minute exposure at 05:00 U.T. taken on January 2, 2005 taken with a 7.5 cm telescope. NASA s Deep Impact Mission: Eyes on the Skies Comet Comparisons ACTIVITY SHEET Observe this image of Comet Machholz Comet Machholz. This image is a 6 minute exposure at 05:00 U.T. taken on January 2, 2005

More information

Transiting Exoplanet in the Near Infra-red for the XO-3 System

Transiting Exoplanet in the Near Infra-red for the XO-3 System Transiting Exoplanet in the Near Infra-red for the XO-3 System Nathaniel Rodriguez August 26, 2009 Abstract Our research this summer focused on determining if sufficient precision could be gained from

More information

THE ROTATION AND OTHER PROPERTIES OF COMET 49P/AREND-RIGAUX,

THE ROTATION AND OTHER PROPERTIES OF COMET 49P/AREND-RIGAUX, ACCEPTED FOR PUBLICATION IN THE ASTRONOMICAL JOURNAL, 5 SEPTEMBER 2017 THE ROTATION AND OTHER PROPERTIES OF COMET 49P/AREND-RIGAUX, 1984 2012 NORA EISNER 1,2, MATTHEW M. KNIGHT 2, AND DAVID G. SCHLEICHER

More information

THE LONG-TERM DECAY IN PRODUCTION RATES FOLLOWING THE EXTREME OUTBURST OF COMET 17P/HOLMES

THE LONG-TERM DECAY IN PRODUCTION RATES FOLLOWING THE EXTREME OUTBURST OF COMET 17P/HOLMES The Astrophysical Journal, 138:1062 1071, 2009 October C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637x/138/4/1062 THE LONG-TERM DECAY IN PRODUCTION

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March ISSN Analysis of Cometary X-ray Spectra

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March ISSN Analysis of Cometary X-ray Spectra International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 1231 Analysis of Cometary X-ray Spectra S. Z.Khalaf and M. I.Jaleel Abstract: The compositions of comets depend

More information

A rapid decrease in the rotation rate of comet 41P/Tuttle-Giacobini-Kresák

A rapid decrease in the rotation rate of comet 41P/Tuttle-Giacobini-Kresák A rapid decrease in the rotation rate of comet 41P/Tuttle-Giacobini-Kresák Dennis Bodewits 1, Tony L. Farnham 1, Michael S. P. Kelley 1, and Matthew M. Knight 1 Cometary outgassing can produce torques

More information

Dust Coma Morphology in the Deep Impact Images of Comet 9P/Tempel 1

Dust Coma Morphology in the Deep Impact Images of Comet 9P/Tempel 1 Dust Coma Morphology in the Deep Impact Images of Comet 9P/Tempel 1 T. L. Farnham 1, D. D. Wellnitz 1, D. L. Hampton 2, J.-Y. Li 1, J. M. Sunshine 1, O. Groussin 1, L. A. McFadden 1, C. J. Crockett 1,

More information

Reduction procedure of long-slit optical spectra. Astrophysical observatory of Asiago

Reduction procedure of long-slit optical spectra. Astrophysical observatory of Asiago Reduction procedure of long-slit optical spectra Astrophysical observatory of Asiago Spectrograph: slit + dispersion grating + detector (CCD) It produces two-dimension data: Spatial direction (x) along

More information

Measuring the Redshift of M104 The Sombrero Galaxy

Measuring the Redshift of M104 The Sombrero Galaxy Measuring the Redshift of M104 The Sombrero Galaxy Robert R. MacGregor 1 Rice University Written for Astronomy Laboratory 230 Department of Physics and Astronomy, Rice University May 3, 2004 2 Abstract

More information

arxiv: v2 [astro-ph.ep] 2 Nov 2017

arxiv: v2 [astro-ph.ep] 2 Nov 2017 Palomar Optical Spectrum of Hyperbolic Near-Earth Object A/2017 U1 Joseph R. Masiero 1 ABSTRACT arxiv:1710.09977v2 [astro-ph.ep] 2 Nov 2017 We present optical spectroscopy of the recently discovered hyperbolic

More information

CONTENTS. vii. in this web service Cambridge University Press. Preface Acknowledgements. xiii xvi

