Reionization by Galaxies and QSOs and the Thermal State of the IGM What drives reionization?

Size: px
Start display at page:

Download "Reionization by Galaxies and QSOs and the Thermal State of the IGM What drives reionization?"

Transcription

1 Reionization by Galaxies and QSOs and the Thermal State of the IGM What drives reionization? Koki Kakiichi MPA with thanks to Luca Graziani, Benedetta Ciardi, Avery Meiksin, Michele Compostella, Marius Eide, Saleem Zaroubi Berlin, July, 2016

2 Helium reionization Hydrogen reionization What is the role of galaxies & QSOs during reionization?

3 Theoretically understanding the role of galaxies & QSOs using full RT reionization simulations larger box N-body + post-processing RT (e.g. Dixon+16) Computational resource limit plane spatially adaptive! radiation hydrodynamical simulation (e.g. Pawlik+16, Gnedin 15) spatial resolution Frequency sampling Hydrodynamics + post-processing! multi-frequency RT Important to treat H & He reionization! & thermal structure of the IGM

4 ! Multi-frequency Cosmological Radiative Transfer Simulations study of a high-z QSO environment KK+ QSO + Galaxies Impact of QSO Shapiro&Giroux 87, Meiksin&Madau 93, Miralda- Escude+00, Wythie&Loeb 03, Yu 05, Lidz+07, Datta+12, Feng+13, Keating+15 ~10-100Mpc picture not to scale

5 Approach: a suite of RT simulations We want!! A reference simulation (observationally-calibrated)!!! +vary the source models & radiative transfer processes!! Understand the physical mechanisms controlling reionization by galaxies and QSOs 50cMpc/h. QSO at z=10 Hydro sim 2x512 3, ~10 7 M GADGET-3 RT sim with CRASH

6 Approach: a suite of RT simulations We want!! A reference simulation (observationally-calibrated)!!! +vary the source models & radiative transfer processes!! Understand the physical mechanisms controlling reionization by galaxies and QSOs 50cMpc/h. QSO at z=10 Hydro sim 2x512 3, ~10 7 M GADGET-3 RT sim with CRASH fesc -like parameter spectral shape X-ray physics galaxies only { QSO only { Galaxies+QSO {

7 Approach: a suite of RT simulations We want!! A reference simulation (observationally-calibrated)!!! +vary the source models & radiative transfer processes!! Understand the physical mechanisms controlling reionization by galaxies and QSOs 50cMpc/h. QSO at z=10 Hydro sim 2x512 3, ~10 7 M GADGET-3 RT sim with CRASH fesc -like parameter spectral shape X-ray physics galaxies only { QSO only { { Galaxies+QSO Full reference run

8 Source models (observation-based) Galaxies Pre-assumed total ionizing photon emissivity from galaxies based on the UV background measurement & high-z galaxy observations +assuming fesc=30% QSO (z=10) c.f. z=7 ULAS J (Mortlock+2011, Bolton+2011) ~10 57 photons/s (MSMBH~10 9 M )

9 H & He reionization in high-z QSO environment

10 Full reference run: Multi-frequency (UV+X-rays) RT simulation of reionization driven by galaxies and a QSO Hydrogen reionization Helium reionization QSO 50cMpc red xi~1 green/blue xi~ gray xi~0

11 Full reference run: Multi-frequency (UV+X-rays) RT simulation of reionization driven by galaxies and a QSO Hydrogen reionization QSO+galaxies-driven HII region galaxies-driven HII region Helium reionization QSO-dominated HeIII region QSO 50cMpc red xi~1 green/blue xi~ gray xi~0

12 He III He II H II What controls the morphology of HII & HeII/HeIII regions? Contributions from the surrounding galaxies around a QSO Galaxies only QSO only Full REF galaxies+qso less more total emissivity from galaxies

13 He III He II H II What controls the morphology of HII & HeII/HeIII regions? Contributions from the surrounding galaxies around a QSO Galaxies only QSO only Full REF galaxies+qso The collective impact of a QSO & galaxies in H reionization! The unique impact of a QSO on He reionization less more total emissivity from galaxies (see also Datta+ 12; Lidz+ 07)

14 Why is the contribution from galaxies so important? The total number of ionising photons from galaxies RI integrated ionizing! photon emissivity QSO-galaxy! clustering Morphology of HII regions! Ratio of the QSO luminosity x lifetime (dnion/dt * tq) vs.! the integrated total ionising photons of galaxies around a QSO! since the onset of reionization

15 So, what does a QSO do to the IGM? Impact of X-rays from a QSO QSO only H II He II! QSO UV+X-ray (with secondary ionization) QSO UV+X-ray (without secondary ionization) QSO UV only He III Tail of partial ionization ahead of I-fronts by X-ray from a QSO.!! The enhancement due to secondary ionization.

16 How does the morphology of reionization depend on power-law (slope=1.5) QSO only the spectrum of a QSO? power-law + obscuration H II He II He III H II He III Ionization front is broader for a UV-obscured QSO (see also Kramer&Haiman 08; Thomas&Zaroubi 08) because of 1. the presence of X-rays 2. the lack of UV photons power-law power-law+obscuration

17 How does the morphology of reionization depend on the spectrum of a QSO? Galaxies only Galaxies+QSO Galaxies+obscured QSO He III H II

18 How does the morphology of reionization depend on the spectrum of a QSO? Galaxies only Galaxies+QSO Galaxies+obscured QSO He III H II

19 How does the morphology of reionization depend on the spectrum of a QSO? Galaxies only Galaxies+QSO Galaxies+obscured QSO He III H II Morphology of HII regions! Spectral shape of the collective radiation field of galaxies and a QSO driving the I-front (X-ray dominated or UV dominated?)

