Strong Gravitational-Lensing by Galaxies: 30 years later...

Size: px
Start display at page:

Download "Strong Gravitational-Lensing by Galaxies: 30 years later..."

Transcription

1 Strong Gravitational-Lensing by Galaxies: 30 years later... Léon Koopmans ( Institute (Kapteyn Astronomical Stellar Dynamics Gravitational lensing JENAM - April 22, 2009

2 Some Applications of Galaxy Lensing Galaxy Structure, Formation & Evolution DM & Baryonic Density Profiles Scaling relations: e.g. FP (CDM) Mass-substructure ISM Cosmological Parameters Individual Galaxies: Hubble Constant Lensing Statistics: Cosmography Natural Telescope Quasar Microlensing Delensing of source Too much to cover in 30 min; I will show some recent examples

3 State of the Art Lens Surveys Strong-lenses are rare occurences: optical depth is 10-3, hence large surveys to find lens-candidates are required Radio: source selection/few biases MG/PMN/PANELS surveys: around 5-10 galaxy-scale lenses JVAS/CLASS: 22 galaxy-scale lenses Optical Imaging: source/lens selection HE/HQS & SDSS quasars: 1-2 dozen lenses HST MDS/Optical HST Snapshot survey: 5-10 each CFHT LS: around 100 galaxy/group lens candidates Spectroscopic: Lens selection SLACS: around 100 confirmed lenses OLS: 5-10 confirmed lenses

4 Galaxy-scale Strong Lens Surveys CLASS: Radio-selected - Source selected - Few biases based on lens galaxy - Small image separations - No dust extinction (but scattering?) - State of the art: >10 4 targets - Lensing rate: 1/700 - Results: 22 confirmed lenses

5 Galaxy-scale Strong Lens Surveys SLACS: Spectroscopy-selected - Lens selected - Uniform lens-galaxy criteria: E/S0 - Emission-line selection - Blue starforming source provides good lens/source contrast - State of the art: few x 10 5 targets - Lensing rate: ~1/ Results: ~100 confirmed lenses

6

7 SWELLS: Not only early-type galaxies, also spirals Image Residuals Image Residuals Credit: Matt Auger Ongoing HST/WFPC2 programme

8 Modern Integrated Approach Combining Strong Lensing with other tools...

9 Modern Integrated Approach Baryonic + Dark Matter around the Einstein Radius CDM Substructure Grid-based methods Strong Lensing Transition regions between stellar and DM components. Hydrostatic eqns. X-ray Observ. Breaking Degeneracies (mass-anisotropy, ( inclination mass-sheet, Stellar Dynamics Baryonic + Dark Matter around the effective radius Phase-space density Grid-based methods Weak Lensing Environment & Outer DM halo Grid-based methods

10 Strong Lensing Geometry S θ L β O Lens equation: β = θ α ( θ) Non-linear -> Multiple solutions

11 Defection Angle and Density profiles Pointmass SIS Moore Kochanek, Schneider & Wambsganss 2004

12 Example: B Radio jet lensed by spiral galaxy at z=0.9 Note the very similar radial stretching of the lensed images compared to the source γ r 1.96±0.02 Wucknitz et al 2002

13 Lensing & Dynamics Increasing the diagnostic power of lensing

14 Scale-free toy model Let us assume that the density and luminosity densities are scale-free power-law distributions And that the (an)isotropy is constant as function of radius to first approximation

15 Scale-free toy model The spherical Jeans equation can analytically be solved: Or averaged inside an aperture: Koopmans 2004

16 Combining with Stellar Dynamics Constant M/L model versus SIS R 1/4 constant M/L density profile Lensing mass is the same SIS density profile with stellar M/L=0

17 The structure of E/S0 galaxies ( systems Analysis of full HST-ACS sample (58 Isothermal Density Profiles It is not well understood why baryonic & DM add to a combined 1/r 2 density profile, despite different physics and starting conditions. Or is this an efect of modified gravity? ( prep Koopmans et al (in

18 The structure of E/S0 galaxies No correlations with anything whatsoever? Analysis of the SLACS-ACS sample with good lensing & kinematic data shows no dependence of the slope on (i) galaxy properties, (ii) redshift or (iii) environment ( prep Koopmans et al (in

19 Lensing & Dynamics: Density Slope at z=0.5 (Warren et al. 1996) Koopmans & Treu 2003

20 Lensing & Dynamics: Anisotropy 5.75 hrs integration with Keck/ESI; velocity dispersion profile to ~5 % DM density slope Stellar mass fraction Koopmans & Treu 2003

21 Lensing & Dynamics: Separating Stellar and Dark Matter LSD Survey Two component mass models: >> Isotropic models (R i ="): 44 <! DM > = (68% CL) >> Anisotropic models (R i =R eff ): <! DM > < 0.6 (68% CL) Treu & Koopmans 2004

22 Self-consistent lensing & Stellar Dynamics Going beyond spherical Jeans modelling

23 A SELF-CONSISTENT METHOD FOR LENSING AND DYNAMICS ANALYSIS Barnabè & Koopmans 2007 Axisymmetric density distribution: ρ(r,z) Gravitational potential: Φ(R,z,η k ) linear optimization LENSED IMAGE REC. linear optimization DYNAMICAL MODEL Maximize the Bayesian evidence allows model comparison automatically embodies Occam s razor (MacKay 1992) when converges non-linear optimization vary η k Best values for the non-linear parameters η k source reconstruction & DF reconstruction

24 Monte Carlo 2-Integral f(e,l z ) Schwarzschild method DF Σ v σ Barnabè & Koopmans 2007 TIC 2 TIC 1 TIC = total

25 Dynamical Model = DF reconstruction DF Σ < v z' > < v 2 z' > residuals reconstructed mock

26 This method is being applied to VLT VIMOS data from an ESO Large Programme & Keck Data See talk by Oliver Czoske for results...

