Principles and Paradigms for ppne & PNe Engines: (More on CE, Accretion, B-fields)

Size: px
Start display at page:

Download "Principles and Paradigms for ppne & PNe Engines: (More on CE, Accretion, B-fields)"

Transcription

1 Principles and Paradigms for ppne & PNe Engines: (More on CE, Accretion, B-fields) Eric Blackman (U. Rochester) Primary Collaborator: Jason Nordhaus (U. Rochester)

2 On Theory and Modeling model vs. theory; Kepler vs. Newton exact vs. mean field (e.g. newspaper photograph, fluid mech) example: imposed jet vs. generation from first principles minimal set of unifying observations vs. details of each source simplified theory/paradigm which explains key observations and makes predictions vs. detailed model for 1 source sometimes helpful to separate theory from its specific application

3 Red Giant AGB AGB mostly spherical but maser jets in TP AGB: W43A, IRAS and IRAS , OH (e.g. Vlemmings et al. 06; Szymczak et al ) Pre-PNe TP- AGB Transition from spherical to aspherical Often (always?) explosive (O(100yr) in CO) (Alcolea 01;Bujarrabal, et al. 01) Binding energy: TP < AGB <RGB PNe Does explosive ppne phase also influence to PNe shape?

4 ppne fast winds require non-rad. force CO survey of proto-planetary nebula: (Bujarrabal et al. 2001) 32 objects: 28 have both fast outflow and expanding shell (slow outflow) ~ 80% of PPNe have fast outflow momenta, ( g cm/s) that supplied by radiation NOTE: total mechanical luminosity is often 37 as high as 10 erg/s ALL Accretion Models Give: L acc M Ṁ 5 v out 400 ( M R,11 R,11 ) 1/2 km/s radiative luminosity, but

5 Measured Magnetic Fields AGB stars: Maser emission in the OH shell of NML Cygni (Etoka & Diamond 2004) Central stars of PNe: Spectropolarimetric discovery of kg fields in the central stars. (e.g. Jordan et al. 2005; Sabin 07 (?)) Evolved AGB stars W43: precessing jet in a post-agb star; B-fields 85mG at ~500 AU; strong enough to collimate (Vlemmings et al. 06) Important: relation between observed fields and engine fields needs more work

6 Back to Common Envelope Engines Giant stars engulf companions (e.g. Paczynski 76; Iben Livio 93; Tamm 06; Webbink 07) Velocity difference between secondary and CE generates drag which drives in-spiral. α fraction ( ) of orbital energy released by secondary is available for mass ejection. α for given, tracking binding energy released provides final orbital separation Orbital Energy Deposition E bind = α E orb Might accretion disks from around primary?

7 Primary s Stellar Profile We consider initial 3 M star in phases: RGB, AGB, and interpulse AGB. Binding energy inside envelope: E bind (r) = MT M GM(r) dm(r) r AGB mass and density profile. Dotted line represents the core boundary. (model of Steve Kawaler)

8 L drag = ξπr 2 aρ (v v env ) 3 In-spiral Drag between companion and envelope induces in-spiral: Assume companion incurs approximate Keplerian circular motion at all radii. Orbit is supersonic at all r Cross section of secondary comes from its accretion radius: R a 2Gm 2 (v v env ) 2

9 In-spiral and Unbinding potential energy change of secondary: E orb (r) = GM T m 2 GMm 2 2r o 2r Combined with primary s binding energy and fraction of orbital energy available for mass ejection, final separation is determined. core Example: for interpulse AGB, a 0.02 brown dwarf with can eject envelope above ~ M α = cm. Solid line: Binding energy of envelope Dashed lines: energy deposited into CE from the change in orbital energy of the secondary

10 Tidal Shredding Tidal shredding radius estimated by equating differential gravitational force across the secondary to its self-gravity: (i) If (ii) If < critical radius to unbind envelope, companion survives > critical radius to unbind envelope, companion shreds Note: smallest companions (< phase. (Soker, Livio & Harpaz 1984) M ) may evaporate before completing CE

11 Companion: Survive or Shred? AGB star ITP-AGB star turnaround from BD Solid: binding energy equals change in orbital energy supplied by secondary Short-dashed: companion first fills Roche lobe, transfers mass Long-dashed: companion is tidally shredded

12 CE Ejection Scenarios a. CE Direct Ejection b. CE Envelope Driven Dynamo Ejection c. CE Disk Driven Ejection Ejected torus would precede jet; perhaps relevant to Huggins (2007)

13 Direct Envelope Ejection WD White Dwarf + Brown Dwarf Close Binary (a 0.6R ) In-spiral confined to pre-ce orbital plane. equatorial outflow expected M BD = 0.05M M W D = 0.4M Brown dwarf engulfed by RGB star, survived CE but ejected stellar envelope. (Maxted et al. 2006) Simulations suggest opening angle ~ deg. (Terman & Taam 1996; Sandquist et al. 1998; Edgar et al 2007)

14 Envelope Dynamo Ejection: NGC 7009: Saturn Nebula Differentially rotating interior derived from CE in-spiral Combination of a convective envelope with differential rotation may generate large-scale poloidal and toroidal fields via α Ω dynamo. Resulting Poynting flux may be large enough to unbind the envelope in a ~100 year outflow. ansae in PPNe and PNe: Upper limit on burst time is ~ 100 yr, consistent with transient dynamo + spin down.