CONTENTS. vii.  in this web service Cambridge University Press. Preface Acknowledgements. xiii xvi CONTENTS Preface Acknowledgements xiii xvi 1 Earth and sky 1 1.1 Planet Earth 1 1.2 The Earth s magnetosphere 6 1.3 Aurorae 8 1.4 Visually observing aurorae 10 1.5 Other methods of observing aurorae 16

More information

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects Transneptunian objects Minor bodies in the outer Solar System Planets and Astrobiology (2016-2017) G. Vladilo Around 1980 it was proposed that the hypothetical disk of small bodies beyond Neptune (called

More information

Lab 4: Differential Photometry of an Extrasolar Planetary Transit

Lab 4: Differential Photometry of an Extrasolar Planetary Transit Lab 4: Differential Photometry of an Extrasolar Planetary Transit Neil Lender 1, Dipesh Bhattarai 2, Sean Lockwood 3 December 3, 2007 Abstract An upward change in brightness of 3.97 ± 0.29 millimags in

More information

ESAC Small Solar System bodies and Rosetta Group

ESAC Small Solar System bodies and Rosetta Group ESAC Small Solar System bodies and Rosetta Group The current focus of the group is the analysis of images from the OSIRIS scientific cameras of the Rosetta mission. Research topics are: Surface features

More information

GALEX Observations of CS and OH Emission in Comet 9P/Tempel 1 During Deep Impact 1

GALEX Observations of CS and OH Emission in Comet 9P/Tempel 1 During Deep Impact 1 GALEX Observations of CS and OH Emission in Comet 9P/Tempel 1 During Deep Impact 1 Paul D. Feldman 2, Stephan R. McCandliss 2, Jeffrey P. Morgenthaler 3, Carey M. Lisse 4, Harold A. Weaver 4, and Michael

More information

Lab 4 Radial Velocity Determination of Membership in Open Clusters

Lab 4 Radial Velocity Determination of Membership in Open Clusters Lab 4 Radial Velocity Determination of Membership in Open Clusters Sean Lockwood 1, Dipesh Bhattarai 2, Neil Lender 3 December 2, 2007 Abstract We used the Doppler velocity of 29 stars in the open clusters

More information

DRAFT DRAFT Comet 17P Holmes Outburst DRAFT DRAFT John Menke Updated January 13, 2008

DRAFT DRAFT Comet 17P Holmes Outburst DRAFT DRAFT John Menke   Updated January 13, 2008 DRAFT DRAFT Comet 17P Holmes Outburst DRAFT DRAFT John Menke john@menkescientific.com www.menkescientific.com Updated January 13, 2008 Introduction On Oct. 23.7 2007, the then faint (mag 14) and unremarkable

More information

arxiv:astro-ph/ v1 2 Oct 2002

arxiv:astro-ph/ v1 2 Oct 2002 **TITLE** ASP Conference Series, Vol. **VOLUME***, **YEAR OF PUBLICATION** **NAMES OF EDITORS** The Extra-Solar Planet Imager (ESPI) arxiv:astro-ph/0210046v1 2 Oct 2002 P. Nisenson, G.J. Melnick, J. Geary,

More information

The Population and Mass of the Oort Cloud

The Population and Mass of the Oort Cloud The Population and Mass of the Oort Cloud Luke Dones Southwest Research Institute Boulder, Colorado Megan E. Schwamb Yale Center for Astronomy and Astrophysics and Department of Physics Yale University

More information

Imaging and Photometry of Comet C/1999 S4 (LINEAR) Before Perihelion and After Breakup

Imaging and Photometry of Comet C/1999 S4 (LINEAR) Before Perihelion and After Breakup 36. D. G. Scheliecher, C. Eberhardy, IAU Circular 7455 (2000); personal communication (2001). 37. Although it is based on the overly simplified Wegmann model (11), a good discussion of how to interpret

More information

Water Ice on the Satellite of Kuiper Belt Object 2003 EL61

Water Ice on the Satellite of Kuiper Belt Object 2003 EL61 Water Ice on the Satellite of Kuiper Belt Object 2003 EL61 K.M Barkume, M.E. Brown, and E.L. Schaller Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125

More information

Figure 6.1: Comet Hyakutake in a 40 -wide eld of view. This is a photograph of the comet taken by me near the time of closest approach on 25 Mar 1997.

