Formation of double white dwarfs and AM CVn stars

Size: px
Start display at page:

Download "Formation of double white dwarfs and AM CVn stars"

Transcription

1 Formation of double white dwarfs and AM CVn stars Marc van der Sluys 1,2 Frank Verbunt 1, Onno Pols 1 1 Utrecht University, The Netherlands Mike Politano 3, Chris Deloye 2, Ron Taam 2, Bart Willems 2 2 Northwestern University, Evanston, IL, USA; 3 Marquette University, Milwaukee, WI, USA AM CVn workshop, Cape Town, September 2, 2008

2 Outline 1 Common envelopes Observed double white dwarfs Common-envelope evolution Envelope ejection 2 Progenitor models Single-star models 3 Reverse evolution Second mass-transfer phase Stable first mass-transfer phase Envelope ejection as first mass transfer 4 Future work

3 Observed double white dwarfs WD , Adapted from Maxted et al., 2002

4 Observed double white dwarfs System P orb a orb M 1 M 2 q 2 τ (d) (R ) (M ) (M ) (M 2 /M 1 ) (Myr) WD ± ± ± WD ± WD ± WD ± PG ± WD ± WD ± 0.05 HE ± ± ± WD a ± ± ± a HE ± ± ± a Unclear which white dwarf is older See references in: Maxted et al., 2002 and Nelemans & Tout, 2005.

5 Common envelope Average orbital separation: 7 R Typical progenitor: M c > 0.3 M R 100 R

6 Common envelope

7 Envelope ejection Classical α-common envelope (spiral-in): orbital energy is used to expel envelope (Webbink, 1984): [ G M1f M 2 U bind = α CE G M ] 1i M 2 2 a f 2 a i α CE is the common-envelope efficiency parameter γ-envelope ejection (EE, spiral-in not necessary): envelope ejection with angular-momentum balance (Nelemans et al., 2000): J i J f J i = γ CE M 1i M 1f M 1i + M 2 γ CE 1.5 is the efficiency parameter

8 Envelope ejection Assumption: Envelope ejection occurs much faster than nuclear evolution, hence: core mass does not grow during envelope ejection no accretion by companion during envelope ejection From Eggleton models: White-dwarf mass fixes evolutionary state of progenitor Giant radius determines orbital period of progenitor Envelope binding energy dictates what α CE is needed

9 Progenitor models Eggleton code 199 singe-star models M RGB AGB

10 Progenitor models R provides P orb at onset of EE RGB AGB

11 Progenitor models Envelope U bind provides α CE RGB AGB

12 Evolutionary scenarios Stable + unstable MS + MS Unstable + unstable MS + MS Stable M.T. (cons.) Unstable M.T. (γ-ee) WD + MS WD + MS Unstable M.T. (α-ce) Unstable M.T. (α, γ-ee) WD + WD WD + WD

13 Confusogram Confusogram Observation: M wd1, M wd2, P dwd Yes Possible progenitor: M wd1, M 2, Progenitor model: M 2, R 2, M c, U b R 2 = R max when M c = M wd2? No Not a progenitor P prog (M 1,M 2,R 2) P prog P dwd : acceptable α/γ? Yes No Accept this model as a possible progenitor Reject as progenitor Marc van der Sluys How the Giant lost its mantle and became a Dwarf NUTGM October 19, 2006

14 α-ce results Accept cases with: 0.1<α ce <10 Assume no errors in observed masses

15 α-ce results Accept cases with: 0.1<α ce <10 Introduce errors in observed masses: ± 0.05 M

16 Conservative first mass transfer Maximum P orb after stable mass transfer with q i = 0.62 (Nelemans et al., 2000) Only 5 systems have CE solutions with P orb < P max

17 Conservative first mass transfer CE solutions that may be formed by stable mass transfer Conservative mass transfer: M tot and J orb fixed One free parameter: q i

18 Conservative mass transfer: M, P 570 binary models, computed to match pre-ce systems spiral-in stable Results: 39% dynamical 18% contact 43% DWD

19 Conservative mass transfer: q, t 1414 fits 0957, 1101, 1704b and 2209 nearly fit Out of ten systems, 1 can be explained, 4 are close

20 Conclusions Conservative MT: More accurate models change α-ce only slightly After stable mass transfer, white-dwarf primaries have too low mass and too long orbital periods We can reproduce perhaps 1 4 out of 10 systems, all with α ce > 1.6 Conservative mass transfer cannot explain the observed double white dwarfs

21 Angular-momentum balance Average specific angular momentum of the system: J i J f J i = γ s M 1i M 1f M tot,i Specific angular momentum of the accretor: [ J i J f = γ a 1 M ( )] tot,i M1f M 1i exp J i M tot,f M 2 Specific angular momentum of the donor: J i J f J i = γ d M 1i M 1f M tot,f M 2i M 1i

22 Models Number of progenitor models: Filters: 10+1 observed systems 199 progenitor models in our grid 11 variations in observed mass: 0.05, 0.04,..., M total: P 198 n=1 n 2.4 million dynamical MT: R > R BGB and q > q crit age: τ 1 < τ 2 < 13 Gyr EE-parameter: 0.1 < α ce, γ < 10 Candidate progenitors left:

23 Results for γ s + α ce

24 Results for γ d + γ a

25 Results: overview Select systems with: 0.8 < α ce < < γ s < < γ a,d < 1.1 System 1: γ sα ce 2: γ sγ s 3: γ aα ce 4: γ aγ a 5: γ dα ce 6: γ dγ a Best: ,3,5, ,2,4,5, ,2,3,5, ,4,6 1704a + + 1,2 1704b ,2,4,5, ,2,5,6 +: α, γ within range, : α, γ outside range