20 Thermal structure of the IGM in high-z QSO environment

21 How reionization by galaxies and QSOs shapes the thermal state of the IGM?

22 How reionization by galaxies and QSOs shapes the thermal state of the IGM? Galaxies only Galaxies+QSO REF less total emissivity from galaxies more QSO only

23 How reionization by galaxies and QSOs shapes the thermal state of the IGM? Additional heating by a QSO

24 How reionization by galaxies and QSOs shapes the thermal state of the IGM? Additional heating by a QSO Pre-existed HII I-front of galaxies QSO HII I-front

25 How reionization by galaxies and QSOs shapes the thermal state of the IGM? Additional heating by a QSO Pre-existed HeIII I-front of galaxies QSO HeIII I-front

26 How reionization by galaxies and QSOs shapes the thermal state of the IGM? Additional heating by a QSO Analytic estimate photoionisation heating across I-fronts (e.g. Abel&Haehnelt 97; Meiksin&Tittley 12, also related McQuinn&Upton-Sanderbeck 16)

27 How reionization by galaxies and QSOs shapes the thermal state of the IGM? Additional heating by a QSO Analytic estimate photoionisation heating across I-fronts (e.g. Abel&Haehnelt 97; Meiksin&Tittley 12, also related McQuinn&Upton-Sanderbeck 16) QSO and galaxies together, nonlinearly, impact the thermal state.! The order of photionization heating by galaxies or QSOs matters!

28 Observational tests how to constrain the sources of reionization observationally? QSO spectra - spectral hardness of the UV background from metal line ratio? (e.g. Finlator+16) - the thermal structure of the IGM around QSO? (e.g. Bolton+12)! Galaxy survey in a region of 21cm tomography - direct comparison of the HII region size with the ionising photons (inferred from their spectra) of galaxies & QSO (e.g. Beardsley+15)! 3.46cm 3 HeII signal? - direct probe of He reionization at z>6?? (but very weak? McQuinn&Switzer 09, Bagla & Loeb 09)

29 Observational tests how to constrain the sources of reionization observationally? QSO spectra - spectral hardness of the UV background from metal line ratio? (e.g. Finlator+16) - the thermal structure of the IGM around QSO? (e.g. Bolton+12)! Galaxy survey in a region of 21cm tomography - direct comparison of the HII region size with the ionising photons (inferred from their spectra) of galaxies & QSO (e.g. Beardsley+15)! 3.46cm 3 HeII signal? - direct probe of He reionization at z>6?? (but very weak? McQuinn&Switzer 09, Bagla & Loeb 09)

30 aside Mukae, Ouchi, KK+(2016) The galaxy-igm relation from COSMOS/UltraVISTA galaxies + BOSS/SDSSIII Lyɑ forest analysis using hydrodynamical simulations of Lyɑ forest Mag.-selected galaxy overdensity preferentially resides in the excess Lyɑ absorption, but with a large scatter (consistency test for the filamentary IGM???)!

31 Conclusion Multi-frequency RT with galaxies & a QSO:!! The concerted picture of hydrogen and helium reionization driven by galaxies & QSO in high-z QSO environment A unified treatment of H & He reionization Better constraints on the role of galaxies & QSOs (via H, He, T)

X-ray ionization of the intergalactic medium by quasars

X-ray ionization of the intergalactic medium by quasars X-ray ionization of the intergalactic medium by quasars Luca Graziani In collaboration with: CRASH4 IGM reionisation by QSOs GAMESH, QSOs evolution & QSOs impact on SF B. Ciardi (MPA, Munich) A. Ferrara

More information

arxiv: v1 [astro-ph.co] 26 Jul 2016

arxiv: v1 [astro-ph.co] 26 Jul 2016 Mon. Not. R. Astron. Soc.,?? 19 (215) Printed 27 July 216 (MN LaT E X style file v2.2) The Concerted Impact of Galaxies and QSOs on the Ionization and Thermal State of the Intergalactic Medium arxiv:167.7744v1

More information

University of Groningen

University of Groningen University of Groningen The concerted impact of galaxies and QSOs on the ionization and thermal state of the intergalactic medium Kakiichi, Koki; Graziani, Luca; Ciardi, Benedetta; Meiksin, Avery; Compostella,

More information

COBE/DIRBE Satellite. Black Body T=2.725 K. Tuesday, November 27, 12

COBE/DIRBE Satellite. Black Body T=2.725 K. Tuesday, November 27, 12 COBE/DIRBE Satellite Black Body T=2.725 K COBE/DIRBE Satellite Thermal component subtracted, ΔT=3.353 mk COBE/DIRBE Satellite Dipole component subtracted, ΔT = 18 μk Origin of Structure WMAP image Fluctuations

More information

Reionization constraints post Planck-15

Reionization constraints post Planck-15 Reionization constraints post Planck-15 Tirthankar Roy Choudhury National Centre for Radio Astrophysics Tata Institute of Fundamental Research Pune CMB Spectral Distortions from Cosmic Baryon Evolution

More information

Constraining the IGM thermal state and Cosmology

Constraining the IGM thermal state and Cosmology Constraining the IGM thermal state and Cosmology Antonella Garzilli IEU, Ewha Womans University 29th November, 2013 with: Prof. Tom Theuns Dr. James Bolton Dr. Tae-Sun Kim Dr. Samuel Leach Dr. Matteo Viel

More information

Illuminating the Dark Ages: Luminous Quasars in the Epoch of Reionisation. Bram Venemans MPIA Heidelberg

Illuminating the Dark Ages: Luminous Quasars in the Epoch of Reionisation. Bram Venemans MPIA Heidelberg Illuminating the Dark Ages: Luminous Quasars in the Epoch of Reionisation Bram Venemans MPIA Heidelberg Workshop The Reionization History of the Universe Bielefeld University, March 8-9 2018 History of

More information

What can we learn about reionization from the ksz

What can we learn about reionization from the ksz What can we learn about reionization from the ksz Andrei Mesinger Scuola Normale Superiore, Pisa IGM effect on CMB primary temperature anisotropies ionized IGM damps CMB temperature anisotropies through

More information

The Probes and Sources of Cosmic Reionization Francesco Haardt University of Como INFN, Milano-Bicocca