15 Disk Dynamo Ejection: here companion is shredded into a disk around proto-wd. HD 44179: Red Rectangle Accretion disk rotational energy may be extracted via a disk-driven/dynamo outflow (Blackman, Frank, & Welch 2001). For a 0.03 M brown dwarf with ~10% of its mass forming a disk, accretion rate (Reyes-Ruiz & Lopez 1999) Ṁ 10 4 (t/10yr) 5/4 M yr 1 Carbon-rich outflows with oxygen-rich contamination. (NASA, ESA, Van Winckel Cohen) L acc (t/10yr) 5/4 R i,10 1 erg/s (Blackman, Frank, \& Welch 2001)

16 Astrophysical Dynamos non-helical dynamos: do not make large scale fields helical dynamos (HD): make large scale fields Flow dominated HD inside astrophysical rotators Magnetically Dominated HD in coronae large scale field growth in astrophysical rotators is a coupling between the FDHD + MDHD coronal relaxation is part of the MDHD process, and jets can result Saturation of HD recently understood in terms of magnetic helicity evolution Observations mostly probe coronae and above MRI can drive both Non-helical and Helical Dynamos

17

18

19

20 α Ω Helical Dynamos Differential Rotation + Helical Turbulence Toroidal from Poloidal ( - effect) Differential rotation shears poloidal field, adding toroidal field. α Ω Toroidal to Poloidal ( - effect) As convective eddies (blobs) rise into less dense regions, they expand and twist Field Reversals Loop expansion and and footpoint diffusion lead to field reversals, and cycle period

21

22 Dynamo Scenarios: Isolated AGB (Pascoli 97, Blackman et al. 01; Soker & Zoabi 2002 ;Nordhaus, Blackman, Frank 07) (1) Transient Dynamo: No re-seeding of differential rotation -Initial rotation profile is only source of differential rotation energy. -resulting transient dynamo is insufficient (2) Quasi Steady Dynamo: -Re-seeding of differential rotation via convection + rotation -Posssibly sufficient if Poynting flux is trapped Common envelope (Nordhaus, Blackman, Frank 07) (3) In-spiral of the secondary spins up envelope -Transient Dynamos, but sufficient to unbind envelope, produce ansae, cycle periods Accretion Disk (e.g. Blackman, Frank, Welch, 01; Nordhaus & Blackman 07) (4) accretion provides turbulence needed for helical dynamo -sufficient to power long term outflows (PNe, PN) of decaying power

23 Progenitor Geometry Meridional Slice of Dynamo Geometry Convective Zone Core Shear Zone r = r + L c 1 r = r c α - layer z^ x^ Convection Zone Ω - layer y^ r = r - L c (Nordhaus, Blackman, Frank 2006) Convection + Differential rotation induced by the in-spiraling secondary can power a dynamo.

24 Poloidal Field Envelope Dynamo Equations Toroidal Field Velocity Shear Poynting Flux (Velocity evolution)

25 Common Envelope Dynamo: Results I 0.02M Brown Dwarf Companion Thermally Dominated Model!! T M The insets represent the time evolution from 0 to 0.2 yrs. Heat resulting from turbulent dissipation is responsible for unbinding the envelope after ~ 20 yrs. The resulting outflow is expected to be spherical or quasi-spherical.

26 Common Envelope Dynamo: Results II Magnetically Dominated Model 0.05M Brown Dwarf Companion Insets represent time evolution from 0 to 0.2 yrs. Poynting flux is responsible for unbinding the envelope within ~ 50 yrs.!! M Resultant poloidal outflow is expected, with weaker equatorial outflow (e.g. Matt et al. 2006)

27 Summary of Envelope-Dynamo-Driven Outflow

28 2006 Simulation of Magnetic Explosion

29 Summary of CE induced Disk-Dynamo Outflow (Reyes-Ruiz & Lopez 1999)

30 From Disk From Star (requires reseeding)

31 Conclusions... -Magnetic fields and binaries: co-conspirators in producing asymmetric ppne and PNe. -Jets come from B-fields, which come from dynamos, which in turn benefit from binaries supplying the necessary differential rotation and/or accretion power. -Common envelope evolution, from low mass companions can seemingly produce both dust tori and bipolar outflows. -Variety of possible outcomes of CE evolution require more study -ppne/pne: timely application of dynamo, accretion, and jet theory -Accretion onto primary provides needed power for ppne -obstacles for isolated AGB stars to make sustained bipolar PNe from MHD dynamos

32 Laundry list for Linking Theory. + Obs. (1) absence or presence of Carbon rich p/pne? (could imply CE; but e.g Ant) contamination of abundances by companion/ouflow? (...improve mixing theory) relation between dust tori and poloidal outflows? Do all p/pne go through asymmetric phase? Are maser jets in post-agbs precursors to the PNe jets via same mechanism? Evidence for steady vs. bursty/multiple outflows and the time scales are time scales of precession: consistent with observed binaries or consistent with rocket effect? maximum & distribution of outflow speeds (constrains accretion engine)

33 Linking Theory. + Obs. (2) disk predictions: variability, double peaked line profiles? ambiguities in geometry and orientation? characterizing time evolution of non-axisymmetry point X-rays; (issue of obscuration and youth); novae, B-fields, variability compare shaping from: magnetic, non-mag but binary companion; supersonic launch, single star

From Binaries to Asymmetric Outflows: The Influence of Low-mass Companions Around AGB Stars

From Binaries to Asymmetric Outflows: The Influence of Low-mass Companions Around AGB Stars From Binaries to Asymmetric Outflows: The Influence of Low-mass Companions Around AGB Stars by Jason T. Nordhaus Submitted in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