26 Results: overview Select systems with: 0.8 < α ce < < γ s < < γ a,d < 1.1 System 1: γ sα ce 2: γ sγ s 3: γ aα ce 4: γ aγ a 5: γ dα ce 6: γ dγ a Best: 0135 / +/ +/ / +/ +/ 2,3,5, /+ +/+ +/ +/ +/+ +/+ 1,2,5, /+ +/+ / +/ +/+ +/+ 1,2,5, / +/ +/ / +/ +/ 1,5, / +/+ +/ +/ +/+ +/+ 2,5, / +/ +/ +/ +/ +/ /+ +/+ +/+ +/+ +/+ +/ / +/+ / +/+ / +/+ 2,4,6 1704a +/ +/ / / / / 1,2 1704b +/ +/ / +/ +/ +/ 1,2,4,5, /+ +/+ / / +/ +/+ 1,2,6 +: α, γ within range, : α, γ outside range +: ( t) < 50%, : 50% < ( t) < 500%, : ( t) > 500%

27 Results: example solution γ d = 0.96 γ a = 1.05 τ = 450 Myr

28 Results: solutions WD Mthd. γ 1 γ 2, τ/myr M 1i M 2i P i P m M 1f M 2f P f α ce2 obs mdl M M d d M M d 0135 γ d γ a γ d γ a γ d γ a γ d γ a γ d γ a γ d γ a γ d γ a γ d γ a a γ d γ a b γ d α ce γ d γ a

29 Conclusions Conservative mass transfer cannot explain the observed double white dwarfs Unstable envelope ejection can do this Several EE descriptions can reconstruct observed masses and periods γ s γ s and γ d γ a can in addition explain most observed cooling-age differences

30 Future work Population-synthesis code Based on grid of single-star models with Eggleton code Models provide M c, R, U bind Stellar wind, tidal coupling included Used for modelling binary mergers due to CE spiral-in (Politano et al., 2008) Second common-envelope phase implemented to study formation of double white dwarfs Need to: include naked helium-star models include more physics, e.g. magnetic braking

31 Future work Purpose: Study effect of e.g.: different α/γ-prescriptions wind mass loss angular-momentum loss on formation of e.g.: double white dwarfs He star/white dwarf binaries AM CVns CVs

Understanding the AM CVn population:

Understanding the AM CVn population: Understanding the AM CVn population: The implications of improved theory for WD channel systems Christopher Deloye (Northwestern University) collaborators: Ron Taam, Gijs Roelofs, Gijs Nelemans, Lev Yungelson

More information

The Evolution of Close Binaries

The Evolution of Close Binaries The Evolution of Close Binaries Philipp Podsiadlowski (Oxford) The case of RS Ophiuchi as a test of binary stellar evolution as a potential Type Ia supernova (SN Ia) progenitor I. Testing Binary Evolution:

More information

Modelling the formation of double white dwarfs

Modelling the formation of double white dwarfs Chapter 5 Modelling the formation of double white dwarfs M.V. van der Sluys, F. Verbunt and O.R. Pols Submitted to Astronomy and Astrophysics Abstract We investigate the formation of the ten double-lined

More information

Mass Transfer in Binaries

Mass Transfer in Binaries Mass Transfer in Binaries Philipp Podsiadlowski (Oxford) Understanding the physics of mass transfer is essential for understanding binary evolution Simplest assumption: stable, conservative mass transfer

More information

arxiv:astro-ph/ v1 17 Oct 2006

arxiv:astro-ph/ v1 17 Oct 2006 Astronomy & Astrophysics manuscript no. 5066 July 2, 2018 (DOI: will be inserted by hand later) Modelling the formation of double white dwarfs M.V. van der Sluys 1, F. Verbunt 1,2, and O.R. Pols 1 arxiv:astro-ph/0610492v1

More information

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS Main Categories of Compact Systems Formation of Compact Objects Mass and Angular Momentum Loss Evolutionary Links to Classes of Binary Systems Future Work

More information

White Dwarf Binaries in Contact: Dynamical Stability at the Onset of Mass Transfer

White Dwarf Binaries in Contact: Dynamical Stability at the Onset of Mass Transfer White Dwarf Binaries in Contact: Dynamical Stability at the Onset of Mass Transfer Sterl Phinney* Caltech (*poor substitute for Danny Steeghs) KITP, Paths to Exploding Stars E.S. Phinney, 3/19/2007, 1

More information

arxiv: v1 [astro-ph.sr] 29 Dec 2011

arxiv: v1 [astro-ph.sr] 29 Dec 2011 Accepted for publication in ApJ Preprint typeset using L A TEX style emulateapj v. 08//06 POPULATION SYNTHESIS OF HOT SUBDWARFS: A PARAMETER STUDY Drew Clausen and Richard A Wade Department of Astronomy

More information

Detached white dwarf main-sequence star binaries. B. Willems and U. Kolb

Detached white dwarf main-sequence star binaries. B. Willems and U. Kolb A&A 419, 1057 1076 (2004) DOI: 10.1051/0004-6361:20040085 c ESO 2004 Astronomy & Astrophysics Detached white dwarf main-sequence star binaries B. Willems and U. Kolb Department of Physics and Astronomy,

More information

The evolution of the self-lensing binary KOI-3278: evidence of extra energy sources during CE evolution

The evolution of the self-lensing binary KOI-3278: evidence of extra energy sources during CE evolution Astronomy & Astrophysics manuscript no. 24430 c ESO 2014 July 25, 2014 Letter to the Editor The evolution of the self-lensing binary KOI-3278: evidence of extra energy sources during CE evolution M. Zorotovic

More information

arxiv: v1 [astro-ph] 6 Aug 2007

arxiv: v1 [astro-ph] 6 Aug 2007 1 1. Introduction arxiv:0708.0696v1 [astro-ph] 6 Aug 2007 X-Ray binaries with neutron star accretors are traditionally divided in to two groups based on the massesofthe donorstars. One is low-massx-raybinaries(lmxbs)