The Probes and Sources of Cosmic Reionization Francesco Haardt University of Como INFN, Milano-Bicocca 1 The Probes and Sources of Cosmic Reionization Francesco Haardt University of Insubria@Lake Como INFN, Milano-Bicocca 2 TALK OUTLINE 1. Dark Ages and Reionization 2. Observations: QSO Absorption Lines

More information

Radiation-hydrodynamics from Mpc to sub-pc scales with RAMSES-RT

Radiation-hydrodynamics from Mpc to sub-pc scales with RAMSES-RT Radiation-hydrodynamics from Mpc to sub-pc scales with RAMSES-RT Joki Rosdahl Centre de Recherche Astrophysique de Lyon With Aubert, Blaizot, Bieri, Biernacki, Commercon, Costa, Dubois, Geen, Katz, Kimm,

More information

First Light And Reionization. Nick Gnedin

First Light And Reionization. Nick Gnedin First Light And Reionization Nick Gnedin Reionization and 5-Year Plans Sovier leaders would love reionization it is a field where every 5 years something interesting happens. SDSS Quasars ~ 2005 z=5.7

More information

Star formation and Galaxy evolution as traced through cosmic env. and time

Star formation and Galaxy evolution as traced through cosmic env. and time Star formation and Galaxy evolution as traced through cosmic env. and time Luca Graziani In collaboration with: First@INAF, Italy: R. Schneider, M. Ginolfi, S. Marassi, R. Valiante, M. de Bennassuti UniFI:

More information

The simulated 21 cm signal during the EoR : Ly-α and X-ray fluctuations

The simulated 21 cm signal during the EoR : Ly-α and X-ray fluctuations The simulated 21 cm signal during the EoR : Ly-α and X-ray fluctuations Sunghye BAEK Collaborators : B. Semelin, P. Di Matteo, F. Combes, Y. Revaz LERMA - Observatoire de Paris 9 Dec 2008 Physics of the

More information

Lecture 27 The Intergalactic Medium

Lecture 27 The Intergalactic Medium Lecture 27 The Intergalactic Medium 1. Cosmological Scenario 2. The Ly Forest 3. Ionization of the Forest 4. The Gunn-Peterson Effect 5. Comment on HeII Reionization References J Miralda-Escude, Science

More information

ClumpingfactorsofH II, He II andhe III

ClumpingfactorsofH II, He II andhe III doi:10.1093/mnras/stu1365 ClumpingfactorsofH II, He II andhe III Akila Jeeson-Daniel, 1,2,3 Benedetta Ciardi 2 and Luca Graziani 2 1 School of Physics, University of Melbourne, Parkville, VIC 3010, Australia

More information

Recovering the HII region size statistics from 21 cm tomography

Recovering the HII region size statistics from 21 cm tomography Recovering the HII region size statistics from 21 cm tomography Koki Kakiichi Max-Planck Institute for Astrophysics University College London! with thanks to Suman Majumdar (Imperial), Garrelt Mellema

More information

Probing dark matter and the physical state of the IGM with the Lyα forest

Probing dark matter and the physical state of the IGM with the Lyα forest Probing dark matter and the physical state of the IGM with the Lyα forest Martin Haehnelt in collaboration with: George Becker, James Bolton, Jonathan Chardin, Laura Keating, Ewald Puchwein, Debora Sijacki,

More information

The Epoch of Reionization: Observational & Theoretical Topics

The Epoch of Reionization: Observational & Theoretical Topics The Epoch of Reionization: Observational & Theoretical Topics Lecture 1 Lecture 2 Lecture 3 Lecture 4 Current constraints on Reionization Physics of the 21cm probe EoR radio experiments Expected Scientific

More information

PoS(Cosmology2009)022

PoS(Cosmology2009)022 and 21cm Observations Max Planck Institute for Astrophysics E-mail: ciardi@mpa-garching.mpg.de With the advent in the near future of radio telescopes as LOFAR, a new window on the highredshift universe

More information

V2'#$0D*:$0()%"*,-.!/ K'(B5*2#*0D; T2&3B5U

V2'#$0D*:$0()%*,-.!/ K'(B5*2#*0D; T2&3B5U V2'#$0D*:$0()%"*,-.!/ K'(B5*2#*0D; T2&3B5U 2 S-Cam NB101 Observations KONNO ET AL. tion. The previous studies suggest that the fraction of strong LAEs in Lyman break galaxies (LBGs) decreases from z 6

More information

The Intergalactic Medium: Overview and Selected Aspects

The Intergalactic Medium: Overview and Selected Aspects The Intergalactic Medium: Overview and Selected Aspects Draft Version Tristan Dederichs June 18, 2018 Contents 1 Introduction 2 2 The IGM at high redshifts (z > 5) 2 2.1 Early Universe and Reionization......................................

More information

HeII reionization: observational implications

HeII reionization: observational implications HeII reionization: observational implications Michele Compostella (Argelander Institute, Bonn) Cristiano Porciani (AIfA, Bonn), Sebastiano Cantalupo (UCSC, Santa Cruz) Intergalactic Matters Heidelberg,

More information

Advanced Cosmological Simulations

Advanced Cosmological Simulations Advanced Cosmological Simulations John Wise (Georgia Tech) Enzo Workshop 19 Oct 2013 1 Outline We will consider additional physics in Thursday s AMR (no nested grids) cosmology simulation. Refresher on

More information

Lya as a Probe of the (High-z) Universe

Lya as a Probe of the (High-z) Universe Lya as a Probe of the (High-z) Universe Mark Dijkstra (CfA) Main Collaborators: Adam Lidz, Avi Loeb (CfA) Stuart Wyithe (Melbourne), Zoltan Haiman (Columbia) Lya as a Probe of the (High-z) Universe Outline

More information

Rupert Croft. QuickTime and a decompressor are needed to see this picture.