Figure 6.1: Comet Hyakutake in a 40 -wide eld of view. This is a photograph of the comet taken by me near the time of closest approach on 25 Mar 1997. Chapter 6 The Nucleus of Comet Hyakutake C/1996 B2 6.1 Background Six months after the discovery of Hale-Bopp, a Japanese amateur astronomer discovered his second long-period comet in a seven-week period,

More information

Gas Jet Morphology and the Very Rapidly Increasing Rotation Period of. Comet 41P/Tuttle-Giacobini-Kresák

Gas Jet Morphology and the Very Rapidly Increasing Rotation Period of. Comet 41P/Tuttle-Giacobini-Kresák Gas Jet Morphology and the Very Rapidly Increasing Rotation Period of Comet 41P/Tuttle-Giacobini-Kresák DAVID G. SCHLEICHER 1, MATTHEW M. KNIGHT 2, NORA L. EISNER 1,2,3, & AUDREY THIROUIN 1 1 Lowell Observatory,

More information

Science Update SBAG July, Andrew Cheng (JHU/APL) Karl Hibbitts (JHU/APL) Eliot Young (SwRI)

Science Update SBAG July, Andrew Cheng (JHU/APL) Karl Hibbitts (JHU/APL) Eliot Young (SwRI) Science Update SBAG July, 2014 Andrew Cheng (JHU/APL) Karl Hibbitts (JHU/APL) Eliot Young (SwRI) Overview BOPPS science objectives BIRC calibration results UVVis update Science operations 4/23/14 2 BOPPS

More information

Comet McNaught (260P/2012 K2): spin axis orientation and rotation period.

Comet McNaught (260P/2012 K2): spin axis orientation and rotation period. Astrophysics and Space Science; accepted 02.2014 DOI: 10.1007/s10509-014-1854-6 Comet McNaught (260P/2012 K2): spin axis orientation and rotation period. Federico Manzini **, Virginio Oldani **, Roberto

More information

Date Start, UT End, UT r Δ Aperture, arcmin Pixel, arcsec Effective exposure, s October 27,

Date Start, UT End, UT r Δ Aperture, arcmin Pixel, arcsec Effective exposure, s October 27, DISTANT ACTIVITY OF COMET C/2001 K5 (LINEAR) P. P. Korsun Main Astronomical Observatory, NAS of Ukraine 27 Akademika Zabolotnoho Str., 03680 Kyiv, Ukraine e-mail: korsun@mao.kiev.ua CCD observations of

More information

Universe Now. 9. Interstellar matter and star clusters

Universe Now. 9. Interstellar matter and star clusters Universe Now 9. Interstellar matter and star clusters About interstellar matter Interstellar space is not completely empty: gas (atoms + molecules) and small dust particles. Over 10% of the mass of the

More information

The Stratospheric Observatory for Infrared Astronomy (SOFIA) and the Transient Universe

The Stratospheric Observatory for Infrared Astronomy (SOFIA) and the Transient Universe The Stratospheric Observatory for Infrared Astronomy (SOFIA) and the Transient Universe Dan Lester Department of Astronomy, University of Texas D. Lester Eventful Universe Symposium March 19, 2010 1 Airborne

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:.38/nature149 1 Observation information This study examines 2 hours of data obtained between :33:42 and 12:46:28 Universal Time (UT) on April 17 11 using the -metre Keck telescope. This dataset was

More information

Analysis of the rich optical iron-line spectrum of the x-ray variable I Zw 1 AGN 1H

Analysis of the rich optical iron-line spectrum of the x-ray variable I Zw 1 AGN 1H Analysis of the rich optical iron-line spectrum of the x-ray variable I Zw 1 AGN 1H0707 495 H Winkler, B Paul Department of Physics, University of Johannesburg, PO Box 524, 2006 Auckland Park, Johannesburg,

More information

Lunar Eclipse of June, 15, 2011: Three-color umbra surface photometry

Lunar Eclipse of June, 15, 2011: Three-color umbra surface photometry Lunar Eclipse of June, 15, 2011: Three-color umbra surface photometry Oleg S. Ugolnikov 1, Igor A. Maslov 1,2, Stanislav A. Korotkiy 3 1 Space Research Institute, Russian Academy of Sciences, Russia 2

More information

Escaping the Zodi Light! Harvey Moseley! NASA/GSFC! The View from 5 AU! March 26, 2010!