More information

arxiv:astro-ph/ v2 6 Apr 2004

arxiv:astro-ph/ v2 6 Apr 2004 Binary Radio Pulsars ASP Conference Series, Vol. TBD, 2004 eds. F.A. Rasio & I.H. Stairs The orbital period distribution of wide binary millisecond pulsars arxiv:astro-ph/0404058v2 6 Apr 2004 B. Willems

More information

CATACLYSMIC VARIABLES. AND THE TYPE Ia PROGENITOR PROBLEM PROGENITOR PROBLEM

CATACLYSMIC VARIABLES. AND THE TYPE Ia PROGENITOR PROBLEM PROGENITOR PROBLEM CATACLYSMIC VARIABLES AND THE TYPE Ia PROGENITOR PROBLEM PROGENITOR PROBLEM Lorne Nelson SNOVAE07 Feb. 23, 2007 Cataclysmic Variables CVs are characterized by a low-mass star/bd (donor) losing mass to

More information

Formation and evolution of compact binaries with an accreting white dwarf in globular clusters.

Formation and evolution of compact binaries with an accreting white dwarf in globular clusters. Formation and evolution of compact binaries with an accreting white dwarf in globular clusters. N. Ivanova Λ and F.A. Rasio Λ Λ Department of Physics and Astronomy, 2145 Sheridan Rd, Evanston, IL 60208,

More information

arxiv:astro-ph/ v1 23 Jan 2003

arxiv:astro-ph/ v1 23 Jan 2003 Mon. Not. R. Astron. Soc. 000, 1 6 (2003) Printed 25 September 2017 (MN LATEX style file v2.2) Red giant depletion in globular cluster cores Martin E. Beer and Melvyn B. Davies Department of Physics and

More information

Helium white dwarfs in binaries

Helium white dwarfs in binaries Tom Marsh, Department of Physics, University of Warwick Slide 1 / 20 Helium white dwarfs in binaries Tom Marsh Department of Physics, University of Warwick WD0957-666 Outline Tom Marsh, Department of Physics,

More information

Gravitational Waves from Compact Object Binaries

Gravitational Waves from Compact Object Binaries Gravitational Waves from Compact Object Binaries Ashley J. Ruiter New Mexico State University / Center for Astrophysics Graduate Student / Pre-doctoral Fellow Dr. Chris Belczynski (PhD Advisor) Los Alamos

More information

arxiv: v1 [astro-ph.sr] 14 Oct 2009

arxiv: v1 [astro-ph.sr] 14 Oct 2009 Star Clusters: Basic Galactic Building Blocks Throughout Time And Space Proceedings IAU Symposium No. 266, 2009 c 2009 International Astronomical Union Richard de Grijs and Jacques Lepine DOI: 00.0000/X000000000000000X

More information

Population synthesis for double white dwarfs II. Semi-detached systems: AM CVn stars

Population synthesis for double white dwarfs II. Semi-detached systems: AM CVn stars Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Population synthesis for double white dwarfs II. Semi-detached systems: AM CVn stars G. Nelemans 1, S. F. Portegies Zwart 2, F.

More information

On the formation of neon-enriched donor stars in ultracompact X-ray binaries

On the formation of neon-enriched donor stars in ultracompact X-ray binaries On the formation of neon-enriched donor stars in ultracompact X-ray binaries L. R. Yungelson 1,2, G. Nelemans 3, and E. P. J. van den Heuvel 2 1 Institute of Astronomy of the Russian Academy of Sciences,

More information

Red giant depletion in globular cluster cores

Red giant depletion in globular cluster cores Mon. Not. R. Astron. Soc. 348, 679 686 (2004) doi:10.1111/j.1365-2966.2004.07380.x Red giant depletion in globular cluster cores Martin E. Beer and Melvyn B. Davies Department of Physics and Astronomy,

More information

Rotation in White Dwarfs: Stellar Evolution Models

Rotation in White Dwarfs: Stellar Evolution Models 15 th European Workshop on White Dwarfs ASP Conference Series, Vol. 372, 2007 R. Napiwotzki and M. R. Burleigh Rotation in White Dwarfs: Stellar Evolution Models N. Langer Sterrenkundig Instituut, Utrecht

More information

Five and a half roads to from a millisecond pulsar. Thomas Tauris AIfA, University of Bonn Max-Planck-Institut für Radioastronomie, Bonn

Five and a half roads to from a millisecond pulsar. Thomas Tauris AIfA, University of Bonn Max-Planck-Institut für Radioastronomie, Bonn Five and a half roads to from a millisecond pulsar Thomas Tauris AIfA, University of Bonn Max-Planck-Institut für Radioastronomie, Bonn Evolution of Compact Binaries, ESO Chile, March 6-11, 2011 Millisecond

More information

arxiv: v1 [astro-ph] 22 May 2008

arxiv: v1 [astro-ph] 22 May 2008 The Art of Modelling Stars in the 21st Century Proceedings IAU Symposium No. 252, 2008 L. Deng, K.L. Chan & C. Chiosi, eds. c 2008 International Astronomical Union DOI: 00.0000/X000000000000000X Binary

More information

7. BINARY STARS (ZG: 12; CO: 7, 17)

7. BINARY STARS (ZG: 12; CO: 7, 17) 7. BINARY STARS (ZG: 12; CO: 7, 17) most stars are members of binary systems or multiple systems (triples, quadruples, quintuplets,...) orbital period distribution: P orb = 11 min to 10 6 yr the majority

More information

The AM CVn Binaries: An Overview. Christopher Deloye (Northwestern University)

The AM CVn Binaries: An Overview. Christopher Deloye (Northwestern University) The AM CVn Binaries: An Overview Christopher Deloye (Northwestern University) Introduction and Outline Focus of Talk: What can we learn from the observed AM CVn population about the binary evolution processes

More information

Based on a study by L.Yungelson, J.-P.Lasota, G.Dubus, G. Nelemans, E. van den Heuvel, S. Portegies Zwart, J. Dewi