Rupert Croft. QuickTime and a decompressor are needed to see this picture. Rupert Croft QuickTime and a decompressor are needed to see this picture. yesterday: Plan for lecture 1: History : -the first quasar spectra -first theoretical models (all wrong) -CDM cosmology meets the

More information

- Motivation - New measurements of IGM Lyα Opacity & - Implications for Reionization & High-z Galaxies with Jamie Bolton (Nottingham)

- Motivation - New measurements of IGM Lyα Opacity & - Implications for Reionization & High-z Galaxies with Jamie Bolton (Nottingham) Galaxy Evolution in the Reionization Era Probed Using the UV Background - Motivation - New measurements of IGM Lyα Opacity & Temperature - UVB Results George Becker Cambridge IoA & KICC GalEvol2013 - Implications

More information

Quasar Absorption Lines

Quasar Absorption Lines Tracing the Cosmic Web with Diffuse Gas DARK MATTER GAS STARS NEUTRAL HYDROGEN Quasar Absorption Lines use quasars as bright beacons for probing intervening gaseous material can study both galaxies and

More information

MApping the Most Massive Overdensity Through Hydrogen (MAMMOTH) Zheng Cai (UCSC)

MApping the Most Massive Overdensity Through Hydrogen (MAMMOTH) Zheng Cai (UCSC) MApping the Most Massive Overdensity Through Hydrogen (MAMMOTH) Zheng Cai (UCSC) IGM Conference From Wall to Web, Berlin, 2016 IGM tomography (Lee+ 14, 15, 16; Stark+ 15ab): IGM Tomography a reconstruction

More information

Feedback and Galaxy Formation

Feedback and Galaxy Formation Heating and Cooling in Galaxies and Clusters Garching August 2006 Feedback and Galaxy Formation Simon White Max Planck Institute for Astrophysics Cluster assembly in ΛCDM Gao et al 2004 'Concordance'

More information

Lyman-alpha intensity mapping during the Epoch of Reionization

Lyman-alpha intensity mapping during the Epoch of Reionization Lyman-alpha intensity mapping during the Epoch of Reionization Mário G. Santos CENTRA IST (Austin, May 15, 2012) Marta Silva, Mario G. Santos, Yan Gong, Asantha Cooray (2012), arxiv:1205.1493 Intensity

More information

On the inside-out reionization of the MW satellite system

On the inside-out reionization of the MW satellite system On the inside-out reionization of the MW satellite system Reionization at galaxy-scale P. Ocvirk, D. Aubert Observatoire astronomique de Strasbourg Impact of radiation field structure on the Galaxy RT

More information

The Physical Properties of Low-z OVI Absorbers in the OverWhelmingly Large Simulations

The Physical Properties of Low-z OVI Absorbers in the OverWhelmingly Large Simulations The Physical Properties of Low-z OVI Absorbers in the OverWhelmingly Large Simulations Thorsten Tepper García in collaboration with: Philipp Richter (Universität Potsdam) Joop Schaye (Sterrewacht Leiden)

More information

Lecture 9. Quasars, Active Galaxies and AGN

Lecture 9. Quasars, Active Galaxies and AGN Lecture 9 Quasars, Active Galaxies and AGN Quasars look like stars but have huge redshifts. object with a spectrum much like a dim star highly red-shifted enormous recessional velocity huge distance (Hubble

More information

Cosmological simulations of X-ray heating during the Universe s Dark Ages

Cosmological simulations of X-ray heating during the Universe s Dark Ages Cosmological simulations of X-ray heating during the Universe s Dark Ages Jordan Mirocha 1,5, Jack Burns 1,5, Eric Hallman 2,5, Steven Furlanetto 3,6, John Wise 4 1 University of Colorado at Boulder 2

More information

The improvement of START

The improvement of START The improvement of START Kenji Hasegawa (U. Tsukuba, CCS Kobe branch) Takashi Okamoto (U. Tsukuba, CCS Kobe branch) Cosmological Radiative Transfer Comparison Project Workshop IV @ Austin, Texas, Dec 11-14,

More information

Simulating high-redshift galaxies

Simulating high-redshift galaxies Simulating high-redshift galaxies Pratika Dayal Collaborators : Andrea Ferrara, Stefano Borgani, Alex Saro, Luca Tornatore, Stefania Salvadori, Hiroyuki Hirashita, Simona Gallerani, Antonella Maselli,

More information

Galaxies 626. Lecture 5

Galaxies 626. Lecture 5 Galaxies 626 Lecture 5 Galaxies 626 The epoch of reionization After Reionization After reionization, star formation was never the same: the first massive stars produce dust, which catalyzes H2 formation

More information

National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China xuyd at nao.cas.cn

National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China   xuyd at nao.cas.cn Max Planck Institute for Astrophysics, Garching, Germany E-mail: ciardi at mpa-garching.mpg.de Susumu Inoue Institute for Cosmic Ray Research, University of Tokyo, Tokyo, Japan E-mail: sinoue at icrr.u-tokyo.ac.jp

More information

Lyα Galaxies as a Probe of the High-z Universe. Mark Dijkstra

Lyα Galaxies as a Probe of the High-z Universe. Mark Dijkstra Lyα Galaxies as a Probe of the High-z Universe Mark Dijkstra Credit: Andrew Chung (MPA) Credit: Max Gronke (Oslo) The Suppressed Lyα flux from galaxies at z>6 `Lyα fraction Stark et al., Pentericci et

More information

What matter(s) around galaxies? Shining a bright light on the cold phase of the CGM

What matter(s) around galaxies? Shining a bright light on the cold phase of the CGM What matter(s) around galaxies? Shining a bright light on the cold phase of the CGM Sebastiano Cantalupo ETH Zurich In collaboration with: MUSE GTO Team (ETH, CRAL, Leiden, AIP, Toulouse, Gottingen) +

More information

The First Galaxies: Evolution drivers via luminosity functions and spectroscopy through a magnifying GLASS

The First Galaxies: Evolution drivers via luminosity functions and spectroscopy through a magnifying GLASS Charlotte Mason (UCLA) Aspen, 7 Feb 2016 The First Galaxies: Evolution drivers via luminosity functions and spectroscopy through a magnifying GLASS with Tommaso Treu (UCLA), Michele Trenti (U. Melbourne),

More information

Research Collection. How will we determine the reionization history of the universe?: introduction to session 2. Other Conference Item.