Escaping the Zodi Light! Harvey Moseley! NASA/GSFC! The View from 5 AU! March 26, 2010! Escaping the Zodi Light! Harvey Moseley! NASA/GSFC! The View from 5 AU! March 26, 2010! The Galaxy and the Zodi Light are the dominant sources of diffuse light in the night sky! Both are much brighter

More information

A s t e r o i d s, C o m e t s & N E O s ( B a c k g r o u n d I n f o r m a t i o n )

A s t e r o i d s, C o m e t s & N E O s ( B a c k g r o u n d I n f o r m a t i o n ) A s t e r o i d s, C o m e t s & N E O s ( B a c k g r o u n d I n f o r m a t i o n ) Author: Sarah Roberts Asteroids Asteroids, Comets and NEOs - Background Information Asteroids are rocky objects which

More information

Spitzer Space Telescope

Spitzer Space Telescope Spitzer Space Telescope (A.K.A. The Space Infrared Telescope Facility) The Infrared Imaging Chain 1/38 The infrared imaging chain Generally similar to the optical imaging chain... 1) Source (different

More information

Earth Flats. 1. Introduction. Instrument Science Report ACS R. C. Bohlin, J. Mack, G. Hartig, & M. Sirianni October 25, 2005

Earth Flats. 1. Introduction. Instrument Science Report ACS R. C. Bohlin, J. Mack, G. Hartig, & M. Sirianni October 25, 2005 Instrument Science Report ACS 2005-12 Earth Flats R. C. Bohlin, J. Mack, G. Hartig, & M. Sirianni October 25, 2005 ABSTRACT Since the last ISR 2003-02 on the use of Earth observations for a source of flat

More information

Lecture 8. October 25, 2017 Lab 5

Lecture 8. October 25, 2017 Lab 5 Lecture 8 October 25, 2017 Lab 5 News Lab 2 & 3 Handed back next week (I hope). Lab 4 Due today Lab 5 (Transiting Exoplanets) Handed out and observing will start Friday. Due November 8 (or later) Stellar

More information

5523 Research Park Drive UMBC, Baltimore MD

5523 Research Park Drive UMBC, Baltimore MD Susan Hoban, Ph. D. Associate Director for Academics, UMBC Joint Center for Earth Systems Technology Affiliate Associate Professor, Physics UMBC Honors College Fellow Education 1989, Ph. D., Astronomy,

More information

WIDE FIELD IMAGING AND THE VELOCITY STRUCTURE IN THE COMA OF HALE BOPP

WIDE FIELD IMAGING AND THE VELOCITY STRUCTURE IN THE COMA OF HALE BOPP WIDE FIELD IMAGING AND THE VELOCITY STRUCTURE IN THE COMA OF HALE BOPP WALTER M. HARRIS, JEFFREY P. MORGENTHALER, FRANK SCHERB and CHRISTOPHER ANDERSON University of Wisconsin-Madison, 1150 University

More information

Optical/IR Observational Astronomy Spectroscopy. David Buckley, SALT

Optical/IR Observational Astronomy Spectroscopy. David Buckley, SALT David Buckley, SALT 1 Background is really just monochromatic photometry History 1637 Descartes explained the origin of the rainbow. 1666 Newton s classic experiments on the nature of colour. 1752 Melvil

More information

Meteorites. A Variety of Meteorite Types. Ages and Compositions of Meteorites. Meteorite Classification

Meteorites. A Variety of Meteorite Types. Ages and Compositions of Meteorites. Meteorite Classification Meteorites A meteor that survives its fall through the atmosphere is called a meteorite Hundreds fall on the Earth every year Meteorites do not come from comets First documented case in modern times was

More information

The Planetary Nebula Spectrograph

The Planetary Nebula Spectrograph Chapter 2 The Planetary Nebula Spectrograph The Planetary Nebula Spectrograph (PN.S) and the principles ofcounter-dispersed imaging are described in this chapter. A full description of PN.S, its motivation,

More information

Photometric Calibration of the CCD Camera of 1-m Telescope at VBO

Photometric Calibration of the CCD Camera of 1-m Telescope at VBO J. Astrophys. Astr.(1991) 12, 319 331 Photometric Calibration of the CCD Camera of 1-m Telescope at VBO Y. D. Mayya* Indian Institute of Astrophysics, Bangalore 560034 Received 1991 July 7; accepted 1991