Mass Transfer in Binaries

Mass Transfer in Binaries Mass Transfer in Binaries Philipp Podsiadlowski (Oxford) Understanding the physics of mass transfer is essential for understanding binary evolution Simplest assumption: stable, conservative mass transfer

More information

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS Main Categories of Compact Systems Formation of Compact Objects Mass and Angular Momentum Loss Evolutionary Links to Classes of Binary Systems Future Work

More information

The Evolution of Close Binaries

The Evolution of Close Binaries The Evolution of Close Binaries Philipp Podsiadlowski (Oxford) The case of RS Ophiuchi as a test of binary stellar evolution as a potential Type Ia supernova (SN Ia) progenitor I. Testing Binary Evolution:

More information

Lecture 13: Binary evolution

Lecture 13: Binary evolution Lecture 13: Binary evolution Senior Astrophysics 2017-04-12 Senior Astrophysics Lecture 13: Binary evolution 2017-04-12 1 / 37 Outline 1 Conservative mass transfer 2 Non-conservative mass transfer 3 Cataclysmic

More information

PLANETARY NEBULAE AND ALMA. Patrick Huggins, New York University

PLANETARY NEBULAE AND ALMA. Patrick Huggins, New York University PLANETARY NEBULAE AND ALMA Patrick Huggins, New York University Abell 39 PNe: Overview Reminders evolution: AGB stars proto-pne PNe white dwarfs properties Problems and challenges current observational

More information

AGB/PPN/PN circumstellar rings vs. spiral

AGB/PPN/PN circumstellar rings vs. spiral Introduction Model CIT 6 Planet Summary AGB/PPN/PN circumstellar rings vs. spiral (ASIAA) Ronald Taam, Sheng-Yuan Liu, I-Ta Hsieh APN6 @ 2013-11-05 Introduction Model CIT 6 Planet Summary AGB Patterns

More information

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION Accretion Discs Mathematical Tripos, Part III Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION 0.1. Accretion If a particle of mass m falls from infinity and comes to rest on the surface of a star of mass

More information

arxiv:astro-ph/ v1 25 Aug 1998

arxiv:astro-ph/ v1 25 Aug 1998 DETECTING PLANETS IN PLANETARY NEBULAE Noam Soker soker@physics.technion.ac.il arxiv:astro-ph/9808290v1 25 Aug 1998 Department of Physics, University of Haifa at Oranim Tivon 36006, Israel 2 ABSTRACT We

More information

Unstable Mass Transfer

Unstable Mass Transfer Unstable Mass Transfer When the mass ratios are large, or when the donor star has a deep convective layer (so R M-1/3), mass loss will occur on a dynamical timescale. The result will be common envelope

More information

HR Diagram, Star Clusters, and Stellar Evolution

HR Diagram, Star Clusters, and Stellar Evolution Ay 1 Lecture 9 M7 ESO HR Diagram, Star Clusters, and Stellar Evolution 9.1 The HR Diagram Stellar Spectral Types Temperature L T Y The Hertzsprung-Russel (HR) Diagram It is a plot of stellar luminosity

More information

Post-AGB stars and Planetary Nebulae. Stellar evolution Expansion and evolution Molecules and dust 3He SKA

Post-AGB stars and Planetary Nebulae. Stellar evolution Expansion and evolution Molecules and dust 3He SKA Post-AGB stars and Planetary Nebulae Stellar evolution Expansion and evolution Molecules and dust 3He SKA GAIA HR diagram McDonald et al. 2017 Post-AGB evolution Molecular shell detaches and expands Heating

More information

Probing companions of evolved stars

Probing companions of evolved stars Introduction Spiral-shell Summary Probing companions of evolved stars (ASIAA, EACOA fellow)... migrating to KASI ALMA long baseline workshop @ Kyoto 2017-10-04 Introduction Spiral-shell Summary Evolution

More information

7. BINARY STARS (ZG: 12; CO: 7, 17)

7. BINARY STARS (ZG: 12; CO: 7, 17) 7. BINARY STARS (ZG: 12; CO: 7, 17) most stars are members of binary systems or multiple systems (triples, quadruples, quintuplets,...) orbital period distribution: P orb = 11 min to 10 6 yr the majority

More information

Expanding the Search for Spectroscopic Binaries in Proto-Planetary Nebulae!

Expanding the Search for Spectroscopic Binaries in Proto-Planetary Nebulae! Expanding the Search for Spectroscopic Binaries in Proto-Planetary Nebulae! Bruce J. Hrivnak (Valparaiso University)! Motivation! Expectation! Observations! Results! Implications! (expansion of Hrivnak

More information

SOLAR-LIKE CYCLE IN ASYMPTOTIC GIANT BRANCH STARS

SOLAR-LIKE CYCLE IN ASYMPTOTIC GIANT BRANCH STARS 1 SOLAR-LIKE CYCLE IN ASYMPTOTIC GIANT BRANCH STARS Noam Soker Department of Physics, University of Haifa at Oranim Oranim, Tivon 36006, ISRAEL soker@physics.technion.ac.il ABSTRACT I propose that the

More information

Probing the Molecular Outflows of the Coldest Known Object in the Universe The Boomerang Nebula. R.Sahai (JPL) W. Vlemmings, L-A Nyman & P.

Probing the Molecular Outflows of the Coldest Known Object in the Universe The Boomerang Nebula. R.Sahai (JPL) W. Vlemmings, L-A Nyman & P. Probing the Molecular Outflows of the Coldest Known Object in the Universe The Boomerang Nebula R.Sahai (JPL) W. Vlemmings, L-A Nyman & P. Huggins The Extraordinary Deaths of Ordinary Stars Planetary nebulae

More information

CAN PLANETS INFLUENCE THE HORIZONTAL BRANCH MORPHOLOGY?

