Connecting Galaxy Formation to the Cosmic Web

Size: px
Start display at page:

Download "Connecting Galaxy Formation to the Cosmic Web"

Transcription

1 Connecting Galaxy Formation to the Cosmic Web Andreas Burkert (University of Munich & MPE) Bigiel et al.

2 Properties of the Hubble Sequence Halpha imaging surveys (galaxy assembly in the great wall) (Gavazzi+ 13, 15)

3 The galaxy main sequence Systematic changes of galaxy properties with distance from the main sequence mid line (Genzel+ 15; Burkert+ 15) Text Color Geometry Structure (Sersic-n) Age Gas Content log M (Wuyts+11)

4 The galaxy main sequence Wuyts et al. 11 Galaxy main sequence (Noeske et al. 07; Daddi et al. 07, Peng et al. 10, Bouche et al. 10, Wuyts et al. 11,... ): M SFR 6 * M ( 1+ z ) 2.5 M yr Cosmic baryonic accretion rate (Neistein & Dekel 08): log M dm g dt acc 7 ε g M DM M 1.1 ( 1+ z) 2.2 M yr (Birnboim & Dekel 03; Dekel & Birnboim 06; Ceverino et al. 10, 12)

5 The universal gas depletion timescale Genzel et al. 11 SFR = M H 2 τ sf with τ sf 10 9 yrs Gas depletion timescale 50 times longer than local free-fall timescale. τ ff τ sf < τ Hubble continuous replenishment (Bouché et al. 07, McKee & Ostriker 08, Genzel et al. 10,11, Daddi et al. 10, Dave 11,12, Krumholz+ 12, Lilly et al. 13, Forbes et al. 13,14)

6 What determines SFR? SFR!M acc,eff (Bouche+10; Davé+11a,b; Forbes+13, Lilly+13) dm g dt = dm g dt acc M g τ sf ( 1 R + α ) wind!m acc,eff t / τ sf SFR = M g τ sf = 1 1 R + α wind dm g dt acc SFR = M! τ acc,eff sf does not determine SFR

7 What s about the (molecular) gas mass? M H2 = SFR τ sf =!M acc,eff τ sf A measure of the effective infall rate, averaged over the past Gyr. What s about metallicity? Z g = Z IGM + y R α wind + R (Everett+ 8,10, Brook+ 11, Hopkins+ 12, Dalla Vecchia+ 12, Bolatto+ 13, Hirschmann+13, von Glasow+ 13, Hanasz+ 13, Agertz+ 13)

8 The cosmic gas flow!m acc M g =!M acc,eff τ sf M * (t)!m wind = α SFR SFR = M g τ sf SFR =!M acc,eff see e.g. Somerville+ 15

9 The cosmic gas flow! M acc Are nearby star-forming galaxies s?!m wind = α SFR SFR = M g τ sf SFR =!M acc,eff see e.g. Somerville+ 15

10 The Milky Way SFR = 1 M / yr M H M

11 The Milky Way Metallicity gradients in disks SFR = 1 M / yr Kudritzi+ 15 M H M

12 The Milky Way SFR = 1 M / yr M H M Danovich+ 14

13 (Martinez-Delgado + 10)

14 Comparison with numerical simulations Important questions frequency structure mass metallicities correlation with galaxy properties correlation with environment infall rate of gas and stars relation to satellite system (Johnston+ 08)

15 Bound gas reservoirs: extended HI disks

16 HII 10 4 K OVI 10 6 K (Werk+ 14)

17 Cosmic web imaging (Tully+14) Most of the gas reservoir lies not in galaxies but in the extended filamentary surroundings. Photometry in K-Band JWST will measure precise, extinction free Cepheid distances out to 270 Mpc Cosmic web structure in a giant volume

18 Why is τ sf yrs?

19 Observations of spatially resolved SF show increased scatter (Bigiel+08, Schruba+10, Leroy+13...) SFR = M H 2 τ sf log Σ SFR Leroy+ 13 [M / yr / pc 2 ] Central limit theorem τ sf = τ dyn ε sf??? ~1%

20 log(τ sf / yr) 10 blue:z<1 yellow 1<z<2 red: z>2 (Burkert, Genzel+15) BUT No correlation 9.5 Why is τ 10 9 yrs? 9 sf log t_dyn log(τ dyn / yr)

21 Stellar feedback regulated turbulence and star formation (Dib+06)

22 Dobbs, Burkert & Pringle 11a,b, 12a,b

23 Stellar feedback versus disk instability (Krumholz&Burkert 10; Forbes +12,14; Behrendt+ 15)

24 Stellar feedback versus disk instabilities (Burkert+ 2016) Q = 1 Q κσ πgσ 1 2 (Dib+06)

25 A Nearby, Normal Star Forming Disk Galaxy A Normal Star Forming Disk Galaxy Far, Far Away Hα narrow Nearby star forming galaxies M gas / M dyn σ km / s M clumps M High-z star forming galaxies M gas / M dyn σ km / s M clumps M