More information

Comets, Asteroids, and Meteors. By: Annette Miles

Comets, Asteroids, and Meteors. By: Annette Miles Comets, Asteroids, and Meteors By: Annette Miles What is a comet? A comet is a small body which scientists sometimes call a planetesimal. They are made out of dust, ice rock, gas, and. They are kind of

More information

The Excitation Mechanism of [Fe XIV] 5303 Å Line in the Inner Regions of Solar Corona

The Excitation Mechanism of [Fe XIV] 5303 Å Line in the Inner Regions of Solar Corona J. Astrophys. Astr. (1991) 12, 311 317 The Excitation Mechanism of [Fe XIV] 5303 Å Line in the Inner Regions of Solar Corona Κ. P.Raju, J. Ν. Desai, Τ. Chandrasekhar & Ν. Μ. Ashok Physical Research Laboratory,

More information

arxiv: v1 [astro-ph.ep] 22 Jul 2016

arxiv: v1 [astro-ph.ep] 22 Jul 2016 Mon. Not. R. Astron. Soc. 000, 1 9 (2002) Printed 25 July 2016 (MN LATEX style file v2.2) arxiv:1607.06682v1 [astro-ph.ep] 22 Jul 2016 Optical Spectroscopy of Comet C/2014 Q2 (Lovejoy) from MIRO Kumar

More information

Earth & Beyond Teacher Newsletter

Earth & Beyond Teacher Newsletter Paul Floyd s Astronomy & Space Website Earth & Beyond Teacher Newsletter www.nightskyonline.info Earth & Beyond Teaching opportunities for 2012 This special edition has been prepared to assist you with

More information

CHAPTER 6. The Solar System

CHAPTER 6. The Solar System CHAPTER 6 The Solar System 6.1 An Inventory of the Solar System The Greeks knew about 5 planets other than Earth They also knew about two other objects that were not planets or stars: meteors and comets

More information

Millimetre Science with the AT

Millimetre Science with the AT Millimetre Science with the AT Astrochemistry with mm-wave Arrays G.A. Blake, Caltech 29Nov 2001 mm-arrays: Important Features - Spatial Filtering - Transform to image plane - Cross Correlation (Sub)Millimeter

More information

Lecture 39. Asteroids/ Minor Planets In "Gap" between Mars and Jupiter: 20,000 observed small objects, 6000 with known orbits:

Lecture 39. Asteroids/ Minor Planets In Gap between Mars and Jupiter: 20,000 observed small objects, 6000 with known orbits: Lecture 39 Interplanetary Matter Asteroids Meteorites Comets Oort Cloud Apr 28, 2006 Astro 100 Lecture 39 1 Asteroids/ Minor Planets In "Gap" between Mars and Jupiter: 20,000 observed small objects, 6000

More information

Solar Noon The point at which the Sun is highest in the sky (and when shadows are shortest).

Solar Noon The point at which the Sun is highest in the sky (and when shadows are shortest). Solar Noon The point at which the Sun is highest in the sky (and when shadows are shortest). Rotation The movement of one object as it turns or spins around a central point or axis. Revolution The movement

More information

EARTH SCIENCE UNIT 9 -NOTES ASTRONOMY

EARTH SCIENCE UNIT 9 -NOTES ASTRONOMY EARTH SCIENCE UNIT 9 -NOTES ASTRONOMY UNIT 9- ASTRONOMY 2 THE SOLAR SYSTEM I. The Solar System:. a. Celestial Body:. i. Examples:. b. MAIN COMPONENTS/MEMBERS OF THE SOLAR SYSTEM: i. 1. Planets are objects

More information

Space Test Review. Unit Test on Thursday April 17

Space Test Review. Unit Test on Thursday April 17 Space Test Review Unit Test on Thursday April 17 True/False 1. A(n) asteroid is a massive collection of gases in space that emits large amounts of energy. 2. A(n) moon is a large, round celestial object

More information

SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT SUPERNOVA REMNANTS

SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT SUPERNOVA REMNANTS PROJECT 10 SUPERNOVA REMNANTS Objective: The purpose of this exercise is also twofold. The first one is to gain further experience with the analysis of narrow band images (as in the case of planetary nebulae)

More information

Chapter 19: Meteorites, Asteroids, and Comets

Chapter 19: Meteorites, Asteroids, and Comets Chapter 19: Meteorites, Asteroids, and Comets Comet Superstition Throughout history, comets have been considered as portants of doom, even until very recently: Appearances of comet Kohoutek (1973), Halley

More information

A Tail of Two Comets. by Paul Robinson. PanSTARRS and ISON

A Tail of Two Comets. by Paul Robinson. PanSTARRS and ISON A Tail of Two Comets by Paul Robinson PanSTARRS and ISON Comet PanSTARRS 2011-L4 Panoramic Survey Telescope And Rapid Response System Perihelion March 10, 2013: 0.30 AU from sun. Only about 3 weeks away!!