Based on a study by L.Yungelson, J.-P.Lasota, G.Dubus, G. Nelemans, E. van den Heuvel, S. Portegies Zwart, J. Dewi EVOLUTION OF LOW-MASS CLOSE BINARIES WITH BLACK-HOLE COMPONENTS Based on a study by L.Yungelson, J.-P.Lasota, G.Dubus, G. Nelemans, E. van den Heuvel, S. Portegies Zwart, J. Dewi Out of 20 confirmed bh-candidate

More information

Cataclysmic variables with evolved secondaries and the progenitors of AM CVn stars

Cataclysmic variables with evolved secondaries and the progenitors of AM CVn stars Mon. Not. R. Astron. Soc. 340, 1214 1228 (2003) Cataclysmic variables with evolved secondaries and the progenitors of AM CVn stars Ph. Podsiadlowski, 1 Z. Han 2 and S. Rappaport 3 1 University of Oxford,

More information

White Dwarf mergers: AM CVn, sdb and R CrB connections

White Dwarf mergers: AM CVn, sdb and R CrB connections White Dwarf mergers: AM CVn, sdb and R CrB connections Simon Jeffery Armagh Observatory many, many colleagues, but principally: Phil Hill, Uli Heber and Hideyuki Saio White Dwarf mergers: AM CVn, sdb and

More information

arxiv: v1 [astro-ph.sr] 2 Apr 2009

arxiv: v1 [astro-ph.sr] 2 Apr 2009 Draft version October 31, 2018 Preprint typeset using L A TEX style emulateapj v. 11/26/04 THE PAST AND FUTURE HISTORY OF REGULUS S. Rappaport 1, Ph. Podsiadlowski 2, and I. Horev 3 Draft version October

More information

arxiv: v1 [astro-ph.sr] 5 Aug 2013

arxiv: v1 [astro-ph.sr] 5 Aug 2013 Accretion, Ablation and Propeller Evolution in Close Millisecond Pulsar Binary Systems Paul D. Kiel 1, 2 Ronald E. Taam 1, 3 arxiv:1308.0898v1 [astro-ph.sr] 5 Aug 2013 Abstract A model for the formation

More information

arxiv: v2 [astro-ph.sr] 30 Nov 2009

arxiv: v2 [astro-ph.sr] 30 Nov 2009 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 5 October 2018 (MN LATEX style file v2.2) A comprehensive population synthesis study of post-common envelope binaries arxiv:0903.4152v2 [astro-ph.sr]

More information

The gravitational wave background from cosmological compact binaries

The gravitational wave background from cosmological compact binaries Mon. Not. R. Astron. Soc. 346, 1197 1214 (2003) The gravitational wave background from cosmological compact binaries Alison J. Farmer and E. S. Phinney Theoretical Astrophysics, MC 130-33 Caltech, Pasadena,

More information

Constraining Roche-Lobe Overflow Models Using the Hot-Subdwarf Wide Binary Population

Constraining Roche-Lobe Overflow Models Using the Hot-Subdwarf Wide Binary Population Open Astronomy 217 Research Article Open Access Joris Vos and Maja Vučković Constraining Roche-Lobe Overflow Models Using the Hot-Subdwarf Wide Binary Population arxiv:1711.5555v1 [astro-ph.sr] 15 Nov

More information

arxiv: v1 [astro-ph.sr] 23 Jun 2017

arxiv: v1 [astro-ph.sr] 23 Jun 2017 The Lives and Death Throes of Massive Stars Proceedings IAU Symposium No. 329, 2016 J.J. Eldridge, J.C. Bray, L.A.S. McClellandon & L. Xiao, eds. c 2016 International Astronomical Union DOI: 10.1017/S1743921317003398

More information

arxiv: v1 [astro-ph] 29 Apr 2008

arxiv: v1 [astro-ph] 29 Apr 2008 Astronomy & Astrophysics manuscript no. sdb c ESO 2008 May 5, 2008 Letter to the Editor A possible solution for the lack of EHB binaries in globular clusters Z. Han National Astronomical Observatories/

More information

Rob Izzard. February 21, University of Utrecht. Binary Star Nucleosynthesis. Nucleosynthesis. Single Star Evolution. Binary Star.

Rob Izzard. February 21, University of Utrecht. Binary Star Nucleosynthesis. Nucleosynthesis. Single Star Evolution. Binary Star. University of Utrecht February 21, 2006 Contents Mechanisms Proton capture: H He via pp-chain, CNO, NeNa, MgAl The Sun and most stars Alpha capture: He C, C O, O Ne... Fe Evolved stars C-burning: C + C

More information

arxiv: v1 [astro-ph] 11 Oct 2008

arxiv: v1 [astro-ph] 11 Oct 2008 The bifurcation periods in low-mass X-ray binaries: the effect of magnetic braking and mass loss Bo Ma and Xiang-Dong Li arxiv:0810.2009v1 [astro-ph] 11 Oct 2008 Department of Astronomy, Nanjing University,

More information

arxiv: v1 [astro-ph] 10 Nov 2008

arxiv: v1 [astro-ph] 10 Nov 2008 Mass transfer dynamics in double degenerate binary systems arxiv:0811.1517v1 [astro-ph] 10 Nov 2008 M. Dan, S. Rosswog and M. Brüggen School of Engineering and Science, Jacobs University Bremen, Campus

More information

Asymmetric supernova explosions and the formation of short period low-mass X-ray binaries

Asymmetric supernova explosions and the formation of short period low-mass X-ray binaries Astron. Astrophys. 344, 505 510 (1999) ASTRONOMY AND ASTROPHYSICS Asymmetric supernova explosions and the formation of short period low-mass X-ray binaries W. Sutantyo Department of Astronomy, Institut

More information

Principles and Paradigms for ppne & PNe Engines: (More on CE, Accretion, B-fields)