27 Weak Lensing of Strong Lenses Going beyond the baryons...

28 Weak Lensing of Strong Lenses 22 lenses (z~ ) with velocity dispersion ~ km/s F814W/ACS images (1 orbit) with FOV 200''x200'' Large surface density of sources I AB < 26.2 n bg ~80 arcmin -2. Gavazzi et al. 2008

29 Weak Lensing of Strong Lenses 2D mass mapping => ellipticity of haloes? Gavazzi et al. 2008

30 Weak Lensing of Strong Lenses Shear measure over kpc DeVauc+NFW Fit+concentration index from numerical sims: M * /L V = 4.4 ± 0.5 M sun /L sun M vir /L V = 350 ± 150 M sun /L sun 27±4% DM inside a sphere of 1 effective radius Gavazzi et al. 2008

31 Early-type Galaxy Scaling Relations A (More) Fundamental Plane?

32 The Fundamental Plane Massive elliptical occupy a Fundamental Plane in the space of effective radius, effective surface brightness and central velocity dispersion (e.g. Dressler et al. 1987; Djorgovski & Davis 1987) Also SLACS E/S0's occupy the same FP as their parent population from the LRG and MAIN SDSS samples.

33 A More Fundamental Plane? On the other hand, the virial theorem tells us: Why do the slopes differ from the FP? (M/L) varies with galaxy mass, i.e velocity dispersion, or structural non-homology?

34 A More Fundamental Plane? Idea: Replace surface brightness by surface density

35 Scaling Relations: The Fundamental Plane reference lines Lens and dynamical masses ( σ 2 R eff ) scale linearly Masses do NOT scale linearly with V luminosity

36 The structure of E/S0 galaxies ( constant Dark matter inside one effective radius (stellar M/L ~ Sauron: Stellar M/L (Cappellari et al 2006) ( prep Koopmans et al (in DM mass fraction increases dramatically from <L* to >L* ( km/s (up to 50% for σ~350 (if the IMF does not change strongly with galaxy mass)

37 (CDM) Mass Substructure More than meets the eye!

38 Grid-based Lensing Simulated Massive Galaxy Observed Massive Galaxy Smooth Dark Matter Stars Clumpy Dark Matter Modeling must be more sophisticated than simply parameterized!

39 Why can we detect mass substructure? d β d θ = ( ) 1 κ γ1 γ 2 γ 2 1 κ + γ 1 Note that near critical curves, the determinant of the inverse magnification matrix go to zero. We can use this matrix (assume κ=γ) and add a perturbation δ β = ( ) ɛ δκ δγ1 δγ 2 δγ 2 1 δκ + δγ 1 δ θ We note that near the critical curves, a small perturbation can cause large tangential changes in the images.

40 Lensing near critical curves is sensitive to CDM substructure Text Xu et al.2009 Mathematical relations between image fluxes (fold/cusp relations break down due to perturbations -> indication of substructure

41 Lensing near critical curves is sensitive to CDM substructure? The level of substructure affects by how much the cusp/fold relations are broken and can thus be used to measure the CDM substructure mass fraction Bradac et al. 2004

42 Lensing near critical curves is sensitive to CDM substructure? Dalal & Kochanek (2002) set limits on f CDM based a half a dozen radio lenses with anomalous cusp/fold relations However: (1) The mass fraction seems too high (2) There are clear problems with some systems, indicating some systematic effects (scattering, microlensing, etc). The jury is still out on this!

43 A Differential-Lens Equation To solve for (i) the source brightness distribution and (ii) the potential, using S x ( x) =S y ( y, ψ( x)) Conservation of source surface brightness with y = x ψ( x) The usual lens equation Koopmans (2009), in prep.

44 Linearized Differential Equation Linear Expansion in algebraic form this reads: (Koopmans et al 2005; Suyu et al. 2006/8; Vegetti & Koopmans 2008) This linear algebraic equation can be solved using a Bayesian penalty function for the residuals and standard Cholesky/gradient methods This is what we have used so far with great success

45 CDM Substructure & Strong Lensing No Substructure Dark substructure mass = 10 9 solar mass Best smooth model Best non-smooth model Vegetti & Koopmans, 2009

46 Detecting CDM Substructure M sub = 0 M sub = 10 7 M M sub = 10 9 M Vegetti & Koopmans 2009 Region affected by substructure θ µ θ ER

47 Detecting CDM Substructure 14 lens models: 1 smooth Power-Law: 12 PL + NFW: 4 positions x 3 masses 1 PL + 2 NFW Extended source with Gaussian surface brightness profile SLACS J M NFW = 10 7, 10 8, 10 9 M Vegetti & Koopmans 2009

48 Detecting CDM Substructure All substructures on the ring with mass different significance levels: M sub 10 7 M are detected at log(e) = 17.1 log(e) = All substructures outside/inside the ring with mass detected M sub 10 9 M log(e) = ; are Systems with two substructures and external shear can be reconstructed at the noise level log(e) = Vegetti & Koopmans 2009

49 Double Einstein Ring SDDS J : Simulations dn/dm m α α = 2.0 f(3re) = 1.0% Vegetti et al., in prep

50 Double Einstein Ring SDDS J : Simulations Bayesian adaptive grid-based reconstruction can even recover perturbations more complex than a single substructure Vegetti & Koopmans 2009; Vegetti et al. 2009, in prep.

51 Next Steps - The Future for Strong Galaxy-Galaxy Lensing VLT X-shooter: UV-IR Spectroscopy of massive lenses to assess their ( Koopmans true stellar M/L to z=1 (22hrs GTO time; PI. ELT, OPTIMOS (ESO Phase-A study since Sept. 2008): Spatially-resolved kinematics and stellar population of E/S0 galaxies at z 1 (co-i). SKA, LOFAR, e-merlin, EVLA, LSST, Pan-STARRS, follow-up w/jdem, JWST, ALMA etc.: Large all-sky surveys to discover 1000s of new lenses ( 2009 al. (e.g. Koopmans, Jackson & Browne 2004; Koopmans et al. 2009; Marshall et Other ongoing surveys e.g.: COSMOS (Faure et al. 2008), CFHT (Cabanac et al. 2007),,(. al GOODS (Moustakas et al. 2006), HAGLeS (Marshall et SLQS (Gavazzi et al.), etc...