CAN PLANETS INFLUENCE THE HORIZONTAL BRANCH MORPHOLOGY? CAN PLANETS INFLUENCE THE HORIZONTAL BRANCH MORPHOLOGY? Noam Soker Department of Physics, University of Haifa at Oranim Oranim, Tivon 36006, ISRAEL soker@physics.technion.ac.il Received ; accepted 2 ABSTRACT

More information

Pleasantness Review* Department of Physics, Technion, Israel. Noam Soker

Pleasantness Review* Department of Physics, Technion, Israel. Noam Soker Pleasantness Review* Department of Physics, Technion, Israel The role of jets: from common envelope to nebulae Nice 2015 Noam Soker Essential collaborators (Technion): Amit Kashi, Muhammad Akashi, Ealeal

More information

Lecture 20: Planet formation II. Clues from Exoplanets

Lecture 20: Planet formation II. Clues from Exoplanets Lecture 20: Planet formation II. Clues from Exoplanets 1 Outline Definition of a planet Properties of exoplanets Formation models for exoplanets gravitational instability model core accretion scenario

More information

Asymmetric supernova explosions and the formation of short period low-mass X-ray binaries

Asymmetric supernova explosions and the formation of short period low-mass X-ray binaries Astron. Astrophys. 344, 505 510 (1999) ASTRONOMY AND ASTROPHYSICS Asymmetric supernova explosions and the formation of short period low-mass X-ray binaries W. Sutantyo Department of Astronomy, Institut

More information

6 th lecture of Compact Object and Accretion, Master Programme at Leiden Observatory

6 th lecture of Compact Object and Accretion, Master Programme at Leiden Observatory 6 th lecture of Compact Object and Accretion, Master Programme at Leiden Observatory Accretion 1st class study material: Chapter 1 & 4, accretion power in astrophysics these slides at http://home.strw.leidenuniv.nl/~emr/coa/

More information

arxiv:astro-ph/ v1 9 Nov 1999

arxiv:astro-ph/ v1 9 Nov 1999 1 THE FORMATION OF VERY NARROW WAIST BIPOLAR PLANETARY NEBULAE arxiv:astro-ph/9911140v1 9 Nov 1999 Noam Soker Department of Physics, University of Haifa at Oranim Oranim, Tivon 36006, ISRAEL soker@physics.technion.ac.il

More information

Exoplanets: a dynamic field

Exoplanets: a dynamic field Exoplanets: a dynamic field Alexander James Mustill Amy Bonsor, Melvyn B. Davies, Boris Gänsicke, Anders Johansen, Dimitri Veras, Eva Villaver The (transiting) exoplanet population Solar System Hot Jupiters:

More information

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars Distribution of X-ray binary stars in the Galaxy (RXTE) Robert Laing Primary Compact accreting binary systems Compact star WD NS BH

More information

Names: Team: Team Number:

Names: Team: Team Number: Astronomy C Michigan Region 8 March 11, 2017 Names: Team: Team Number: Directions 1. There is a separate answer sheet. Answers written elsewhere (e.g. on the test) will not be considered. 2. You may take

More information

CATACLYSMIC VARIABLES. AND THE TYPE Ia PROGENITOR PROBLEM PROGENITOR PROBLEM

CATACLYSMIC VARIABLES. AND THE TYPE Ia PROGENITOR PROBLEM PROGENITOR PROBLEM CATACLYSMIC VARIABLES AND THE TYPE Ia PROGENITOR PROBLEM PROGENITOR PROBLEM Lorne Nelson SNOVAE07 Feb. 23, 2007 Cataclysmic Variables CVs are characterized by a low-mass star/bd (donor) losing mass to

More information

ACCRETION-INDUCED COLLIMATED FAST WIND MODEL FOR CARINAE Noam Soker

ACCRETION-INDUCED COLLIMATED FAST WIND MODEL FOR CARINAE Noam Soker The Astrophysical Journal, 597:513 517, 2003 November 1 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. ACCRETION-INDUCED COLLIMATED FAST WIND MODEL FOR CARINAE Noam Soker

More information

Pleasantness Review*

Pleasantness Review* Pleasantness Review* Department of Physics, Technion, Israel Nebulae powered by a central explosion Garching 2015 Noam Soker Essential collaborators (Technion): Muhammad Akashi, Danny Tsebrenko, Avishai

More information

From AGB Stars to Planetary Nebula. Cats Eye Planetary Nebula: HST

From AGB Stars to Planetary Nebula. Cats Eye Planetary Nebula: HST From AGB Stars to Planetary Nebula Cats Eye Planetary Nebula: HST AGB Stars NOAO H -> He in convective region Dredge Up Prialnik AGB stars pulsing Schwarzchild & Harm (1967) The 9th Cycle Schwarzchild

More information

Star Formation and Protostars

Star Formation and Protostars Stellar Objects: Star Formation and Protostars 1 Star Formation and Protostars 1 Preliminaries Objects on the way to become stars, but extract energy primarily from gravitational contraction are called

More information

Dr. Reed L. Riddle. Close binaries, stellar interactions and novae. Guest lecture Astronomy 20 November 2, 2004

Dr. Reed L. Riddle. Close binaries, stellar interactions and novae. Guest lecture Astronomy 20 November 2, 2004 Dr. Reed L. Riddle Close binaries, stellar interactions and novae Guest lecture Astronomy 20 November 2, 2004 Gravitational Tides Look at the forces acting on one body orbiting another - more pull on closer