Principles and Paradigms for ppne & PNe Engines: (More on CE, Accretion, B-fields) Principles and Paradigms for ppne & PNe Engines: (More on CE, Accretion, B-fields) Eric Blackman (U. Rochester) Primary Collaborator: Jason Nordhaus (U. Rochester) On Theory and Modeling model vs. theory;

More information

6 th lecture of Compact Object and Accretion, Master Programme at Leiden Observatory

6 th lecture of Compact Object and Accretion, Master Programme at Leiden Observatory 6 th lecture of Compact Object and Accretion, Master Programme at Leiden Observatory Accretion 1st class study material: Chapter 1 & 4, accretion power in astrophysics these slides at http://home.strw.leidenuniv.nl/~emr/coa/

More information

arxiv: v1 [astro-ph.sr] 14 Oct 2015

arxiv: v1 [astro-ph.sr] 14 Oct 2015 Preprint 16 October 015 Compiled using MNRAS LATEX style file v3.0 Three in one go: consequential angular momentum loss can solve major problems of CV evolution M.R. Schreiber, 1 M. Zorotovic, 1 and T.P.G.

More information

Thermal-timescale mass transfer and magnetic CVs

Thermal-timescale mass transfer and magnetic CVs IAU Colloquium 190 on Magnetic Cataclysmic Variables ASP Conference Series, Vol. 315, 2004 Sonja Vrielmann & Mark Cropper, eds. Thermal-timescale mass transfer and magnetic CVs Klaus Schenker, Graham A.

More information

arxiv:astro-ph/ v1 8 Nov 2004

arxiv:astro-ph/ v1 8 Nov 2004 Astronomy & Astrophysics manuscript no. 1777 April 20, 2008 (DOI: will be inserted by hand later) Creating ultra-compact binaries in globular clusters through stable mass transfer M.V. van der Sluys, F.

More information

Received 2001 November 22; accepted 2002 February 18

Received 2001 November 22; accepted 2002 February 18 The Astrophysical Journal, 572:47 431, 22 June 1 # 22. The American Astronomical Society. All rights reserved. Printed in U.S.A. A COMPREHENSIVE STUDY OF BINARY COMPACT OBJECTS AS GRAVITATIONAL WAVE SOURCES:

More information

SN1987A before(right) and during the explosion. Supernova Explosion. Qingling Ni

SN1987A before(right) and during the explosion. Supernova Explosion. Qingling Ni SN1987A before(right) and during the explosion Supernova Explosion Qingling Ni Overview Core-Collapse supernova (including Type II supernova) -Mechanism: collapse+rebound Type Ia supernova -Mechanism:

More information

Creating ultra-compact binaries in globular clusters through stable mass transfer. M. V. van der Sluys, F. Verbunt, and O. R. Pols

Creating ultra-compact binaries in globular clusters through stable mass transfer. M. V. van der Sluys, F. Verbunt, and O. R. Pols A&A 431, 647 658 (2005) DOI: 10.1051/0004-6361:20041777 c ESO 2005 Astronomy & Astrophysics Creating ultra-compact binaries in globular clusters through stable mass transfer M. V. van der Sluys, F. Verbunt,

More information

Formation of millisecond pulsars I: Evolution of low-mass x-ray binaries with O_orb> 2days Tauris, Th.M.; Savonije, G.J.

Formation of millisecond pulsars I: Evolution of low-mass x-ray binaries with O_orb> 2days Tauris, Th.M.; Savonije, G.J. UvA-DARE (Digital Academic Repository) Formation of millisecond pulsars I: Evolution of low-mass x-ray binaries with O_orb> 2days Tauris, Th.M.; Savonije, G.J. Published in: Astronomy & Astrophysics Link

More information

arxiv: v2 [astro-ph.sr] 16 Sep 2014

arxiv: v2 [astro-ph.sr] 16 Sep 2014 Mon. Not. R. Astron. Soc. 444, 3209 3219 (2014) Printed 14 October 2018 (MN LATEX style file v2.2) Core radii and common-envelope evolution Philip D. Hall and Christopher A. Tout Institute of Astronomy,

More information

Evolution of binary stars

Evolution of binary stars Evolution of binary stars 1 Outline What is a binary? Mass transfer in binary systems Evolution in binary stars Late evolutionary states MESA 2 1 What are binary systems? CM X a 1 a 2 m 1 m 2 3 What are

More information

Creating ultra-compact binaries in globular clusters through stable mass transfer

Creating ultra-compact binaries in globular clusters through stable mass transfer Chapter 2 Creating ultra-compact binaries in globular clusters through stable mass transfer M.V. van der Sluys, F. Verbunt and O.R. Pols Astronomy and Astrophysics, v.431, p.647 658 (2005) Abstract A binary

More information

arxiv:astro-ph/ v1 3 Jun 2003

arxiv:astro-ph/ v1 3 Jun 2003 Mon. Not. R. Astron. Soc. 000, 1 16 () Printed 2 February 2008 (MN LATEX style file v2.2) The late stages of evolution of helium star-neutron star binaries and the formation of double neutron star systems

More information

Astronomy. Astrophysics. Population synthesis of ultracompact X-ray binaries in the Galactic bulge

Astronomy. Astrophysics. Population synthesis of ultracompact X-ray binaries in the Galactic bulge DOI: 10.1051/0004-6361/201220552 c ESO 2013 Astronomy & Astrophysics Population synthesis of ultracompact X-ray binaries in the Galactic bulge L. M. van Haaften 1, G. Nelemans 1,2,R.Voss 1, S. Toonen 1,S.F.PortegiesZwart

More information

Galactic distribution of merging neutron stars and black holes prospects for short gamma-ray burst progenitors and LIGO/VIRGO

Galactic distribution of merging neutron stars and black holes prospects for short gamma-ray burst progenitors and LIGO/VIRGO Mon. Not. R. Astron. Soc. 342, 1169 1184 (2003) Galactic distribution of merging neutron stars and black holes prospects for short gamma-ray burst progenitors and LIGO/VIRGO R. Voss and T. M. Tauris Astronomical

More information

Formation and evolution of compact binaries in globular clusters I. Binaries with white dwarfs

Formation and evolution of compact binaries in globular clusters I. Binaries with white dwarfs Mon. Not. R. Astron. Soc. (2006) doi: 10.1111/j.1365-2966.2006.10876.x Formation and evolution of compact binaries in globular clusters I. Binaries with white dwarfs N. Ivanova, 1 C. O. Heinke, 2 F. A.