52 General Conclusions (Strong) Gravitational Lensing provides a unique tool to measure stellar & DM density profile in the region of galaxies, where DM-Baryon interactions are important. Strong lensing (by galaxies) can detect and quantify (CDM) mass substructure in the range of solar mass and up. Lensing provide a unique probe in to the study of DM and possibly alternative (metric) gravity theories. (see e.g. white papers on astro-ph by Koopmans et al, Marshall et al. and Moustakas et al. 2009)

Integral-Field Spectroscopy of SLACS Lenses. Oliver Czoske Kapteyn Institute, Groningen, NL

Integral-Field Spectroscopy of SLACS Lenses. Oliver Czoske Kapteyn Institute, Groningen, NL Integral-Field Spectroscopy of SLACS Lenses Oliver Czoske Kapteyn Institute, Groningen, NL Three decades of gravitational lenses Symposium at the JENAM, 21-23 April 2009 Hatfield, 23 April 2009 Collaborators

More information

Matteo Barnabè & Léon Koopmans Kapteyn Astronomical Institute - Groningen (NL)

Matteo Barnabè & Léon Koopmans Kapteyn Astronomical Institute - Groningen (NL) Joint Gravitational Lensing and Stellar Dynamics Analysis of Early-Type Galaxies Matteo Barnabè & Léon Koopmans Kapteyn Astronomical Institute - Groningen (NL) Leiden, 04 August 2006 What is the mass structure

More information

CAULDRON: dynamics meets gravitational lensing. Matteo Barnabè

CAULDRON: dynamics meets gravitational lensing. Matteo Barnabè CAULDRON: dynamics meets gravitational lensing Matteo Barnabè KIPAC/SLAC, Stanford University Collaborators: Léon Koopmans (Kapteyn), Oliver Czoske (Vienna), Tommaso Treu (UCSB), Aaron Dutton (MPIA), Matt

More information

Cooking with Strong Lenses and Other Ingredients

Cooking with Strong Lenses and Other Ingredients Cooking with Strong Lenses and Other Ingredients Adam S. Bolton Department of Physics and Astronomy The University of Utah AASTCS 1: Probes of Dark Matter on Galaxy Scales Monterey, CA, USA 2013-July-17

More information

Elliptical galaxies as gravitational lenses

Elliptical galaxies as gravitational lenses Elliptical galaxies as gravitational lenses Raphaël Gavazzi UC Santa Barbara R. Gavazzi, Séminaire IAP, 22/12/06, 1 Outline Issues on Early-Type Galaxies (ETGs) Gravitational lensing, the basics SLACS:

More information

SLACS Spectroscopy. Observations, Kinematics & Stellar Populations. Oliver Czoske Kapteyn Institute, Groningen, NL

SLACS Spectroscopy. Observations, Kinematics & Stellar Populations. Oliver Czoske Kapteyn Institute, Groningen, NL SLACS Spectroscopy Observations, Kinematics & Stellar Populations Oliver Czoske Kapteyn Institute, Groningen, NL Strong Gravitational Lensing in the Next Decade Cogne, 22 June 2009 Collaborators Léon Koopmans

More information

Physics of the Universe: Gravitational Lensing. Chris Fassnacht UC Davis

Physics of the Universe: Gravitational Lensing. Chris Fassnacht UC Davis Physics of the Universe: Gravitational Lensing Chris Fassnacht UC Davis The motivation The big question: What is dark energy? More specifically Obtain independent measurements of cosmological parameters

More information

Quantifying dwarf satellites through gravitational imaging: the case of SDSS J

Quantifying dwarf satellites through gravitational imaging: the case of SDSS J Mon. Not. R. Astron. Soc. 407, 225 231 (2010) doi:10.1111/j.1365-2966.2010.16952.x Quantifying dwarf satellites through gravitational imaging: the case of SDSS J120602.09+514229.5 Simona Vegetti, Oliver

More information

The Stellar Initial Mass Function of Massive Galaxies

The Stellar Initial Mass Function of Massive Galaxies The Stellar Initial Mass Function of Massive Galaxies Aaron A. Dutton Max Planck Institute for Astronomy (MPIA), Heidelberg, Germany Quenching and Quiescence, Heidelberg, July 2014 Motivation What is the

More information

Gravitational Lensing. A Brief History, Theory, and Applications

Gravitational Lensing. A Brief History, Theory, and Applications Gravitational Lensing A Brief History, Theory, and Applications A Brief History Einstein (1915): light deflection by point mass M due to bending of space-time = 2x Newtonian light tangentially grazing

More information

Gravitational Lensing: Strong, Weak and Micro

Gravitational Lensing: Strong, Weak and Micro P. Schneider C. Kochanek J. Wambsganss Gravitational Lensing: Strong, Weak and Micro Saas-Fee Advanced Course 33 Swiss Society for Astrophysics and Astronomy Edited by G. Meylan, P. Jetzer and P. North

More information

Statistics of flux ratios in strong lenses: probing of dark matter on small scales

Statistics of flux ratios in strong lenses: probing of dark matter on small scales Statistics of flux ratios in strong lenses: probing of dark matter on small scales Daniel Gilman (UCLA) With: Simon Birrer, Tommaso Treu, Anna Nierenberg, Chuck Keeton, Andrew Benson image: ESA/Hubble,

More information

Brief update (3 mins/2 slides) on astrophysics behind final project

Brief update (3 mins/2 slides) on astrophysics behind final project Nov 1, 2017 Brief update (3 mins/2 slides) on astrophysics behind final project Evidence for Dark Matter Next Wed: Prelim #2, similar to last one (30 mins). Review especially lecture slides, PEs and non-project