26 A Nearby, Normal Star Forming Disk Galaxy A Normal Star Forming Disk Galaxy Far, Far Away Hα narrow Is there a fundamental difference? NO

27 Gas fraction as function of redshift A Normal Star Forming Disk Galaxy Far, Far Away Hα narrow (Tacconi+10) M g =!M acc 10 9 yrs

28 Gas fraction as function of redshift Fundamental disk galaxy properties Violent disk instability Hα narrow δ M gas / M dyn Q = 2 δ σ v rot 1 σ v rot = δ 2 λ R = δ (Tacconi+10) M clump M disk δ 2 M g =!M acc 10 9 yrs

29 Gas fraction as function of redshift Fundamental disk galaxy properties Violent disk instability Hα narrow δ M gas / M dyn Q = 2 δ σ v rot 1 σ v rot = δ 2 λ R = δ (Tacconi+10) M clump M disk δ 2 Gravitational disk instability dominates the disk structure

30 The emergence of quiescent, red ellipticals

31 Major mergers clearly happen (e.g. Hopkins ; Naab , Johansson+09-11; Remus+12, however Robertson+ 06) (Naab) (Springel) Major mergers are too rare in order to explain the population of ellipticals

32 The violent transition onto the red sequence Strangulation, stripping, quenching, harrassment, blowout! Cappellari+11,13

33 Oser 10,12

34 NGC 474

35 The violent transition onto the red sequence (strangulation, stripping, quenching, harrassment, blowout)!? Cappellari+11,13

36 Nearly all galaxy properties scale mainly with velocity dispersion, rather than other global parameters (Cappellari+ 13,15). BH mass Number of globular clusters Total mass Size Surface brightness Density distribution Colour Stellar population Molecular gas fraction IMF Variation (McConnel&Ma 13)

37 Nearly all galaxy properties scale mainly with velocity dispersion, rather than other global parameters (Cappellari+ 13,15). SED BH mass Number of globular clusters Total mass Size Surface brightness Density distribution Colour Stellar population Molecular gas fraction IMF Variation dynamical

38 Summary Galaxy formation is a boundary condition problem (inflow and outflow). Low-redshift galaxies still contain important information about their cosmic merger and assembly history. Understanding the assembly history of galaxies requires a detailed investigation of their interaction with the cosmic web (cosmic web imaging). High- and low redshift star forming galaxies appear to be driven by similar self-regulated internal feedback processes and disk instabilities. The universal gas depletion timescale is a key ingredient in order to understand galaxy evolution. Its origin is not clear. The stellar IMF changes with galactic environment, linking large-scale cosmic web galaxy formation to subpc-scale star formation.

Violent Disk Instability at z=1-4 Outflows; Clump Evolution; Compact Spheroids

Violent Disk Instability at z=1-4 Outflows; Clump Evolution; Compact Spheroids Violent Disk Instability at z=1-4 Outflows; Clump Evolution; Compact Spheroids Avishai Dekel The Hebrew University of Jerusalem Santa Cruz, August 2013 stars 5 kpc Outline 1. Inflows and Outflows 2. Evolution

More information

High-z Galaxy Evolution: VDI and (mostly minor) Mergers

High-z Galaxy Evolution: VDI and (mostly minor) Mergers High-z Galaxy Evolution: VDI and (mostly minor) Mergers Avishai Dekel The Hebrew University of Jerusalem UCSC, August 2012 Outline: in-situ (VDI) and ex-situ (mergers) 1. Cold streams: smooth and clumpy

More information

Origin and Evolution of Disk Galaxy Scaling Relations

Origin and Evolution of Disk Galaxy Scaling Relations Origin and Evolution of Disk Galaxy Scaling Relations Aaron A. Dutton (CITA National Fellow, University of Victoria) Collaborators: Frank C. van den Bosch (Utah), Avishai Dekel (HU Jerusalem), + DEEP2

More information

Nir Mandelker, H.U.J.I.