More information

Double-core evolution and the formation of neutron star binaries with compact companions

Double-core evolution and the formation of neutron star binaries with compact companions Mon. Not. R. Astron. Soc. 368, 1742 1748 (2006) doi:10.1111/j.1365-2966.2006.10233.x Double-core evolution and the formation of neutron star binaries with compact companions J. D. M. Dewi, 1,2 Ph. Podsiadlowski

More information

Cataclysmic variables

Cataclysmic variables Cataclysmic variables Sander Bus Kapteyn Astronomical Institute Groningen October 6, 2011 Overview Types of cataclysmic stars How to form a cataclysmic variable X-ray production Variation in outburst lightcurve,

More information

arxiv: v1 [astro-ph.sr] 19 Sep 2010

arxiv: v1 [astro-ph.sr] 19 Sep 2010 Type Ia Supernovae and Accretion Induced Collapse A. J. Ruiter, K. Belczynski,, S. A. Sim, W. Hillebrandt, M. Fink and M. Kromer arxiv:1009.3661v1 [astro-ph.sr] 19 Sep 2010 Max Planck Institute for Astrophysics,

More information

Lecture 13: Binary evolution

Lecture 13: Binary evolution Lecture 13: Binary evolution Senior Astrophysics 2017-04-12 Senior Astrophysics Lecture 13: Binary evolution 2017-04-12 1 / 37 Outline 1 Conservative mass transfer 2 Non-conservative mass transfer 3 Cataclysmic

More information

Luminous supersoft X-ray sources Bitzaraki, O.M.; Rovithis-Livaniou, H.; Tout, C.A.; van den Heuvel, E.P.J.

Luminous supersoft X-ray sources Bitzaraki, O.M.; Rovithis-Livaniou, H.; Tout, C.A.; van den Heuvel, E.P.J. UvA-DARE (Digital Academic Repository) Luminous supersoft X-ray sources Bitzaraki, O.M.; Rovithis-Livaniou, H.; Tout, C.A.; van den Heuvel, E.P.J. Published in: Astronomy & Astrophysics DOI: 10.1051/0004-6361:20031591

More information

TRANSIENT LOW-MASS X-RAY BINARY POPULATIONS IN ELLIPTICAL GALAXIES NGC 3379 AND NGC 4278

TRANSIENT LOW-MASS X-RAY BINARY POPULATIONS IN ELLIPTICAL GALAXIES NGC 3379 AND NGC 4278 TRANSIENT LOW-MASS X-RAY BINARY POPULATIONS IN ELLIPTICAL GALAXIES NGC 3379 AND NGC 4278 T. Fragos 1, V. Kalogera 1, B. Willems 1, K. Belczynski 2, G. Fabbiano 3, N. J. Brassington 3, D.-W. Kim 3, L. Angelini

More information

The Evolution of Low Mass Stars

The Evolution of Low Mass Stars The Evolution of Low Mass Stars Key Ideas: Low Mass = M < 4 M sun Stages of Evolution of a Low Mass star: Main Sequence star star star Asymptotic Giant Branch star Planetary Nebula phase White Dwarf star

More information

Unstable Mass Transfer

Unstable Mass Transfer Unstable Mass Transfer When the mass ratios are large, or when the donor star has a deep convective layer (so R M-1/3), mass loss will occur on a dynamical timescale. The result will be common envelope

More information

The Theory of Supernovae in Massive Binaries

The Theory of Supernovae in Massive Binaries The Theory of Supernovae in Massive Binaries Philipp Podsiadlowski (Oxford) the majority of massive stars are in interacting binaries the large diversity of observed supernova types and (sub-)types is

More information

The orbital periods of subdwarf B binaries produced by the first stable Roche Lobe overflow channel

The orbital periods of subdwarf B binaries produced by the first stable Roche Lobe overflow channel MNRAS 434, 186 193 (2013) Advance Access publication 2013 June 21 doi:10.1093/mnras/stt992 The orbital periods of subdwarf B binaries produced by the first stable Roche Lobe overflow channel Xuefei Chen,

More information

ASTRONOMY AND ASTROPHYSICS The evolution of main sequence star + white dwarf binary systems towards Type Ia supernovae

ASTRONOMY AND ASTROPHYSICS The evolution of main sequence star + white dwarf binary systems towards Type Ia supernovae Astron. Astrophys. 362, 1046 1064 (2000) ASTRONOMY AND ASTROPHYSICS The evolution of main sequence star + white dwarf binary systems towards Type Ia supernovae N. Langer 1,2, A. Deutschmann 2, S. Wellstein

More information

Stellar Evolution. Eta Carinae

Stellar Evolution. Eta Carinae Stellar Evolution Eta Carinae Evolution of Main Sequence Stars solar mass star: from: Markus Bottcher lecture notes, Ohio University Evolution off the Main Sequence: Expansion into a Red Giant Inner core

More information

The Formation of the Most Relativistic Pulsar PSR J

The Formation of the Most Relativistic Pulsar PSR J Binary Radio Pulsars ASP Conference Series, Vol. 328, 2005 F. A. Rasio and I. H. Stairs The Formation of the Most Relativistic Pulsar PSR J0737 3039 B. Willems, V. Kalogera, and M. Henninger Northwestern

More information

Lecture Outlines. Chapter 20. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 20. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 20 Astronomy Today 8th Edition Chaisson/McMillan Chapter 20 Stellar Evolution Units of Chapter 20 20.1 Leaving the Main Sequence 20.2 Evolution of a Sun-Like Star 20.3 The Death