More information

Photometric and spectroscopic observations of the outburst of the symbiotic star AG Draconis between March and June 2016

Photometric and spectroscopic observations of the outburst of the symbiotic star AG Draconis between March and June 2016 Photometric and spectroscopic observations of the outburst of the symbiotic star AG Draconis between March and June 2016 David Boyd Variable Star Section, British Astronomical Association, [davidboyd@orion.me.uk]

More information

Observing Habitable Environments Light & Radiation

Observing Habitable Environments Light & Radiation Homework 1 Due Thurs 1/14 Observing Habitable Environments Light & Radiation Given what we know about the origin of life on Earth, how would you recognize life on another world? Would this require a physical

More information

OPTICAL PHOTOMETRY. Observational Astronomy (2011) 1

OPTICAL PHOTOMETRY. Observational Astronomy (2011) 1 OPTICAL PHOTOMETRY Observational Astronomy (2011) 1 The optical photons coming from an astronomical object (star, galaxy, quasar, etc) can be registered in the pixels of a frame (or image). Using a ground-based

More information

Comet Hyakutake Passes the Earth Credit & Copyright: Doug Zubenel (TWAN)

Comet Hyakutake Passes the Earth Credit & Copyright: Doug Zubenel (TWAN) Comet Hyakutake Passes the Earth Credit & Copyright: Doug Zubenel (TWAN) Two Tails of Comet Lulin Credit & Copyright: Richard Richins (NMSU) A Tale of Comet Holmes Credit & Copyright: Ivan Eder and (inset)

More information

Cross-calibration of Geostationary Satellite Visible-channel Imagers Using the Moon as a Common Reference

Cross-calibration of Geostationary Satellite Visible-channel Imagers Using the Moon as a Common Reference Cross-calibration of Geostationary Satellite Visible-channel Imagers Using the Moon as a Common Reference Thomas C. Stone U.S. Geological Survey, Flagstaff AZ, USA 27 30 August, 2012 Motivation The archives

More information

NICMOS Status and Plans

NICMOS Status and Plans 1997 HST Calibration Workshop Space Telescope Science Institute, 1997 S. Casertano, et al., eds. NICMOS Status and Plans Rodger I. Thompson Steward Observatory, University of Arizona, Tucson, AZ 85721

More information

2. The distance between the Sun and the next closest star, Proxima Centuari, is MOST accurately measured in

2. The distance between the Sun and the next closest star, Proxima Centuari, is MOST accurately measured in Name: Date: 1. Some scientists study the revolution of the Moon very closely and have recently suggested that the Moon is gradually moving away from Earth. Which statement below would be a prediction of

More information

marized in Table 1, which correspond to the days with the longest data strings.

marized in Table 1, which correspond to the days with the longest data strings. The Astrophysical Journal, 501:L221 L225, 1998 July 10 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE ROTATION PERIOD OF C/1995 O1 (HALE-BOPP) Javier Licandro, 1,2

More information

Astro 1010 Planetary Astronomy Sample Questions for Exam 3

Astro 1010 Planetary Astronomy Sample Questions for Exam 3 Astro 1010 Planetary Astronomy Sample Questions for Exam 3 Chapter 6 1. Which of the following statements is false? a) Refraction is the bending of light when it passes from one medium to another. b) Mirrors

More information

New physics is learnt from extreme or fundamental things

New physics is learnt from extreme or fundamental things New physics is learnt from extreme or fundamental things New physics is learnt from extreme or fundamental things The Universe is full of extremes and is about as fundamental as it gets! New physics is

More information

AST 105 The Important Things

AST 105 The Important Things AST 105 The Important Things I. Science A process not a litany of facts Non-dogmatic Knowing Why or How a process occurs is more important than remembering facts. Our understanding may start out wrong,

More information

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits 7. Our Solar System Terrestrial & Jovian planets Seven large satellites [moons] Chemical composition of the planets Asteroids & comets The Terrestrial & Jovian Planets Four small terrestrial planets Like