More information

Strong Gravitational Lensing as a Probe of Gravity, Dark- Matter and Super-Massive Black Holes

Strong Gravitational Lensing as a Probe of Gravity, Dark- Matter and Super-Massive Black Holes Strong Gravitational Lensing as a Probe of Gravity, Dark- Matter and Super-Massive Black Holes L.V.E. Koopmans (Kapteyn Astronomical Institute) 1, M. Barnabè (Kapteyn/Stanford), A. Bolton (IfA), M. Bradač

More information

Evidence for/constraints on dark matter in galaxies and clusters

Evidence for/constraints on dark matter in galaxies and clusters Nov 11, 2015 Evidence for/constraints on dark matter in galaxies and clusters HW#9 is due; please hand in your summaries; then you get to talk (I have slides of the different facilities/telescopes. HW#10

More information

Inference of the cold dark matter substructure mass function at z = 0.2 using strong gravitational lenses

Inference of the cold dark matter substructure mass function at z = 0.2 using strong gravitational lenses doi:10.1093/mnras/stu943 Inference of the cold dark matter substructure mass function at z = 0.2 using strong gravitational lenses S. Vegetti, 1,2 L. V. E. Koopmans, 3 M. W. Auger, 4 T. Treu 5 anda.s.bolton

More information

arxiv:astro-ph/ v1 10 Nov 1999

arxiv:astro-ph/ v1 10 Nov 1999 Clustering at High Redshift ASP Conference Series, Vol., 1999 A. Mazure and O. Le Fevre, eds. Weak Lensing Observations of High-Redshift Clusters of Galaxies arxiv:astro-ph/9911169v1 10 Nov 1999 D. Clowe

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

Strong Lensing with Euclid and SKA The future of strong lensing with 100,000+ lenses

Strong Lensing with Euclid and SKA The future of strong lensing with 100,000+ lenses Strong Lensing with Euclid and SKA The future of strong lensing with 100,000+ lenses Léon Koopmans (Kapteyn Astronomical Institute) Vegetti et al. McKean et al. Euclid-SKA Synergy - Oxford, Sept.16 2013

More information

What can M2M do for Milky Way Models?

What can M2M do for Milky Way Models? What can M2M do for Milky Way Models? Ortwin Gerhard Max-Planck-Institut für Extraterrestrische Physik, Garching gerhard@mpe.mpg.de Thanks to F. de Lorenzi, V. Debattista, P. Das, L. Morganti I. Made-to-Measure

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10669 Observations and data reduction The data used for this work were taken as part of the Strong-lensing at High Angular Resolution Program (SHARP) and will be discussed in detail by

More information

The phenomenon of gravitational lenses

The phenomenon of gravitational lenses The phenomenon of gravitational lenses The phenomenon of gravitational lenses If we look carefully at the image taken with the Hubble Space Telescope, of the Galaxy Cluster Abell 2218 in the constellation

More information

A Spectroscopically-Confirmed Double Source Plane Lens in the HSC SSP Tanaka, Wong, et al. 2016, ApJ, 826, L19

A Spectroscopically-Confirmed Double Source Plane Lens in the HSC SSP Tanaka, Wong, et al. 2016, ApJ, 826, L19 A Spectroscopically-Confirmed Double Source Plane Lens in the HSC SSP Tanaka, Wong, et al. 2016, ApJ, 826, L19 Kenneth Wong EACOA Fellow National Astronomical Observatory of Japan Masayuki Tanaka (NAOJ)

More information

NMAGIC Made-to-Measure Modeling of Elliptical Galaxies NMAGIC - 2 M2M

NMAGIC Made-to-Measure Modeling of Elliptical Galaxies NMAGIC - 2 M2M NMAGIC Made-to-Measure Modeling of Elliptical Galaxies Ortwin Gerhard, MPE, Garching gerhard@mpe.mpg.de I. Made-to-measure dynamical modeling with NMAGIC II Elliptical galaxy halo kinematics with planetary

More information

Dark Matter Structures in the Universe:

Dark Matter Structures in the Universe: : Prospects for Optical Astronomy in the Next Decade Submitted to the 2010 Astronomy & Astrophysics Decadal Survey panel P. J. Marshall, 1,2 M. Auger, 1 J. G. Bartlett, 3 M. Bradač, 1 A. Cooray, 4 N. Dalal,

More information

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Astro 242 The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu Syllabus Text: An Introduction to Modern Astrophysics 2nd Ed., Carroll and Ostlie First class Wed Jan 3. Reading period Mar 8-9

More information

Microlensing Constraints on Quasar X-ray Emission Regions

Microlensing Constraints on Quasar X-ray Emission Regions Microlensing Constraints on Quasar X-ray Emission Regions Xinyu Dai (Univ. of Oklahoma) Bin Chen (Univ. of Oklahoma) Chris Kochanek (Ohio State Univ.) George Chartas (College of Charleston) Chris Morgan

More information

Summary So Far! M87van der Maerl! NGC4342! van den Bosch! rotation velocity!

Summary So Far! M87van der Maerl! NGC4342! van den Bosch! rotation velocity! Summary So Far Fundamental plane connects luminosity, scale length, surface brightness, stellar dynamics. age and chemical composition Elliptical galaxies are not randomly distributed within the 3D space

More information

Strong gravitational lensing

Strong gravitational lensing Strong gravitational lensing Olaf Wucknitz, JIVE, Dwingeloo, NL Mike Garrett, JIVE, Dwingeloo, NL Neal Jackson, Jodrell Bank, UK Dieter Engels, Hamburger Sternwarte, Germany 1 Introduction The gravitational

More information

Gravitational Efects and the Motion of Stars

Gravitational Efects and the Motion of Stars Gravitational Efects and the Motion of Stars On the largest scales (galaxy clusters and larger), strong evidence that the dark matter has to be non-baryonic: Abundances of light elements (hydrogen, helium