Research Collection. How will we determine the reionization history of the universe?: introduction to session 2. Other Conference Item. Research Collection Other Conference Item How will we determine the reionization history of the universe?: introduction to session 2 Author(s): Haiman, Zoltàn Publication Date: 2003 Permanent Link: https://doi.org/10.3929/ethz-a-004584667

More information

THE ROLE OF RADIATION PRESSURE IN HIGH-Z DWARF GALAXIES

THE ROLE OF RADIATION PRESSURE IN HIGH-Z DWARF GALAXIES THE ROLE OF RADIATION PRESSURE IN HIGH-Z DWARF GALAXIES John Wise (Georgia Tech) Tom Abel (Stanford), Michael Norman (UC San Diego), Britton Smith (Michigan State), Matthew Turk (Columbia) 14 Dec 2012

More information

Simulating HI 21-cm Signal from EoR and Cosmic Dawn. Kanan K. Datta Presidency University, Kolkata

Simulating HI 21-cm Signal from EoR and Cosmic Dawn. Kanan K. Datta Presidency University, Kolkata Simulating HI 21-cm Signal from EoR and Cosmic Dawn Kanan K. Datta Presidency University, Kolkata Plan of the talk Why simulations?! Dynamic ranges of simulations! Basic flowchart for simulation! Various

More information

How to cheat with maps. perfectly sensible, honest version

How to cheat with maps. perfectly sensible, honest version How to cheat with maps watch out for weasel maps : logarithmic (favors solar system) conformal (blows up BB singularity into something significant, popular with CMB types) comoving (makes the local universe

More information

Reionization of the Intergalactic Medium: What Is it and When Did it Occur?

Reionization of the Intergalactic Medium: What Is it and When Did it Occur? Hannah Krug ASTR 688R Spring 2008 Final Project Due 5/13/08 Reionization of the Intergalactic Medium: What Is it and When Did it Occur? In the time following the Big Bang, there are two epochs which astronomers

More information

Galaxies are not distributed randomly in space. 800 Mpc. 400 Mpc

Galaxies are not distributed randomly in space. 800 Mpc. 400 Mpc Formation Origin of of Structure Galaxies are not distributed randomly in space. 800 Mpc 400 Mpc If one galaxy has comoving coordinate, x, then the probability of finding another galaxy in the vicinity

More information

The First Cosmic Billion Years. Andrea Ferrara Scuola Normale Superiore, Pisa, Italy

The First Cosmic Billion Years. Andrea Ferrara Scuola Normale Superiore, Pisa, Italy The First Cosmic Billion Years Andrea Ferrara Scuola Normale Superiore, Pisa, Italy DAVID The Dark Ages VIrtual Department http://www.arcetri.astro.it/twiki/bin/view/david/webhome S. Bianchi INAF/Arcetri

More information

Seeing Through the Trough: Detecting Lyman Alpha from Early Generations of Galaxies

Seeing Through the Trough: Detecting Lyman Alpha from Early Generations of Galaxies Seeing Through the Trough: Detecting Lyman Alpha from Early Generations of Galaxies Mark Dijkstra (ITC) collaborators: Stuart Wyithe, Avi Loeb, Adam Lidz, Zoltan Haiman Schematic History of the Universe

More information

FORMATION OF PRIMORDIAL STARS

FORMATION OF PRIMORDIAL STARS Talk@INT, UW, July 5, 2006 FORMATION OF PRIMORDIAL STARS Naoki Yoshida Department of Physics Nagoya University Outline Thermal evolution of a primordial gas - Physics at high densities (cooling, chem.

More information

Atoms and Spectroscopy

Atoms and Spectroscopy Atoms and Spectroscopy Lecture 3 1 ONE SMALL STEP FOR MAN ONE GIANT LEAP FOR MANKIND 2 FROM ATOMS TO STARS AND GALAXIES HOW DO WE KNOW? Observations The Scientific Method Hypothesis Verifications LAW 3

More information

Semi-numeric simulations of helium reionization and the fluctuating radiation background

Semi-numeric simulations of helium reionization and the fluctuating radiation background doi:10.1093/mnras/stu374 Semi-numeric simulations of helium reionization and the fluctuating radiation background Keri L. Dixon, 1,2 Steven R. Furlanetto 2 and Andrei Mesinger 3 1 Astronomy Centre, University

More information

The thermal history of the intergalactic medium down to redshift z = 1.5: a new curvature measurement

The thermal history of the intergalactic medium down to redshift z = 1.5: a new curvature measurement doi:10.1093/mnras/stu660 The thermal history of the intergalactic medium down to redshift z = 1.5: a new curvature measurement Elisa Boera, 1 Michael T. Murphy, 1 George D. Becker 2 and James S. Bolton

More information

ARIZONA STATE UNIVERSITY TEMPE, ARIZONA Obtaining a Cold IGM through Modification of the Residual Ionization Fraction Following Recombination

ARIZONA STATE UNIVERSITY TEMPE, ARIZONA Obtaining a Cold IGM through Modification of the Residual Ionization Fraction Following Recombination ARIZONA STATE UNIVERSITY TEMPE, ARIZONA 85287 LOCO EDGES REPORT #098 Obtaining a Cold IGM through Modification of the Residual Ionization Fraction Following Recombination Judd Bowman July 16, 2017 1. Calculation

More information

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions. Choudhury, Tirthankar Roy and Puchwein, Ewald and Haehnelt, Martin G. and Bolton, James S. (2015) Lyman α emitters gone missing: evidence for late reionization? Monthly Notices of the Royal Astronomical