More information

Paper Reference. Tuesday 14 June 2005 Morning Time: 2 hours

Paper Reference. Tuesday 14 June 2005 Morning Time: 2 hours Centre No. Candidate No. Paper Reference(s) 1627/01 Edexcel GCSE Astronomy Paper 01 Tuesday 14 June 2005 Morning Time: 2 hours Materials required for examination Nil Items included with question papers

More information

Infra-red imaging of perpendicular nested bars in spiral galaxies with the Infra-red Camera at the Carlos Sanchez Telescope

Infra-red imaging of perpendicular nested bars in spiral galaxies with the Infra-red Camera at the Carlos Sanchez Telescope Infra-red imaging of perpendicular nested bars in spiral galaxies with the Infra-red Camera at the Carlos Sanchez Telescope S.N. Kemp (skemp@ll.iac.es) Instituto de Astrofísica de Canarias, E-38200 La

More information

Near-Infrared Imaging Observations of the Orion A-W Star Forming Region

Near-Infrared Imaging Observations of the Orion A-W Star Forming Region Chin. J. Astron. Astrophys. Vol. 2 (2002), No. 3, 260 265 ( http: /www.chjaa.org or http: /chjaa.bao.ac.cn ) Chinese Journal of Astronomy and Astrophysics Near-Infrared Imaging Observations of the Orion

More information

Brooks Observatory telescope observing

Brooks Observatory telescope observing Brooks Observatory telescope observing Mon. - Thurs., March 22 55, 8:30 to about 9:45 PM See the class web page for weather updates. This evening s session has been cancelled. Present your blue ticket

More information

IMPROVING THE DECONVOLUTION METHOD FOR ASTEROID IMAGES: OBSERVING 511 DAVIDA, 52 EUROPA, AND 12 VICTORIA

IMPROVING THE DECONVOLUTION METHOD FOR ASTEROID IMAGES: OBSERVING 511 DAVIDA, 52 EUROPA, AND 12 VICTORIA IMPROVING THE DECONVOLUTION METHOD FOR ASTEROID IMAGES: OBSERVING 511 DAVIDA, 52 EUROPA, AND 12 VICTORIA Z Robert Knight Department of Physics and Astronomy University of Hawai`i at Hilo ABSTRACT Deconvolution

More information

NEWFIRM Quick Guide for Proposal Preparation

NEWFIRM Quick Guide for Proposal Preparation NEWFIRM Quick Guide for Proposal Preparation Ron Probst NEWFIRM Instrument Scientist September 2008 NEWFIRM is a 1-2.4 micron IR camera for the NOAO 4-m telescopes. It has a flexible complement of broad

More information

ROSETTA. One Comet Rendezvous and two Asteroid Fly-bys. Rita Schulz Rosetta Project Scientist

ROSETTA. One Comet Rendezvous and two Asteroid Fly-bys. Rita Schulz Rosetta Project Scientist ROSETTA One Comet Rendezvous and two Asteroid Fly-bys Rita Schulz Rosetta Project Scientist Giotto Mission 1986 1P/Halley DS-1 Mission 2001 19P/Borrelly Stardust Mission 2004 81P/ Wild 2 Deep Impact Mission

More information

Comets observed with XMM-Newton

Comets observed with XMM-Newton A major step in cometary X-ray research Konrad Dennerl Max-Planck-Institut für extraterrestrische Physik Comets the most surprising X-ray objects in space 1996: Comet Hyakutake (C/1996 B2) EPIC Consortium

More information

Optical/NIR Spectroscopy A3130. John Wilson Univ of Virginia

Optical/NIR Spectroscopy A3130. John Wilson Univ of Virginia Optical/NIR Spectroscopy A3130 John Wilson Univ of Virginia Topics: Photometry is low resolution spectroscopy Uses of spectroscopy in astronomy Data cubes and dimensionality challenge Spectrograph design

More information

arxiv: v1 [astro-ph.ep] 17 Jun 2013

arxiv: v1 [astro-ph.ep] 17 Jun 2013 The Dust Tail of Asteroid (3200) Phaethon David Jewitt 1,2, Jing Li 1 and Jessica Agarwal 3 Revised 2013-June-11 arxiv:1306.3741v1 [astro-ph.ep] 17 Jun 2013 1 Department of Earth and Space Sciences, University