More information

Observational Cosmology

Observational Cosmology Astr 102: Introduction to Astronomy Fall Quarter 2009, University of Washington, Željko Ivezić Lecture 15: Observational Cosmology 1 Outline Observational Cosmology: observations that allow us to test

More information

The Caustic Technique An overview

The Caustic Technique An overview The An overview Ana Laura Serra Torino, July 30, 2010 Why the mass of? Small scales assumption of dynamical equilibrium Mass distribution on intermediate scales (1 10 Mpc/h) Large scales small over densities

More information

Source plane reconstruction of the giant gravitational arc in Abell 2667: a condidate Wolf-Rayet galaxy at z 1

Source plane reconstruction of the giant gravitational arc in Abell 2667: a condidate Wolf-Rayet galaxy at z 1 Source plane reconstruction of the giant gravitational arc in Abell 2667: a condidate Wolf-Rayet galaxy at z 1 Speaker: Shuo Cao Department of Astronomy Beijing Normal University Collaborators: Giovanni

More information

Lensing Basics: III. Basic Theory (continued)

Lensing Basics: III. Basic Theory (continued) Lensing Basics: III. Basic Theory (continued) Sherry Suyu Academia Sinica Institute of Astronomy and Astrophysics University of California Santa Barbara KIPAC, Stanford University November 6, 2012 @ XXIV

More information

Galaxy formation and evolution. Astro 850

Galaxy formation and evolution. Astro 850 Galaxy formation and evolution Astro 850 Introduction What are galaxies? Systems containing many galaxies, e.g. 10 11 stars in the Milky Way. But galaxies have different properties. Properties of individual

More information

Exploring the Depths of the Universe

Exploring the Depths of the Universe Exploring the Depths of the Universe Jennifer Lotz Hubble Science Briefing Jan. 16, 2014 Hubble is now observing galaxies 97% of the way back to the Big Bang, during the first 500 million years 2 Challenge:

More information

Cluster strong lensing as a probe of the high redshift Universe

Cluster strong lensing as a probe of the high redshift Universe Cluster strong lensing as a probe of the high redshift Universe Jean-Paul KNEIB Laboratoire Astrophysique de Marseille (LAM) now on leave at: LASTRO - EPFL Mont-Blanc 1 Chapters Introduction on cluster

More information

OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY. Marco Roncadelli INFN Pavia (Italy)

OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY. Marco Roncadelli INFN Pavia (Italy) OBSERVATIONAL EVIDENCE FOR DARK MATTER AND DARK ENERGY Marco Roncadelli INFN Pavia (Italy) ABSTRACT Assuming KNOWN physical laws, I first discuss OBSERVATIONAL evidence for dark matter in galaxies and

More information

PHY323:Lecture 7 Dark Matter with Gravitational Lensing

PHY323:Lecture 7 Dark Matter with Gravitational Lensing PHY323:Lecture 7 Dark Matter with Gravitational Lensing Strong Gravitational Lensing Theory of Gravitational Lensing Weak Gravitational Lensing Large Scale Structure Experimental Evidence for Dark Matter

More information

arxiv:astro-ph/ v1 23 Jan 2005

arxiv:astro-ph/ v1 23 Jan 2005 Impact of Gravitational Lensing on Cosmology Proceedings IAU Symposium No. 225, 2004 Mellier, Y. & Meylan,G. eds. c 2004 International Astronomical Union DOI: 00.0000/X000000000000000X Quasar Lensing Statistics

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

GRAVITATIONAL LENS DISCOVERY AND INVESTIGATION USING OPTICAL AND INFRA-RED SURVEYS.

GRAVITATIONAL LENS DISCOVERY AND INVESTIGATION USING OPTICAL AND INFRA-RED SURVEYS. GRAVITATIONAL LENS DISCOVERY AND INVESTIGATION USING OPTICAL AND INFRA-RED SURVEYS. A thesis submitted to the University of Manchester for the degree of Master of Science by Research in the Faculty of

More information

Gravitational lensing at the highest angular resolution

Gravitational lensing at the highest angular resolution Gravitational lensing at the highest angular resolution John McKean! (SHARP) Matus Rybak, Cristiana Spingola, Simona Vegetti, Matt Auger, Chris Fassnacht, Neal Jackson, David Lagattuta, Leon Koopmans!

More information

Galaxies: Structure, Dynamics, and Evolution. Dark Matter Halos and Large Scale Structure

Galaxies: Structure, Dynamics, and Evolution. Dark Matter Halos and Large Scale Structure Galaxies: Structure, Dynamics, and Evolution Dark Matter Halos and Large Scale Structure Layout of the Course Feb 5: Review: Galaxies and Cosmology Feb 12: Review: Disk Galaxies and Galaxy Formation Basics

More information

Strong gravitational lenses in the 2020s

Strong gravitational lenses in the 2020s Strong gravitational lenses in the 2020s Masamune Oguri University of Tokyo 2014/7/18 TMT science forum @ Tucson Strong gravitational lenses are rare wide-field surveys find strong gravitational lenses

More information

arxiv: v2 [astro-ph.co] 2 Jul 2014

arxiv: v2 [astro-ph.co] 2 Jul 2014 Mon. Not. R. Astron. Soc., () Printed July (MN LATEX style file v.) On the density profile of dark matter substructure in gravitational lens galaxies Simona Vegetti and Mark Vogelsberger Max Planck Institute

More information

Testing claims of IMF variation with strong lensing (and dynamics)

Testing claims of IMF variation with strong lensing (and dynamics) IAU311, Oxford, July 2014 Testing claims of IMF variation with strong lensing (and dynamics) Russell Smith University of Durham A Heavy IMF in Ellipticals: Consensus? Spectroscopy: Gravity-sensitive features

More information

How can Mathematics Reveal Dark Matter?