More information

Five and a half roads to from a millisecond pulsar. Thomas Tauris AIfA, University of Bonn Max-Planck-Institut für Radioastronomie, Bonn

Five and a half roads to from a millisecond pulsar. Thomas Tauris AIfA, University of Bonn Max-Planck-Institut für Radioastronomie, Bonn Five and a half roads to from a millisecond pulsar Thomas Tauris AIfA, University of Bonn Max-Planck-Institut für Radioastronomie, Bonn Evolution of Compact Binaries, ESO Chile, March 6-11, 2011 Millisecond

More information

Global Simulations of Black Hole Accretion. John F. Hawley Department of Astronomy, University of Virginia

Global Simulations of Black Hole Accretion. John F. Hawley Department of Astronomy, University of Virginia Global Simulations of Black Hole Accretion John F. Hawley Department of Astronomy, University of Virginia Collaborators and Acknowledgements Julian Krolik, Johns Hopkins University Scott Noble, JHU Jeremy

More information

Formation of double white dwarfs and AM CVn stars

Formation of double white dwarfs and AM CVn stars Formation of double white dwarfs and AM CVn stars Marc van der Sluys 1,2 Frank Verbunt 1, Onno Pols 1 1 Utrecht University, The Netherlands Mike Politano 3, Chris Deloye 2, Ron Taam 2, Bart Willems 2 2

More information

Devika kamath Institute of Astronomy, KU. Leuven, Belgium

Devika kamath Institute of Astronomy, KU. Leuven, Belgium A NEWLY DISCOVERED STELLAR TYPE: DUSTY POST-RED GIANT BRANCH (POST-RGB) STARS IN THE MAGELLANIC CLOUDS Devika kamath Institute of Astronomy, KU. Leuven, Belgium Collaborators Peter Wood (1), Hans Van Winckel

More information

Eric Lagadec for Olivier Chesneau

Eric Lagadec for Olivier Chesneau Observations of binaries (with focus on PNe and PPNe) Eric Lagadec for Olivier Chesneau (Observatoire de la Cote d Azur) Why galaxies care about AGB stars III Morphologies of AGB and post-agb envelopes

More information

Supernova events and neutron stars

Supernova events and neutron stars Supernova events and neutron stars So far, we have followed stellar evolution up to the formation of a C-rich core. For massive stars ( M initial > 8 M Sun ), the contracting He core proceeds smoothly

More information

of all PNs, D11% are bipolar. The other nonspherical PNs are elliptical, and can be further classiðed into subgroups

of all PNs, D11% are bipolar. The other nonspherical PNs are elliptical, and can be further classiðed into subgroups THE ASTROPHYSICAL JOURNAL, 496:833È841, 1998 April 1 ( 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A. BINARY PROGENITOR MODELS FOR BIPOLAR PLANETARY NEBULAE NOAM SOKER

More information

Active Galactic Nuclei-I. The paradigm

Active Galactic Nuclei-I. The paradigm Active Galactic Nuclei-I The paradigm An accretion disk around a supermassive black hole M. Almudena Prieto, July 2007, Unv. Nacional de Bogota Centers of galaxies Centers of galaxies are the most powerful

More information

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays Pulsars ASTR2110 Sarazin Crab Pulsar in X-rays Test #2 Monday, November 13, 11-11:50 am Ruffner G006 (classroom) Bring pencils, paper, calculator You may not consult the text, your notes, or any other

More information

ON THE RELEVANCE AND FUTURE OF UV ASTRONOMY. Ana I Gómez de Castro

ON THE RELEVANCE AND FUTURE OF UV ASTRONOMY. Ana I Gómez de Castro ON THE RELEVANCE AND FUTURE OF UV ASTRONOMY The relevance of the UV spectral range for astrophysics What is available now? Instrumental requirements for the future Actions: Network for UV Astrophysics

More information

Analyzing X-Ray Pulses from Stellar Cores Pencil & Paper Version

Analyzing X-Ray Pulses from Stellar Cores Pencil & Paper Version Analyzing X-Ray Pulses from Stellar Cores Pencil & Paper Version Purpose: To determine if two end products of stellar evolution GK Per and Cen X-3 could be white dwarfs or neutron stars by calculating

More information

Basics, types Evolution. Novae. Spectra (days after eruption) Nova shells (months to years after eruption) Abundances

Basics, types Evolution. Novae. Spectra (days after eruption) Nova shells (months to years after eruption) Abundances Basics, types Evolution Novae Spectra (days after eruption) Nova shells (months to years after eruption) Abundances 1 Cataclysmic Variables (CVs) M.S. dwarf or subgiant overflows Roche lobe and transfers

More information

while the Planck mean opacity is defined by

while the Planck mean opacity is defined by PtII Astrophysics Lent, 2016 Physics of Astrophysics Example sheet 4 Radiation physics and feedback 1. Show that the recombination timescale for an ionised plasma of number density n is t rec 1/αn where

More information

Cataclysmic variables

Cataclysmic variables Cataclysmic variables Sander Bus Kapteyn Astronomical Institute Groningen October 6, 2011 Overview Types of cataclysmic stars How to form a cataclysmic variable X-ray production Variation in outburst lightcurve,

More information

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk Accretion Disks Accretion Disks 1. Accretion Efficiency 2. Eddington Luminosity 3. Bondi-Hoyle Accretion 4. Temperature profile and spectrum of accretion disk 5. Spectra of AGN 5.1 Continuum 5.2 Line Emission