More information

High Time Resolution Photometry of V458 Vul

High Time Resolution Photometry of V458 Vul High Time Resolution Photometry of V458 Vul Samia Bouzid 2010 NSF/REU Program Physics Department, University of Notre Dame Advisor: Dr. Peter Garnavich High Time-Resolution Photometry of Nova V458 Vul

More information

Astronomy 103: First Exam

Astronomy 103: First Exam Name: Astronomy 103: First Exam Stephen Lepp October 27, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. 1 Short Answer A. What is the largest of the terrestrial

More information

SKINAKAS OBSERVATORY Astronomy Projects for University Students COLOUR IN ASTRONOMY

SKINAKAS OBSERVATORY Astronomy Projects for University Students COLOUR IN ASTRONOMY P R O J E C T 3 COLOUR IN ASTRONOMY Objective: Explain what colour means in an astronomical context and its relationship with the temperature of a star. Learn how to create colour-colour diagrams and how

More information

Gas 1: Molecular clouds

Gas 1: Molecular clouds Gas 1: Molecular clouds > 4000 known with masses ~ 10 3 to 10 5 M T ~ 10 to 25 K (cold!); number density n > 10 9 gas particles m 3 Emission bands in IR, mm, radio regions from molecules comprising H,

More information

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei SECOND EDITION Astrophysics of Gaseous Nebulae and Active Galactic Nuclei Donald E. Osterbrock Lick Observatory, University of California, Santa Cruz Gary J. Ferland Department of Physics and Astronomy,

More information

Astronomical Equipment for

Astronomical Equipment for Astronomical Equipment for Martin Mobberley Springer 1 Fundamentals for Beginners 1 Using Low Magnification 1 Using High Magnification 4 Formulae 4 Jargon 4 Eyepiece Sizes 6 2 Refractors and Reflectors

More information

At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion?

At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion? At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion? These small, rocky worlds orbit the sun generally between the orbits of

More information

Photometric study and 3D modeling of two asteroids using inversion techniques

Photometric study and 3D modeling of two asteroids using inversion techniques Photometric study and 3D modeling of two asteroids using inversion techniques Raz Parnafes (High school student) Research work done via the Bareket observatory, Israel. Abstract New photometric observations

More information

The Night Sky in May, 2017

The Night Sky in May, 2017 The Night Sky in May, 2017 The dominating object in the sky this month is the planet Jupiter. It was at opposition on April 7 th when it was on the opposite side of the Earth from the Sun and was at its

More information

Chapter 25 Meteorites, Asteroids, and Comets

Chapter 25 Meteorites, Asteroids, and Comets Chapter 25 Meteorites, Asteroids, and Comets Guidepost In Chapter 19, we began our study of planetary astronomy by asking how our solar system formed. In the five chapters that followed, we surveyed the

More information

FLAT FIELDS FROM THE MOONLIT EARTH

FLAT FIELDS FROM THE MOONLIT EARTH Instrument Science Report WFPC2 2008-01 FLAT FIELDS FROM THE MOONLIT EARTH R. C. Bohlin, J. Mack, and J. Biretta 2008 February 4 ABSTRACT The Earth illuminated by light from the full Moon was observed

More information

Astr 1050 Wed., March. 22, 2017

Astr 1050 Wed., March. 22, 2017 Astr 1050 Wed., March. 22, 2017 Today: Chapter 12, Pluto and Debris March 24: Exam #2, Ch. 5-12 (9:00-9:50) March 27: Mastering Astronomy HW Chapter 11 & 12 1 Chapter 12: Meteorites, Asteroids, Comets

More information

AS750 Observational Astronomy

AS750 Observational Astronomy Lecture 9 0) Poisson! (quantum limitation) 1) Diffraction limit 2) Detection (aperture) limit a)simple case b)more realistic case 3) Atmosphere 2) Aperture limit (More realistic case) Aperture has m pixels

More information

Electromagnetic Radiation and Scientific Instruments. PTYS April 1, 2008

Electromagnetic Radiation and Scientific Instruments. PTYS April 1, 2008 Electromagnetic Radiation and Scientific Instruments PTYS 206-2 April 1, 2008 Announcements Deep Impact 6 PM Wednesday Night Pizza, no beer Watch at home if you can t watch here. It will be discussed in

More information