How can Mathematics Reveal Dark Matter? How can Mathematics Reveal? Chuck Keeton Rutgers University April 2, 2010 Evidence for dark matter galaxy dynamics clusters of galaxies (dynamics, X-rays) large-scale structure cosmography gravitational

More information

arxiv: v1 [astro-ph.co] 17 Jul 2013

arxiv: v1 [astro-ph.co] 17 Jul 2013 Draft version July 19, 2013 Preprint typeset using L A TEX style emulateapj v. 5/2/11 THE SL2S GALAXY-SCALE LENS SAMPLE. III. LENS MODELS, SURFACE PHOTOMETRY AND STELLAR MASSES FOR THE FINAL SAMPLE Alessandro

More information

Inner dynamics of massive galaxies (ETG) Michele Cappellari

Inner dynamics of massive galaxies (ETG) Michele Cappellari Inner dynamics of massive galaxies (ETG) Michele Cappellari First rotation curve of an elliptical (Bertola+Capaccioli75) Elliptical galaxy NGC4697 2 hr of observations at 5-m Palomar Angular momentum much

More information

Cosmology and Strongly Lensed QSOs

Cosmology and Strongly Lensed QSOs Cosmology and Strongly Lensed QSOs Andy Friedman Astronomy 200, Harvard University, Spring 2004 http://cfa-www.harvard.edu/~kstanek/astro200/spring2004.html Ho Outline ΩΛ Determining Ho from Time Delays

More information

Survey of Astrophysics A110

Survey of Astrophysics A110 Goals: Galaxies To determine the types and distributions of galaxies? How do we measure the mass of galaxies and what comprises this mass? How do we measure distances to galaxies and what does this tell

More information

COSMOS : Strong Lens Candidate

COSMOS : Strong Lens Candidate COSMOS 5921+0638: Strong Lens Candidate Timo Anguita Astronomisches Rechen-Institut Zentrum für Astronomie der Universität Heidelberg with: C. Faure (EPFL) J.-P. Kneib (LAM) J. Wambsganss (ARI/ZAH) C.

More information

Clusters, lensing and CFHT reprocessing

Clusters, lensing and CFHT reprocessing Clusters, lensing and CFHT reprocessing R. Ansari - French LSST meeting December 2015 1 Clusters as cosmological probes Clusters: characteristics and properties Basics of lensing Weighting the Giants Clusters

More information

Probing Dark Matter Halos with Satellite Kinematics & Weak Lensing

Probing Dark Matter Halos with Satellite Kinematics & Weak Lensing Probing Dark Matter Halos with & Weak Lensing Frank C. van den Bosch (MPIA) Collaborators: Surhud More, Marcello Cacciato UMass, August 2008 Probing Dark Matter Halos - p. 1/35 Galaxy Formation in a Nutshell

More information

Volume-limited limited sample

Volume-limited limited sample Masses of Early-Type Galaxies from Atlas 3D Michele Cappellari Mass DF degeneracy SAURON Data Model Cap ppellari+07 Both orbital distribution (DF) and kinematics are 3D Given gravitational potential one

More information

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies!

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies! 3/6/12 Astro 358/Spring 2012 Galaxies and the Universe Dark Matter in Galaxies Figures + Tables for Lectures (Feb 16-Mar 6) Dark Matter in Spiral Galaxies Flat rotation curve of Milky Way at large radii

More information

Clusters: Observations

Clusters: Observations Clusters: Observations Last time we talked about some of the context of clusters, and why observations of them have importance to cosmological issues. Some of the reasons why clusters are useful probes

More information

Mapping Baryonic & Dark Matter in the Universe

Mapping Baryonic & Dark Matter in the Universe Mapping Baryonic & Dark Matter in the Universe Jean-Paul KNEIB Laboratoire d Astrophysique de Marseille, France A. Leauthaud, R. Massey, J. Rhodes, the COSMOS team, and many others Outline Motivation Basics

More information

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology from Large Scale Structure Sky Surveys Supernovae Ia CMB

More information

Testing the cold dark matter model with gravitational lensing

Testing the cold dark matter model with gravitational lensing Testing the cold dark matter model with gravitational lensing Priyamvada Natarajan Departments of Astronomy & Physics Yale University In Memoriam: Vera Rubin New Directions in Theoretical Physics, January

More information

Mass and Hot Baryons from Cluster Lensing and SZE Observations

Mass and Hot Baryons from Cluster Lensing and SZE Observations SZX HUNTSVILLE 2011 Mass and Hot Baryons from Cluster Lensing and SZE Observations Keiichi Umetsu Academia Sinica IAA (ASIAA), Taiwan September 19, 2011 Lensing collaborators: Collaborators T. Broadhurst

More information

Dark Matter. Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses ~ 0.3 Ω M Ω b.

Dark Matter. Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses ~ 0.3 Ω M Ω b. Dark Matter Galaxy Counts Redshift Surveys Galaxy Rotation Curves Cluster Dynamics Gravitational Lenses Ω M ~ 0.3 2 1 Ω b 0.04 3 Mass Density by Direct Counting Add up the mass of all the galaxies per

More information

Homework 9 due Nov. 26 (after Thanksgiving)

Homework 9 due Nov. 26 (after Thanksgiving) Homework 9 due Nov. 26 (after Thanksgiving) [CO 17.6 parts (a), (b)] [16.6 1 st ed., parts (a), (b)] Derive the deflection of the light ray passing a massive object. Note that your answer will come out

More information

The sizes of z ~ 6-8 lensed galaxies from the Hubble Frontier Fields data of Abell 2744

The sizes of z ~ 6-8 lensed galaxies from the Hubble Frontier Fields data of Abell 2744 The sizes of z ~ 6-8 lensed galaxies from the Hubble Frontier Fields data of Abell 2744 Kawamata+15, ApJ, 804, 103 Ryota Kawamata The University of Tokyo With: Masafumi Ishigaki, Kazuhiro Shimasaku, Masamune

More information

Outline: Galaxy groups & clusters

Outline: Galaxy groups & clusters Outline: Galaxy groups & clusters Outline: Gravitational lensing Galaxy groups and clusters I Galaxy groups and clusters II Cluster classification Increasing rareness Intermission: What are you looking