More information

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 20 Stellar Evolution MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A star (no matter what its mass) spends

More information

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 20 Stellar Evolution. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 20 Stellar Evolution MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A star (no matter what its mass) spends

More information

To appear in the Proceedings of the 10th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, July 15-19, THE NUMBER OF PLANETS AROUND

To appear in the Proceedings of the 10th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, July 15-19, THE NUMBER OF PLANETS AROUND To appear in the Proceedings of the 10th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, July 15-19, 1997. THE NUMBER OF PLANETS AROUND STARS Noam Soker Department of Physics, University

More information

The Physics and Dynamics of Planetary Nebulae

The Physics and Dynamics of Planetary Nebulae Grigor A. Gurzadyan The Physics and Dynamics of Planetary Nebulae With 125 Figures, 14 Plates and 93 Tables Springer Contents 1. Global Concepts 1 1.1 The Shapes of Planetary Nebulae 1 1.2 The Structure

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission Gamma-ray nucleosynthesis N. Mowlavi Geneva Observatory Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission 1 I. Predictions 2 300 250 200 150 100 50 10 6

More information

The Later Evolution of Low Mass Stars (< 8 solar masses)

The Later Evolution of Low Mass Stars (< 8 solar masses) The Later Evolution of Low Mass Stars (< 8 solar masses) http://apod.nasa.gov/apod/astropix.html The sun - past and future central density also rises though average density decreases During 10 billion

More information

Symbiotic stars: challenges to binary evolution theory. Joanna Mikołajewska Copernicus Astronomical Center, Warsaw

Symbiotic stars: challenges to binary evolution theory. Joanna Mikołajewska Copernicus Astronomical Center, Warsaw Symbiotic stars: challenges to binary evolution theory Joanna Mikołajewska Copernicus Astronomical Center, Warsaw Symbiotic stars S(stellar) normal giant 80% M g ~10-7 M sun /yr P orb ~ 1-15 yr Accreting

More information

arxiv:astro-ph/ v2 7 Feb 2007

arxiv:astro-ph/ v2 7 Feb 2007 COMPARING ETA CARINAE WITH THE RED RECTANGLE Noam Soker 1 ABSTRACT arxiv:astro-ph/0610655v2 7 Feb 2007 I compare the structures of the bipolar nebulae around the massive binary system η Carinae and around

More information

Thermal-timescale mass transfer and magnetic CVs

Thermal-timescale mass transfer and magnetic CVs IAU Colloquium 190 on Magnetic Cataclysmic Variables ASP Conference Series, Vol. 315, 2004 Sonja Vrielmann & Mark Cropper, eds. Thermal-timescale mass transfer and magnetic CVs Klaus Schenker, Graham A.

More information

arxiv:astro-ph/ v1 10 Nov 1998

arxiv:astro-ph/ v1 10 Nov 1998 A MODEL FOR THE OUTER RINGS OF SN 1987A Noam Soker Department of Physics, University of Haifa at Oranim Oranim, Tivon 36006, ISRAEL arxiv:astro-ph/9811151v1 10 Nov 1998 soker@physics.technion.ac.il ABSTRACT

More information

Thermal pressure vs. magnetic pressure

Thermal pressure vs. magnetic pressure Thermal pressure vs. magnetic pressure The Earth The auroral oval: bremsstrahlung and lines induced by electrons precipitating through the Earth s magnetic field (LX ~ 10 14 erg/s ~ 2 kg TNT equivalent/s)

More information

Kozai-Lidov oscillations

Kozai-Lidov oscillations Kozai-Lidov oscillations Kozai (1962 - asteroids); Lidov (1962 - artificial satellites) arise most simply in restricted three-body problem (two massive bodies on a Kepler orbit + a test particle) e.g.,

More information

The magnetic properties of Main Sequence Stars, White Dwarfs and Neutron Stars

The magnetic properties of Main Sequence Stars, White Dwarfs and Neutron Stars The magnetic properties of Main Sequence Stars, White Dwarfs and Neutron Stars Lilia Ferrario Mathematical Sciences Institute Australian National University Properties of MWDs High Field MWDs ~ 10 6-10

More information

Heading for death. q q

Heading for death. q q Hubble Photos Credit: NASA, The Hubble Heritage Team (STScI/AURA) Heading for death. q q q q q q Leaving the main sequence End of the Sunlike star The helium core The Red-Giant Branch Helium Fusion Helium

More information

arxiv:astro-ph/ v1 3 Jun 2003

arxiv:astro-ph/ v1 3 Jun 2003 Mon. Not. R. Astron. Soc. 000, 1 16 () Printed 2 February 2008 (MN LATEX style file v2.2) The late stages of evolution of helium star-neutron star binaries and the formation of double neutron star systems

More information

Evolution of Intermediate-Mass Stars

Evolution of Intermediate-Mass Stars Evolution of Intermediate-Mass Stars General properties: mass range: 2.5 < M/M < 8 early evolution differs from M/M < 1.3 stars; for 1.3 < M/M < 2.5 properties of both mass ranges MS: convective core and

More information

Magnetic fields around evolved stars

Magnetic fields around evolved stars Magnetic fields around evolved stars Downloaded from: https://research.chalmers.se, 2019-01-20 00:12 UTC Citation for the original published paper (version of record): Vlemmings, W. (2018) Magnetic fields

More information

Chapter 13 Notes The Deaths of Stars Astronomy Name: Date:

Chapter 13 Notes The Deaths of Stars Astronomy Name: Date: Chapter 13 Notes The Deaths of Stars Astronomy Name: Date: I. The End of a Star s Life When all the fuel in a star is used up, will win over pressure and the star will die nuclear fuel; gravity High-mass

More information

Decretion Disk Dynamics in Binary Be Stars

Decretion Disk Dynamics in Binary Be Stars Decretion Disk Dynamics in Binary Be Stars Atsuo Okazaki (Hokkai- Gakuen Univ, Japan) In collaboration with S. Stefl (ESO), Th. Rivinius (ESO), D. Baade (ESO), K. Hayasaki (Hokkaido Univ, Japan) 1 Talk

More information

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars.