More information

Simulating Cosmic Reionization and the 21cm Background from the Epoch of Reionization

Simulating Cosmic Reionization and the 21cm Background from the Epoch of Reionization Simulating Cosmic Reionization and the 21cm Background from the Epoch of Reionization Paul Shapiro The University of Texas at Austin Collaborators in the work described today include: Ilian Iliev 2, Garrelt

More information

Galaxy Formation Now and Then

Galaxy Formation Now and Then Galaxy Formation Now and Then Matthias Steinmetz Astrophysikalisches Institut Potsdam 1 Overview The state of galaxy formation now The state of galaxy formation 10 years ago Extragalactic astronomy in

More information

arxiv: v2 [astro-ph.co] 5 Feb 2016

arxiv: v2 [astro-ph.co] 5 Feb 2016 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 8 February 2016 (MN LATEX style file v2.2) Simulating the 21-cm signal from reionisation including non-linear ionisations and inhomogeneous recombinations

More information

arxiv:astro-ph/ v1 3 Jan 2007

arxiv:astro-ph/ v1 3 Jan 2007 Draft Preprint typeset using L A TEX style emulateapj v. 10/09/06 THE LINE-OF-SIGHT PROXIMITY EFFECT AND THE MASS OF QUASAR HOST HALOS Claude-André Faucher-Giguère 1, Adam Lidz 1, Matias Zaldarriaga 1,2,

More information

Numerical Models of the high-z Universe

Numerical Models of the high-z Universe Texte Numerical Models of the high-z Universe Dominique AUBERT Observatoire Astronomique, Université de Strasbourg EOR Robertson et al. 2010 Epoch of Reionization ~200 Myrs - 1Gyr z~30-6! Challenge : Multiple

More information

HII regions. Massive (hot) stars produce large numbers of ionizing photons (energy above 13.6 ev) which ionize hydrogen in the vicinity.

HII regions. Massive (hot) stars produce large numbers of ionizing photons (energy above 13.6 ev) which ionize hydrogen in the vicinity. HII regions Massive (hot) stars produce large numbers of ionizing photons (energy above 13.6 ev) which ionize hydrogen in the vicinity. Detailed nebular structure depends on density distribution of surrounding

More information

Daniele Sorini. Supervisor: Joseph Hennawi (MPIA) Collaborators: Jose Oñorbe (MPIA), Annalisa Pillepich (MPIA), Zarija Lukić (LBL)

Daniele Sorini. Supervisor: Joseph Hennawi (MPIA) Collaborators: Jose Oñorbe (MPIA), Annalisa Pillepich (MPIA), Zarija Lukić (LBL) Daniele Sorini Supervisor: Joseph Hennawi (MPIA) Collaborators: Jose Oñorbe (MPIA), Annalisa Pillepich (MPIA), Zarija Lukić (LBL) From Wall to Web Berlin, 24-29 July 2016 (b) (c) - 4.5 Galactic winds in

More information

Overview. Metals in the Intergalactic Medium at z 6: Pop III Stars or Normal Star-Forming Galaxies? p.2/26

Overview. Metals in the Intergalactic Medium at z 6: Pop III Stars or Normal Star-Forming Galaxies? p.2/26 p.1/26 Overview Metals in the Intergalactic Medium at z 6: Pop III Stars or Normal Star-Forming Galaxies? p.2/26 Overview Metals in the Intergalactic Medium at z 6: Pop III Stars or Normal Star-Forming

More information

The Aurora radiation-hydrodynamical simulations of reionization: calibration and first results

The Aurora radiation-hydrodynamical simulations of reionization: calibration and first results Advance Access publication 2016 November 8 doi:10.1093/mnras/stw2869 The Aurora radiation-hydrodynamical simulations of reionization: calibration and first results Andreas H. Pawlik, 1 Alireza Rahmati,

More information

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei SECOND EDITION Astrophysics of Gaseous Nebulae and Active Galactic Nuclei Donald E. Osterbrock Lick Observatory, University of California, Santa Cruz Gary J. Ferland Department of Physics and Astronomy,

More information

arxiv: v2 [astro-ph.co] 19 Sep 2016

arxiv: v2 [astro-ph.co] 19 Sep 2016 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 20 September 2016 (MN LATEX style file v2.2) The Sherwood simulation suite: overview and data comparisons with the Lyman-α forest at redshifts 2 z

More information

Gamma-Ray Absorption in High-Redshift Objects and Cosmic Reionization

Gamma-Ray Absorption in High-Redshift Objects and Cosmic Reionization Gamma-Ray Absorption in High-Redshift Objects and Cosmic Reionization Susumu Inoue (MPI Munich/ICRR U.Tokyo) - Model 1: SI, Salvaterra, Choudhury, Ferrara, Ciardi, Schneider - Model 2: Yoshiyuki Inoue,

More information

Illuminating the Sakura Web with Fluorescent Lyα Emission

Illuminating the Sakura Web with Fluorescent Lyα Emission Illuminating the Sakura Web with Fluorescent Lyα Emission Sebastiano Cantalupo In collaboration with many people, including: Cosmic Structure Formation Group at ETH, MUSE GTO Team (ETH, CRAL, Leiden, AIP,

More information

Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007

Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007 Where are the missing baryons? Craig Hogan SLAC Summer Institute 2007 Reasons to care Concordance of many measures of baryon number (BBN, CMB,.) Evolution of our personal baryons (galaxies, stars, planets,

More information

Intergalactic metals at the conclusion of reionization

Intergalactic metals at the conclusion of reionization Intergalactic metals at the conclusion of reionization Emma Ryan Weber (Swinburne) Max Pe'ni George Becker Berkeley Zych Piero Madau Bram Venemans Gonzalo Diaz Jeff Cooke Cosmological Mass Density? Cosmological

More information

Formation of z~6 Quasars from Hierarchical Galaxy Mergers

Formation of z~6 Quasars from Hierarchical Galaxy Mergers Formation of z~6 Quasars from Hierarchical Galaxy Mergers Yuexing Li et al Presentation by: William Gray Definitions and Jargon QUASAR stands for QUASI-stellAR radio source Extremely bright and active

More information

University of Groningen. Exploring 21CM - Lyman Alpha Emitter Synergies for SKA Dayal, Pratika; Hutter, Anne; Müller, Volker; Trott, C. M.