More information

Astro-2: History of the Universe. Lecture 5; April

Astro-2: History of the Universe. Lecture 5; April Astro-2: History of the Universe Lecture 5; April 23 2013 Previously.. On Astro-2 Galaxies do not live in isolation but in larger structures, called groups, clusters, or superclusters This is called the

More information

The SINFONI Nearby Elliptical Lens Locator Survey (SNELLS)

The SINFONI Nearby Elliptical Lens Locator Survey (SNELLS) The SINFONI Nearby Elliptical Lens Locator Survey (SNELLS) Russell J. Smith 1 John R. Lucey 1 Charlie Conroy 2 1 Centre for Extragalactic Astronomy, Durham University, United Kingdom 2 Harvard Smithsonian

More information

arxiv: v2 [astro-ph.ga] 4 Jun 2014

arxiv: v2 [astro-ph.ga] 4 Jun 2014 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 5 June 2014 (MN LATEX style file v2.2) Inference of the cold dark matter substructure mass function at z = 0.2 using strong gravitational lenses arxiv:1405.3666v2

More information

Quantifying the (Late) Assembly History of Galaxies. Michael Pierce (University of Wyoming)

Quantifying the (Late) Assembly History of Galaxies. Michael Pierce (University of Wyoming) Quantifying the (Late) Assembly History of Galaxies Michael Pierce (University of Wyoming) What I Think We Already Know: Morphology Density Relation (Assembly Depends on Environment) (Dressler 1980) Ratio

More information

Galaxy Group Masses: Lensing, Dynamics & Xrays

Galaxy Group Masses: Lensing, Dynamics & Xrays Galaxy Group Masses: Lensing, Dynamics & Xrays Laura Parker Michael Balogh Richard Bower Ray Carlberg Jennifer Connelly Alexis Finoguenov Robbie Henderson Annie Hou Mike Hudson Sean McGee John Mulchaey

More information

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation!

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the scantrons

More information

Insights on galaxy evolution from the dark matter content of massive early-type galaxies Crescenzo Tortora

Insights on galaxy evolution from the dark matter content of massive early-type galaxies Crescenzo Tortora Insights on galaxy evolution from the dark matter content of massive early-type galaxies Crescenzo Tortora ITP Zurich What is fun with dark matter (DM)? DARK MATTER DC comics Futurama come back to talk

More information

Large-Scale Structure

Large-Scale Structure Large-Scale Structure Evidence for Dark Matter Dark Halos in Ellipticals Hot Gas in Ellipticals Clusters Hot Gas in Clusters Cluster Galaxy Velocities and Masses Large-Scale Distribution of Galaxies 1

More information

Synergies between and E-ELT

Synergies between and E-ELT Synergies between and E-ELT Aprajita Verma & Isobel Hook 1) E- ELT Summary 2) E- ELT Project Status 3) Parameter space 4) Examples of scientific synergies The World s Biggest Eye on the Sky 39.3m diameter,

More information

Gravitational Lensing of the Largest Scales

Gravitational Lensing of the Largest Scales What is dark matter? Good question. How do we answer it? Gravitational lensing! Gravitational lensing is fantastic Why Clusters of Galaxies Because they are cool!! Studying empirical properties of dark

More information

Astrometric Microlensing by Local Dark Matter Subhalos

Astrometric Microlensing by Local Dark Matter Subhalos Astrometric Microlensing by Local Dark Matter Subhalos Adrienne Erickcek CITA & Perimeter Institute with Nicholas Law University of Toronto Dunlap Institute arxiv: 17.4228 ApJ in press Dark Matter Halos

More information

RESOLVING HIGH ENERGY UNIVERSE USING STRONG GRAVITATIONAL LENSING. Anna Barnacka Einstein Fellow at Harvard

RESOLVING HIGH ENERGY UNIVERSE USING STRONG GRAVITATIONAL LENSING. Anna Barnacka Einstein Fellow at Harvard Berenice Abbott RESOLVING HIGH ENERGY UNIVERSE USING STRONG GRAVITATIONAL LENSING Anna Barnacka Einstein Fellow at Harvard EXTRAGALACTIC JETS - M87 Increased X-ray emission by a factor of 50 from the HST-1

More information

Searching for extrasolar planets using microlensing

Searching for extrasolar planets using microlensing Searching for extrasolar planets using microlensing Dijana Dominis Prester 7.8.2007, Belgrade Extrasolar planets Planets outside of the Solar System (exoplanets) Various methods: mostly massive hot gaseous

More information

The shapes of faint galaxies: A window unto mass in the universe

The shapes of faint galaxies: A window unto mass in the universe Lecture 15 The shapes of faint galaxies: A window unto mass in the universe Intensity weighted second moments Optimal filtering Weak gravitational lensing Shear components Shear detection Inverse problem:

More information

Small but mighty: Dark matter substructure

Small but mighty: Dark matter substructure Small but mighty: Dark matter substructure TeVPA 2017, Columbus OH August 11, 2017 Francis-Yan Cyr-Racine Postdoctoral Fellow Department of Physics, Harvard University With Ana Díaz Rivero, Cora Dvorkin,

More information

2. Lens population. 3. Lens model. 4. Cosmology. z=0.5. z=0

2. Lens population. 3. Lens model. 4. Cosmology. z=0.5. z=0 Chuck Keeton Hubble Fellow, University of Chicago ffl Lens statistics probe the volume of the universe to z ο 1 3. ffl Current constraints on Λ. ffl Systematics! ffl Prospects for equation of state (w,

More information

IoP. An Introduction to the Science of Cosmology. Derek Raine. Ted Thomas. Series in Astronomy and Astrophysics

IoP. An Introduction to the Science of Cosmology. Derek Raine. Ted Thomas. Series in Astronomy and Astrophysics Series in Astronomy and Astrophysics An Introduction to the Science of Cosmology Derek Raine Department of Physics and Astronomy University of Leicester, UK Ted Thomas Department of Physics and Astronomy