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars. Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars. Stellar evolution during the main-sequence life-time, and during the post-main-sequence

More information

The total luminosity of a disk with the viscous dissipation rate D(R) is

The total luminosity of a disk with the viscous dissipation rate D(R) is Chapter 10 Advanced Accretion Disks The total luminosity of a disk with the viscous dissipation rate D(R) is L disk = 2π D(R)RdR = 1 R 2 GM Ṁ. (10.1) R The disk luminosity is half of the total accretion

More information

National Science Olympiad Astronomy C Division Event 19 May 2012 University of Central Florida Orlando, FL

National Science Olympiad Astronomy C Division Event 19 May 2012 University of Central Florida Orlando, FL National Science Olympiad Astronomy C Division Event 19 May 2012 University of Central Florida Orlando, FL Artist Illustration of Red Giant, White Dwarf and Accretion Disk (Wikimedia) TEAM NUMBER: TEAM

More information

Late-type Stars with Perspective of Radio Observations. Youngjoo Yun 2018 Radio Winter of Ulsan

Late-type Stars with Perspective of Radio Observations. Youngjoo Yun 2018 Radio Winter of Ulsan Late-type Stars with Perspective of Radio Observations Youngjoo Yun 2018 Radio Winter School @University of Ulsan Outline l l l l Introduction to late-type stars with an example Brief description of stellar

More information

Evolutionary Status of Epsilon Aurigae

Evolutionary Status of Epsilon Aurigae September 3, 2010 Outline Background Material 1 Background Material Why we care about stellar evolution The HR Diagram 2 3 Why we care about evolutionary state Why we care about stellar evolution The HR

More information

X-ray observations of X-ray binaries and AGN

X-ray observations of X-ray binaries and AGN X-ray observations of X-ray binaries and AGN Tomaso M. Be!oni (INAF - Osservatorio Astronomico di Brera) (Visiting Professor, Univ. of Southampton) OUTLINE Lecture I: Accretion onto compact objects, X-ray

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics IV: Novae, x-ray bursts and thermonuclear supernovae Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics

More information

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes Astronomy Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes are hot, compact stars whose mass is comparable to the Sun's and size to the Earth's. A. White dwarfs B. Neutron stars

More information

Special Relativity. Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers.

Special Relativity. Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers. Black Holes Special Relativity Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers. 2. The speed of light is the same for all inertial observers regardless

More information

Einführung in die Astronomie II

Einführung in die Astronomie II Einführung in die Astronomie II Teil 10 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 15. Juni 2017 1 / 47 Overview part 10 Death of stars AGB stars PNe SNe

More information

Modelling the formation of double white dwarfs

Modelling the formation of double white dwarfs Chapter 5 Modelling the formation of double white dwarfs M.V. van der Sluys, F. Verbunt and O.R. Pols Submitted to Astronomy and Astrophysics Abstract We investigate the formation of the ten double-lined

More information

arxiv: v1 [astro-ph.sr] 23 Jun 2017

arxiv: v1 [astro-ph.sr] 23 Jun 2017 The Lives and Death Throes of Massive Stars Proceedings IAU Symposium No. 329, 2016 J.J. Eldridge, J.C. Bray, L.A.S. McClellandon & L. Xiao, eds. c 2016 International Astronomical Union DOI: 10.1017/S1743921317003398

More information

Astrophysical Quantities

Astrophysical Quantities Astr 8300 Resources Web page: http://www.astro.gsu.edu/~crenshaw/astr8300.html Electronic papers: http://adsabs.harvard.edu/abstract_service.html (ApJ, AJ, MNRAS, A&A, PASP, ARAA, etc.) General astronomy-type

More information

The formation of giant planets: Constraints from interior models

The formation of giant planets: Constraints from interior models The formation of giant planets: Constraints from interior models Tristan Guillot Observatoire de la Côte d Azur www.obs-nice.fr/guillot (Guillot, Ann. Rev. Earth & Plan. Sci. 2005 & Saas-Fee course 2001,

More information

Stellar Death. Final Phases

Stellar Death. Final Phases Stellar Death Final Phases After the post-agb phase, the death of the star is close at hand. Function of Mass (For stars < ~ 4 solar masses) 1. Lowest mass stars will never have sufficient pressure and

More information

arxiv:astro-ph/ v1 13 Nov 1995

arxiv:astro-ph/ v1 13 Nov 1995 On the Formation and Evolution of Common Envelope Systems Frederic A. Rasio Department of Physics, MIT 6 201, Cambridge, MA 02139 arxiv:astro-ph/9511054v1 13 Nov 1995 Email: rasio@mit.edu and Mario Livio

More information

Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008

Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008 Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008 Wed, July 16 MW galaxy, then review. Start with ECP3Ch14 2 through 8 Then Ch23 # 8 & Ch 19 # 27 & 28 Allowed Harlow Shapely to locate

More information

White Dwarfs. We'll follow our text closely for most parts Prialnik's book is also excellent here

White Dwarfs. We'll follow our text closely for most parts Prialnik's book is also excellent here White Dwarfs We'll follow our text closely for most parts Prialnik's book is also excellent here Observational Properties The Helix Nebula is one of brightest and closest examples of a planetary nebula,

More information

arxiv: v1 [astro-ph.sr] 9 Feb 2016

arxiv: v1 [astro-ph.sr] 9 Feb 2016 Mon. Not. R. Astron. Soc., () Printed 8 August 218 (MN LATEX style file v2.2) Hydrodynamic Simulations of the Interaction between Giant Stars and Planets arxiv:162.313v1 [astro-ph.sr] 9 Feb 216 Jan E.