University of Groningen. Exploring 21CM - Lyman Alpha Emitter Synergies for SKA Dayal, Pratika; Hutter, Anne; Müller, Volker; Trott, C. M. University of Groningen Exploring 21CM - Lyman Alpha Emitter Synergies for SKA Dayal, Pratika; Hutter, Anne; Müller, Volker; Trott, C. M. Published in: Astrophysical Journal DOI: 1.3847/1538-4357/836/2/176

More information

PoS(MCCT-SKADS)010. Epoch of Reionization. Benedetta Ciardi Max Planck Institute ...

PoS(MCCT-SKADS)010. Epoch of Reionization. Benedetta Ciardi Max Planck Institute   ... Max Planck Institute E-mail: ciardi@mpa-garching.mpg.de...... First MCCT-SKADS Training School September 23-29, 2007 Medicina, Bologna Italy Speaker. A footnote may follow. c Copyright owned by the author(s)

More information

The effect of fluctuations on the helium-ionizing background

The effect of fluctuations on the helium-ionizing background MNRAS 437, 1141 1154 (2014) Advance Access publication 2013 November 15 doi:10.1093/mnras/stt1911 The effect of fluctuations on the helium-ionizing background Frederick B. Davies and Steven R. Furlanetto

More information

The Plasma Physics and Cosmological Impact of TeV Blazars

The Plasma Physics and Cosmological Impact of TeV Blazars The Plasma Physics and Cosmological Impact of TeV Blazars Philip Chang (UW-Milwaukee) Avery Broderick (Waterloo/Perimeter) Astrid Lamberts (UW-Milwaukee) Christoph Pfrommer (HITS-Heidelberg) Ewald Puchwein

More information

SELF-CONSISTENT MODELING OF REIONIZATION IN COSMOLOGICAL HYDRODYNAMICAL SIMULATIONS

SELF-CONSISTENT MODELING OF REIONIZATION IN COSMOLOGICAL HYDRODYNAMICAL SIMULATIONS Draft version March 0, 017 Preprint typeset using L A TEX style emulateapj v. 1/16/11 Immediately after the reioniation of H i ( 6) or He ii ( 3), T 0 is likely to be around 10 4 K and γ 1 (Bolton et al.

More information

Physics of the Intergalactic Medium During the Epoch of Reionization

Physics of the Intergalactic Medium During the Epoch of Reionization Physics of the Intergalactic Medium During the Epoch of Reionization Adam Lidz 1 Introduction Most of the volume of the universe, and much of the matter within it, lies in between the galaxies; this space

More information

Galaxies 626. Lecture 9 Metals (2) and the history of star formation from optical/uv observations

Galaxies 626. Lecture 9 Metals (2) and the history of star formation from optical/uv observations Galaxies 626 Lecture 9 Metals (2) and the history of star formation from optical/uv observations Measuring metals at high redshift Metals at 6 How can we measure the ultra high z star formation? One robust

More information

21cmFAST A Fast, Semi-Numerical Simulation of the High-Redshift 21cm Signal

21cmFAST A Fast, Semi-Numerical Simulation of the High-Redshift 21cm Signal 21cmFAST A Fast, Semi-Numerical Simulation of the High-Redshift 21cm Signal Mesinger, Furlanetto, & Cen (2010) Andrei Mesinger Princeton University Motivation We know next to nothing about high-z --> ENORMOUS

More information

arxiv:astro-ph/ v1 25 Jun 2002

arxiv:astro-ph/ v1 25 Jun 2002 The Nature of the Ionising Background at z 2.5 5 Aaron Sokasian 1 Tom Abel 2 and Lars Hernquist 3 Department of Astronomy, Harvard University, Cambridge, MA 02138 arxiv:astro-ph/0206428v1 25 Jun 2002 ABSTRACT

More information

Radiative Transfer in a Clumpy Universe: the UVB. Piero Madau UC Santa Cruz

Radiative Transfer in a Clumpy Universe: the UVB. Piero Madau UC Santa Cruz Radiative Transfer in a Clumpy Universe: the UVB Piero Madau UC Santa Cruz The cosmic UVB originates from the integrated emission of starforming galaxies and QSOs. It determines the thermal and ionization

More information

Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ M gas / dyn. Log SFR. Kennicutt Log. gas / dyn

Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ M gas / dyn. Log SFR. Kennicutt Log. gas / dyn Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ 0.017 M gas / dyn Log SFR Kennicutt 1998 Log gas / dyn Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Moster 2009 No Feedback 10% of baryons Log(

More information

The X-ray absorption in GRB afterglows

The X-ray absorption in GRB afterglows The X-ray absorption in GRB afterglows Darach Watson DARK Cosmology Centre Niels Bohr Institute University of Copenhagen Overview Downturn at low energies deviating from a power-law Very similar to photoelectric

More information

Gas 1: Molecular clouds

Gas 1: Molecular clouds Gas 1: Molecular clouds > 4000 known with masses ~ 10 3 to 10 5 M T ~ 10 to 25 K (cold!); number density n > 10 9 gas particles m 3 Emission bands in IR, mm, radio regions from molecules comprising H,

More information

Cosmic Web, IGM tomography and Clamato

Cosmic Web, IGM tomography and Clamato The mystery figure Cosmic Web, IGM tomography and Clamato Martin White with K-G Lee, J. Hennawi, E. Kitanidis, P. Nugent, J. Prochaska, D. Schlegel, M.Schmittfull, C. Stark, et al. http://clamato.lbl.gov