More information

DM direct detection predictions from hydrodynamic simulations

DM direct detection predictions from hydrodynamic simulations DM direct detection predictions from hydrodynamic simulations Nassim Bozorgnia GRAPPA Institute University of Amsterdam Based on work done with F. Calore, M. Lovell, G. Bertone, and the EAGLE team arxiv:

More information

Astronomy 422. Lecture 15: Expansion and Large Scale Structure of the Universe

Astronomy 422. Lecture 15: Expansion and Large Scale Structure of the Universe Astronomy 422 Lecture 15: Expansion and Large Scale Structure of the Universe Key concepts: Hubble Flow Clusters and Large scale structure Gravitational Lensing Sunyaev-Zeldovich Effect Expansion and age

More information

A New Window of Exploration in the Mass Spectrum Strong Lensing by Galaxy Groups in the SL2S

A New Window of Exploration in the Mass Spectrum Strong Lensing by Galaxy Groups in the SL2S A New Window of Exploration in the Mass Spectrum Strong Lensing by Galaxy Groups in the SL2S Marceau Limousin Strong Lensing Legacy Survey Collaboration (SL2S) Laboratoire d Astrophysique de Marseille

More information

Euclid and MSE. Y. Mellier IAP and CEA/SAp.

Euclid and MSE. Y. Mellier IAP and CEA/SAp. Euclid and MSE Y. Mellier IAP and CEA/SAp www.euclid-ec.org Euclid and MSE CFHT Users Meeting, Nice 02 May, 2016 Euclid Primary Objectives: the Dark Universe Understand The origin of the Universe s accelerating

More information

Structure and substructure in dark matter halos

Structure and substructure in dark matter halos Satellites and Tidal Streams ING IAC joint Conference La Palma, May 2003 Structure and substructure in dark matter halos Simon D.M. White Max Planck Institute for Astrophysics 500 kpc A CDM Milky Way Does

More information

Part two of a year-long introduction to astrophysics:

Part two of a year-long introduction to astrophysics: ASTR 3830 Astrophysics 2 - Galactic and Extragalactic Phil Armitage office: JILA tower A909 email: pja@jilau1.colorado.edu Spitzer Space telescope image of M81 Part two of a year-long introduction to astrophysics:

More information

Exploiting Cosmic Telescopes with RAVEN

Exploiting Cosmic Telescopes with RAVEN Exploiting Cosmic Telescopes with RAVEN S. Mark Ammons Lawrence Livermore National Laboratory Thanks to: Ken Wong (Arizona) Ann Zabludoff (Arizona) Chuck Keeton (Rutgers) K. Decker French (Arizona) RAVEN

More information

The cosmic distance scale

The cosmic distance scale The cosmic distance scale Distance information is often crucial to understand the physics of astrophysical objects. This requires knowing the basic properties of such an object, like its size, its environment,

More information

Components of Galaxies: Dark Matter

Components of Galaxies: Dark Matter Components of Galaxies: Dark Matter Dark Matter: Any Form of matter whose existence is inferred solely through its gravitational effects. -B&T, pg 590 Nature of Major Component of Universe Galaxy Formation

More information

Probing the slope of cluster mass profile with gravitational Einstein rings: application to Abell 1689

Probing the slope of cluster mass profile with gravitational Einstein rings: application to Abell 1689 Mon. Not. R. Astron. Soc. 386, 1169 1178 (2008) doi:10.1111/j.1365-2966.2008.12929.x Probing the slope of cluster mass profile with gravitational Einstein rings: application to Abell 1689 H. Tu, 1,2,3

More information

arxiv:astro-ph/ v1 16 Jan 1997

arxiv:astro-ph/ v1 16 Jan 1997 Inclination Effects in Spiral Galaxy Gravitational Lensing Ariyeh H. Maller, Ricardo A. Flores and Joel R. Primack ABSTRACT arxiv:astro-ph/9700v 6 Jan 997 Spheroidal components of spiral galaxies have

More information

Large Imaging Surveys for Cosmology:

Large Imaging Surveys for Cosmology: Large Imaging Surveys for Cosmology: cosmic magnification AND photometric calibration Alexandre Boucaud Thesis work realized at APC under the supervision of James G. BARTLETT and Michel CRÉZÉ Outline Introduction

More information

Cosmology and Large Scale Structure

Cosmology and Large Scale Structure Cosmology and Large Scale Structure Alexandre Refregier PASCOS13 Taipei 11.22.2013 Matter Baryons Dark Matter Radiation Inflation Dark Energy Gravity Measuring the Dark Universe Geometry Growth of structure

More information

THREE-DIMENSIONAL MAPPING OF CDM SUBSTRUCTURE AT SUBMILLIMETER WAVELENGTHS

THREE-DIMENSIONAL MAPPING OF CDM SUBSTRUCTURE AT SUBMILLIMETER WAVELENGTHS The Astrophysical Journal, 633:23 28, 2005 November 1 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. THREE-DIMENSIONAL MAPPING OF CDM SUBSTRUCTURE AT SUBMILLIMETER WAVELENGTHS

More information

Charles Keeton. Principles of Astrophysics. Using Gravity and Stellar Physics. to Explore the Cosmos. ^ Springer

Charles Keeton. Principles of Astrophysics. Using Gravity and Stellar Physics. to Explore the Cosmos. ^ Springer Charles Keeton Principles of Astrophysics Using Gravity and Stellar Physics to Explore the Cosmos ^ Springer Contents 1 Introduction: Tools of the Trade 1 1.1 What Is Gravity? 1 1.2 Dimensions and Units

More information

12.1 Elliptical Galaxies

12.1 Elliptical Galaxies 12.1 Elliptical Galaxies Elliptical Galaxies Old view: ellipticals are boring, simple systems Ellipticals contain no gas & dust Ellipticals are composed of old stars Ellipticals formed in a monolithic

More information

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds.

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds. Image taken from the European Southern Observatory in Chile

More information