More information

Accretion in Binaries

Accretion in Binaries Accretion in Binaries Two paths for accretion Roche-lobe overflow Wind-fed accretion Classes of X-ray binaries Low-mass (BH and NS) High-mass (BH and NS) X-ray pulsars (NS) Be/X-ray binaries (NS) Roche

More information

Helicity and Large Scale Dynamos; Lessons From Mean Field Theory and Astrophysical Implications

Helicity and Large Scale Dynamos; Lessons From Mean Field Theory and Astrophysical Implications Helicity and Large Scale Dynamos; Lessons From Mean Field Theory and Astrophysical Implications Eric Blackman (U. Rochester) 21st century theory based on incorporating mag. hel conservation has predictive

More information

10/17/2012. Stellar Evolution. Lecture 14. NGC 7635: The Bubble Nebula (APOD) Prelim Results. Mean = 75.7 Stdev = 14.7

10/17/2012. Stellar Evolution. Lecture 14. NGC 7635: The Bubble Nebula (APOD) Prelim Results. Mean = 75.7 Stdev = 14.7 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10/17/2012 Stellar Evolution Lecture 14 NGC 7635: The Bubble Nebula (APOD) Prelim Results 9 8 7 6 5 4 3 2 1 0 Mean = 75.7 Stdev = 14.7 1 Energy

More information

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy 18. Stellar Birth Star observations & theories aid understanding Interstellar gas & dust in our galaxy Protostars form in cold, dark nebulae Protostars evolve into main-sequence stars Protostars both gain

More information

On the α formalism for the common envelope interaction

On the α formalism for the common envelope interaction Mon. Not. R. Astron. Soc. 411, 2277 2292 (2011) doi:10.1111/j.1365-2966.2010.17891.x On the α formalism for the common envelope interaction OrsolaDeMarco, 1,2 Jean-Claude Passy, 3,2 Maxwell Moe, 4 Falk

More information

Star formation. Protostellar accretion disks

Star formation. Protostellar accretion disks Star formation Protostellar accretion disks Summary of previous lectures and goal for today Collapse Protostars - main accretion phase - not visible in optical (dust envelope) Pre-main-sequence phase -

More information

Late Stages of Stellar Evolution. Late Stages of Stellar Evolution

Late Stages of Stellar Evolution. Late Stages of Stellar Evolution Late Stages of Stellar Evolution The star enters the Asymptotic Giant Branch with an active helium shell burning and an almost dormant hydrogen shell Again the stars size and luminosity increase, leading

More information

Accretion Disks. Accretion Disks. Flat Stars. 1. Background Perspective

Accretion Disks. Accretion Disks. Flat Stars. 1. Background Perspective Accretion Disks 4 Accretion Disks Flat Stars 1. Background Perspective One of the major developments of mid-twentieth-century stellar astrophysics was the understanding that there is often a third object

More information

What can we learn by evolving the host star? Eva Villaver Universidad Autónoma de Madrid

What can we learn by evolving the host star? Eva Villaver Universidad Autónoma de Madrid What can we learn by evolving the host star? Eva Villaver Universidad Autónoma de Madrid WD POLUTION PLANET STIRRING A LEFT OVER DEBRIS DISK ROTATION 1-3 % FAST RGB ROTATORS PLANET STAR CHEMISTRY LITHIUM

More information

MHD Simulations of Star-disk Interactions in Young Stars & Related Systems

MHD Simulations of Star-disk Interactions in Young Stars & Related Systems MHD Simulations of Star-disk Interactions in Young Stars & Related Systems Marina Romanova, Cornell University R. Kurosawa, P. Lii, G. Ustyugova, A. Koldoba, R. Lovelace 5 March 2012 1 1. Young stars 2.

More information

Protostars evolve into main-sequence stars

Protostars evolve into main-sequence stars Understanding how stars evolve requires both observation and ideas from physics The Lives of Stars Because stars shine by thermonuclear reactions, they have a finite life span That is, they fuse lighter

More information

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets Importance of the study of extrasolar planets Exoplanets Introduction Planets and Astrobiology (2017-2018) G. Vladilo Technological and scientific spin-offs Exoplanet observations are driving huge technological

More information

Science Olympiad Astronomy C Division Event Golden Gate Invitational February 11, 2017

Science Olympiad Astronomy C Division Event Golden Gate Invitational February 11, 2017 Science Olympiad Astronomy C Division Event Golden Gate Invitational February 11, 2017 Team Name: Team Number: Directions: ~Answer all questions on the answer sheet provided. ~Please do NOT access the

More information

Mass loss from stars

Mass loss from stars Mass loss from stars Can significantly affect a star s evolution, since the mass is such a critical parameter (e.g., L ~ M 4 ) Material ejected into interstellar medium (ISM) may be nuclear-processed:

More information