More information

The evolution of naked helium stars with a neutron-star companion in close binary systems

The evolution of naked helium stars with a neutron-star companion in close binary systems Mon. Not. R. Astron. Soc. 000, 1 16 (2002) The evolution of naked helium stars with a neutron-star companion in close binary systems J. D. M. Dewi 1,3,4,O.R.Pols 2,G.J.Savonije 1, E. P. J. van den Heuvel

More information

arxiv: v1 [astro-ph.co] 26 Jan 2009

arxiv: v1 [astro-ph.co] 26 Jan 2009 TRANSIENT LOW-MASS X-RAY BINARY POPULATIONS IN ELLIPTICAL GALAXIES NGC 3379 AND NGC4278 arxiv:0901.3934v1 [astro-ph.co] 26 Jan 2009 T. Fragos 1, V. Kalogera 1, B. Willems 1, K. Belczynski 2, G. Fabbiano

More information

Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2)

Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2) Chapter 12 Review TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) As a main-sequence star, the Sun's hydrogen supply should last about 10 billion years from the zero-age

More information

Formation and evolution of white dwarf binaries

Formation and evolution of white dwarf binaries Formation and evolution of white dwarf binaries Alberto Rebassa-Mansergas Collaboration with Chile and UK: Matthias Schreiber, Boris Gaensicke, Monica Zorotovic, Stelios Pyrzas, Steven Parsons, Ada Nebot,

More information

Stars + Galaxies: Back of the Envelope Properties. David Spergel

Stars + Galaxies: Back of the Envelope Properties. David Spergel Stars + Galaxies: Back of the Envelope Properties David Spergel Free-fall time (1) r = GM r 2 (2) r t = GM 2 r 2 (3) t free fall r3 GM 1 Gρ Free-fall time for neutron star is milliseconds (characteristic

More information

Symbiotic stars: challenges to binary evolution theory. Joanna Mikołajewska Copernicus Astronomical Center, Warsaw

Symbiotic stars: challenges to binary evolution theory. Joanna Mikołajewska Copernicus Astronomical Center, Warsaw Symbiotic stars: challenges to binary evolution theory Joanna Mikołajewska Copernicus Astronomical Center, Warsaw Symbiotic stars S(stellar) normal giant 80% M g ~10-7 M sun /yr P orb ~ 1-15 yr Accreting

More information

Common Envelope Evolution

Common Envelope Evolution Planetary Nebulae, An Eye to the Future Proceedings IAU Symposium No. 283, 2011 c 2011 International Astronomical Union DOI: 00.0000/X000000000000000X Common Envelope Evolution Robert G. Izzard 1, Philip

More information

Massive Stellar Black Hole Binaries and Gravitational Waves

Massive Stellar Black Hole Binaries and Gravitational Waves BH-BH binaries: modeling Massive Stellar Black Hole Binaries and Gravitational Waves Chris Belczynski1 Tomek Bulik1 Daniel Holz Richard O Shaughnessy Wojciech Gladysz1 and Grzegorz Wiktorowicz1 1 Astronomical

More information

Dr. Reed L. Riddle. Close binaries, stellar interactions and novae. Guest lecture Astronomy 20 November 2, 2004

Dr. Reed L. Riddle. Close binaries, stellar interactions and novae. Guest lecture Astronomy 20 November 2, 2004 Dr. Reed L. Riddle Close binaries, stellar interactions and novae Guest lecture Astronomy 20 November 2, 2004 Gravitational Tides Look at the forces acting on one body orbiting another - more pull on closer

More information

Astronomy. Astrophysics. The birth rate of supernovae from double-degenerate and core-degenerate systems. X. Meng 1,2 and W. Yang 1,3. 1.

Astronomy. Astrophysics. The birth rate of supernovae from double-degenerate and core-degenerate systems. X. Meng 1,2 and W. Yang 1,3. 1. A&A 543, A137 (2012) DOI: 10.1051/0004-6361/201218810 c ESO 2012 Astronomy & Astrophysics The birth rate of supernovae from double-degenerate and core-degenerate systems X. Meng 1,2 and W. Yang 1,3 1 School

More information

arxiv:astro-ph/ v1 29 May 1996

arxiv:astro-ph/ v1 29 May 1996 Binary Evolution in World Wide Web arxiv:astro-ph/9605184v1 29 May 1996 S.N.Nazin 1, V.M.Lipunov 1,2, I.E.Panchenko 2, K.A.Postnov 2, M.E.Prokhorov 1 and S.B.Popov 2 1 Sternberg Astronomical Institute

More information

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION Accretion Discs Mathematical Tripos, Part III Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION 0.1. Accretion If a particle of mass m falls from infinity and comes to rest on the surface of a star of mass

More information

Evolutionary Status of Epsilon Aurigae

Evolutionary Status of Epsilon Aurigae September 3, 2010 Outline Background Material 1 Background Material Why we care about stellar evolution The HR Diagram 2 3 Why we care about evolutionary state Why we care about stellar evolution The HR

More information

Accretion in Binaries

Accretion in Binaries Accretion in Binaries Two paths for accretion Roche-lobe overflow Wind-fed accretion Classes of X-ray binaries Low-mass (BH and NS) High-mass (BH and NS) X-ray pulsars (NS) Be/X-ray binaries (NS) Roche

More information

Recent Progress on our Understanding of He-Dominated Stellar Evolution

Recent Progress on our Understanding of He-Dominated Stellar Evolution Institute for Astronomy andastrophysics Recent Progress on our Understanding of He-Dominated Stellar Evolution 21.08.2015, N. Reindl Introduction H-deficient stars C-rich He ~ 30-50% C ~ 30-60% O ~ 2-20%