More information

Mapping the z 2 Large-Scale Structure with 3D Lyα Forest Tomography

Mapping the z 2 Large-Scale Structure with 3D Lyα Forest Tomography Mapping the z 2 Large-Scale Structure with 3D Lyα Forest Tomography Intergalactic Matters Meeting, MPIA Heidelberg Max Planck Institut für Astronomie Heidelberg, Germany June 16, 2014 Collaborators: Joe

More information

Cosmic Dawn (CoDa): Radiation-hydrodynamics of galaxy formation during the EoR

Cosmic Dawn (CoDa): Radiation-hydrodynamics of galaxy formation during the EoR Cosmic Dawn (CoDa): Radiation-hydrodynamics of galaxy formation during the EoR Ocvirk+2015: arxiv:1511.00011 P. Ocvirk Observatoire astronomique de Strasbourg Universite de Strasbourg D. Aubert, N. Gillet,

More information

The Sherwood simulation suite: overview and data comparisons with the Lyman α forest at redshifts 2 z 5

The Sherwood simulation suite: overview and data comparisons with the Lyman α forest at redshifts 2 z 5 Advance Access publication 2016 September 21 doi:10.1093/mnras/stw2397 The Sherwood simulation suite: overview and data comparisons with the Lyman α forest at redshifts 2 z 5 James S. Bolton, 1 Ewald Puchwein,

More information

On the Detectability of Lyman Alpha Emission by Galaxies from the Epoch of Reionization. Mark Dijkstra (MPA, Garching)

On the Detectability of Lyman Alpha Emission by Galaxies from the Epoch of Reionization. Mark Dijkstra (MPA, Garching) On the Detectability of Lyman Alpha Emission by Galaxies from the Epoch of Reionization Mark Dijkstra (MPA, Garching) Outline Why we care about the HI Lya line. Lya transfer basics. Why direct detection

More information

Galaxy Formation/Evolution and Cosmic Reionization Probed with Multi-wavelength Observations of Distant Galaxies. Kazuaki Ota

Galaxy Formation/Evolution and Cosmic Reionization Probed with Multi-wavelength Observations of Distant Galaxies. Kazuaki Ota Galaxy Formation/Evolution and Cosmic Reionization Probed with Multi-wavelength Observations of Distant Galaxies Kazuaki Ota Department of Astronomy Kyoto University 2013 Feb. 14 GCOE Symposium Outline

More information

Spatially adaptive radiation-hydrodynamical simulations of galaxy formation during cosmological reionization

Spatially adaptive radiation-hydrodynamical simulations of galaxy formation during cosmological reionization doi:10.1093/mnras/stv976 Spatially adaptive radiation-hydrodynamical simulations of galaxy formation during cosmological reionization Andreas H. Pawlik, 1 Joop Schaye 2 and Claudio Dalla Vecchia 3,4 1

More information

Imaging HII Regions from Galaxies and Quasars During Reionisation with SKA

Imaging HII Regions from Galaxies and Quasars During Reionisation with SKA Imaging HII Regions from Galaxies and Quasars During Reionisation with SKA, Paul M. Geil, Hansik Kim School of Physics, The University of Melbourne, Parkville, Vic 31, Australia E-mail: swyithe@unimelb.edu.au

More information

The simulated 21 cm signal during the epoch of reionization : full modeling of the Ly-α pumping

The simulated 21 cm signal during the epoch of reionization : full modeling of the Ly-α pumping Astronomy & Astrophysics manuscript no. 2cm Lya f December, 28 (DOI: will be inserted by hand later) The simulated 2 cm signal during the epoch of reionization : full modeling of the Ly-α pumping S. Baek,

More information

arxiv: v2 [astro-ph.co] 12 Feb 2009

arxiv: v2 [astro-ph.co] 12 Feb 2009 Submitted to ApJ Preprint typeset using L A TEX style emulateapj v. 0/09/06 A NEW CALCULATION OF THE IONIZING BACKGROUND SPECTRUM AND THE EFFECTS OF HEII REIONIZATION Claude-André Faucher-Giguère, Adam

More information

Active galactic nuclei (AGN)

Active galactic nuclei (AGN) Active galactic nuclei (AGN) General characteristics and types Supermassive blackholes (SMBHs) Accretion disks around SMBHs X-ray emission processes Jets and their interaction with ambient medium Radio

More information

The X-ray absorption in GRB afterglows

The X-ray absorption in GRB afterglows The X-ray absorption in GRB afterglows Darach Watson DARK Cosmology Centre Niels Bohr Institute University of Copenhagen Overview Downturn at low energies deviating from a power-law Very similar to photoelectric

More information

Probing the Dark Ages with 21 cm Absorption

Probing the Dark Ages with 21 cm Absorption May 13, 2008 Probing the Dark Ages with 21 cm Absorption Emil Polisensky (UMD/NRL) ABSTRACT A brief overview of detecting neutral hydrogen gas during the cosmic Dark Ages in absorption against the background

More information

HI across cosmic time

HI across cosmic time HI across cosmic time Hubble-ITC Fellow CfA Avi Loeb (CfA) Steve Furlanetto (UCLA) Stuart Wyithe (Melbourne) Mario Santos (Portugal) Hy Trac (CMU) Alex Amblard (Ames) Renyue Cen (Princeton) Asanthe Cooray

More information

Preliminary Program. Sunday 14th Thursday 18th July, 2013, Ayers Rock Resort. Day 1: Sunday 14 th

Preliminary Program. Sunday 14th Thursday 18th July, 2013, Ayers Rock Resort. Day 1: Sunday 14 th Preliminary Program Reionization in the Red Centre: New windows on the high redshift Universe ------------------------------------------------------------------------------------------------------ Sunday

More information

arxiv: v1 [astro-ph.co] 11 May 2016

arxiv: v1 [astro-ph.co] 11 May 2016 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 24 November 2018 (MN LATEX style file v2.2) The Sherwood simulation suite: overview and data comparisons with the Lyman-α forest at redshifts 2 z 5

More information