More information

The evolution of binary fractions in globular clusters

The evolution of binary fractions in globular clusters Mon. Not. R. Astron. Soc. 358, 572 584 (2005) doi:10.1111/j.1365-2966.2005.08804.x The evolution of binary fractions in globular clusters N. Ivanova, K. Belczynski, J. M. Fregeau and F. A. Rasio Northwestern

More information

Evolution from the Main-Sequence

Evolution from the Main-Sequence 9 Evolution from the Main-Sequence Lecture 9 Evolution from the Main-Sequence P. Hily-Blant (Master PFN) Stellar structure and evolution 2016-17 111 / 159 9 Evolution from the Main-Sequence 1. Overview

More information

Ph. Podsiadlowski, N. Langer, A. J. T. Poelarends, S. Rappaport, A. Heger, E. Pfahl

Ph. Podsiadlowski, N. Langer, A. J. T. Poelarends, S. Rappaport, A. Heger, E. Pfahl T H E E F F E C T S O F B I N A RY E V O L U T I O N O N T H E D Y N A M I C S O F C O R E C O L L A P S E A N D N E U T R O N - S TA R K I C K S 5 Ph. Podsiadlowski, N. Langer, A. J. T. Poelarends, S.

More information

THE FORMATION OF LONG-PERIOD ECCENTRIC BINARIES WITH A HELIUM WHITE DWARF COMPANION

THE FORMATION OF LONG-PERIOD ECCENTRIC BINARIES WITH A HELIUM WHITE DWARF COMPANION Title : will be set by the publisher Editors : will be set by the publisher EAS Publications Series, Vol.?, 2017 THE FORMATION OF LONG-PERIOD ECCENTRIC BINARIES WITH A HELIUM WHITE DWARF COMPANION Lionel

More information

Stellar collisions and their products

Stellar collisions and their products Stellar collisions and their products Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University www.astro.lu.se KEY IDEA #1 Collision rate depends on V. Stellar encounter timescales

More information

ASTRONOMY AND ASTROPHYSICS. D. Vanbeveren, J. Van Bever, and E. De Donder

ASTRONOMY AND ASTROPHYSICS. D. Vanbeveren, J. Van Bever, and E. De Donder Astron. Astrophys. 317, 487 502 (1997) ASTRONOMY AND ASTROPHYSICS The effect of binary evolution on the theoretically predicted distribution of WR and O-type stars in starburst regions and in abruptly-terminated

More information

HR Diagram, Star Clusters, and Stellar Evolution

HR Diagram, Star Clusters, and Stellar Evolution Ay 1 Lecture 9 M7 ESO HR Diagram, Star Clusters, and Stellar Evolution 9.1 The HR Diagram Stellar Spectral Types Temperature L T Y The Hertzsprung-Russel (HR) Diagram It is a plot of stellar luminosity

More information

A PIONIER View on Mass-Transferring Red Giants

A PIONIER View on Mass-Transferring Red Giants A PIONIER View on Mass-Transferring Red Giants Henri M.J. Boffin 1, Nicolas Blind 2, Michel Hillen 3, Jean-Philippe Berger 1, Alain Jorissen 4, Jean-Baptiste Le Bouquin 5 1 ESO 2 Max Planck Institut für

More information

Announcement: Quiz Friday, Oct 31

Announcement: Quiz Friday, Oct 31 Announcement: Quiz Friday, Oct 31 What is the difference between the giant, horizontal, and asymptotic-giant branches? What is the Helium flash? Why can t high-mass stars support themselves in hydrostatic

More information

On the α formalism for the common envelope interaction

On the α formalism for the common envelope interaction Mon. Not. R. Astron. Soc. 411, 2277 2292 (2011) doi:10.1111/j.1365-2966.2010.17891.x On the α formalism for the common envelope interaction OrsolaDeMarco, 1,2 Jean-Claude Passy, 3,2 Maxwell Moe, 4 Falk

More information

Astronomy. Astrophysics. The gravitational wave signal from diverse populations of double white dwarf binaries in the Galaxy. S.YuandC.S.

Astronomy. Astrophysics. The gravitational wave signal from diverse populations of double white dwarf binaries in the Galaxy. S.YuandC.S. DOI: 10.1051/0004-6361/201014827 c ESO 2010 Astronomy & Astrophysics The gravitational wave signal from diverse populations of double white dwarf binaries in the Galaxy S.YuandC.S.Jeffery Armagh Observatory,

More information

White Dwarfs in Binary Systems

White Dwarfs in Binary Systems Tom Marsh, Department of Physics, University of Warwick Slide 1 / 39 White Dwarfs in Binary Systems Tom Marsh Department of Physics, University of Warwick Collaborators: Steven Parsons, Madelon Bours,

More information

Astronomy. Astrophysics. A pair of CO + He white dwarfs as the progenitor of 2005E-like supernovae? Xiangcun Meng 1,2 and Zhanwen Han 1,2

Astronomy. Astrophysics. A pair of CO + He white dwarfs as the progenitor of 2005E-like supernovae? Xiangcun Meng 1,2 and Zhanwen Han 1,2 A&A 573, A57 (2015) DOI: 10.1051/0004-6361/201424562 c ESO 2014 Astronomy & Astrophysics A pair of CO + He white dwarfs as the progenitor of 2005E-like supernovae? Xiangcun Meng 1,2 and Zhanwen Han 1,2

More information

The structure and evolution of stars. Learning Outcomes

The structure and evolution of stars. Learning Outcomes The structure and evolution of stars Lecture14: Type Ia Supernovae The Extravagant Universe By R. Kirshner 1 Learning Outcomes In these final two lectures the student will learn about the following issues:

More information

Thermonuclear shell flashes II: on WDs (or: classical novae)

Thermonuclear shell flashes II: on WDs (or: classical novae) : on WDs (or: classical novae) Observations Thermonuclear flash model Nova/X-ray burst comparison Effects of super-eddington fluxes To grow or not to grow = to go supernova Ia or not.. 1 Nova Cygni 1975

More information