Nir Mandelker, H.U.J.I. Compressive vs Solenoidal Turbulence and Non-Linear VDI Nir Mandelker, H.U.J.I. IAU Symposium 319, August 11 2015 Collaborators: Avishai Dekel, Shigeki Inoue, Daniel Ceverino, Frederic Bournaud, Joel Primack

More information

Stream-Driven Galaxy Formation at High Redshift

Stream-Driven Galaxy Formation at High Redshift Stream-Driven Galaxy Formation at High Redshift Avishai Dekel The Hebrew University of Jerusalem KooFest, Santa Cruz, August 2011 Outline 1. Streams in pancakes from the cosmic web (Hahn) 2. Is angular

More information

Three comments on High-z Galaxy Formation. Avishai Dekel The Hebrew University of Jerusalem

Three comments on High-z Galaxy Formation. Avishai Dekel The Hebrew University of Jerusalem Three comments on High-z Galaxy Formation Avishai Dekel The Hebrew University of Jerusalem August 2014 Outline 1. Angular momentum: buildup in 4 phases 2. Violent disk instability: Nonlinear, Stimulated

More information

Gas accretion in Galaxies

Gas accretion in Galaxies Massive Galaxies Over Cosmic Time 3, Tucson 11/2010 Gas accretion in Galaxies Dušan Kereš TAC, UC Berkeley Hubble Fellow Collaborators: Romeel Davé, Mark Fardal, C.-A. Faucher-Giguere, Lars Hernquist,

More information

Spin Acquisition, Violent Disks, Compaction and Quenching

Spin Acquisition, Violent Disks, Compaction and Quenching Spin Acquisition, Violent Disks, Compaction and Quenching Avishai Dekel The Hebrew University of Jerusalem July 2014 stars 5 kpc Three Provocative Questions concerning high-z massive galaxy formation 1.

More information

SFEs in clusters. Final value of the SFE. For an isolated clump SFE exp. (t exp. = SFE(t exp. M ( cluster. t ) exp M clump. (t) M gas,i.

SFEs in clusters. Final value of the SFE. For an isolated clump SFE exp. (t exp. = SFE(t exp. M ( cluster. t ) exp M clump. (t) M gas,i. SFEs in clusters SFE(t) Final value of the SFE M cluster (t) M gas,i + M gas,acc (t) SFE exp = SFE(t exp ) M cluster (t exp ) M gas,i + M gas,acc ( t ) exp For an isolated clump SFE exp M ( cluster t )

More information

Two Main Techniques. I: Star-forming Galaxies

Two Main Techniques. I: Star-forming Galaxies p.1/24 The high redshift universe has been opened up to direct observation in the last few years, but most emphasis has been placed on finding the progenitors of today s massive ellipticals. p.2/24 Two

More information

Unstable Disks: Gas and Stars via an analytic model

Unstable Disks: Gas and Stars via an analytic model Unstable Disks: Gas and Stars via an analytic model Marcello Cacciato in collaboration with Avishai Dekel Minerva Fellow @ HUJI Theoretical studies and hydrodynamical cosmological simulations have shown

More information

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency!

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency! Theoretical ideas About Galaxy Wide Star Formation Theoretical predictions are that galaxy formation is most efficient near a mass of 10 12 M based on analyses of supernova feedback and gas cooling times

More information

Violent Disk Instability Inflow to Spheroid and Black Hole

Violent Disk Instability Inflow to Spheroid and Black Hole Violent Disk Instability Inflow to Spheroid and Black Hole Avishai Dekel The Hebrew University of Jerusalem Jerusalem Winter School 101/13 Lecture stars 5 kpc Outline 1. Violent Disk Instability (VDI):

More information

arxiv: v2 [astro-ph.co] 4 Mar 2013

arxiv: v2 [astro-ph.co] 4 Mar 2013 New Trends in Radio Astronomy in the ALMA Era ASP Conference Series, Vol. **Volume Number** R. Kawabe, N. Kuno, S. Yamamoto c 2013 Astronomical Society of the Pacific Molecular gas in high redshift galaxies

More information

Galaxy Activity in Semi Analytical Models. Fabio Fontanot (INAF OATs) Ljubljana 05/04/11

Galaxy Activity in Semi Analytical Models. Fabio Fontanot (INAF OATs) Ljubljana 05/04/11 Galaxy Activity in Semi Analytical Models Fabio Fontanot (INAF OATs) Ljubljana 05/04/11 Part I: Theoretical background 1. Baryonic gas falls in the gravitational potential of Dark Matter Halos 2. Baryonic

More information

Mergers and Mass Assembly of Dark Matter Halos & Galaxies

Mergers and Mass Assembly of Dark Matter Halos & Galaxies Mergers and Mass Assembly of Dark Matter Halos & Galaxies Chung-Pei Ma Onsi Fakhouri James McBride (UC Berkeley) Mike Boylan-Kolchin (MPA --> Southern UC) Claude-Andre Faucher-Giguere Dusan Keres (Harvard

More information

The Magic Scale of Galaxy Formation: SNe & Hot CGM --> Compaction & BHs

The Magic Scale of Galaxy Formation: SNe & Hot CGM --> Compaction & BHs The Magic Scale of Galaxy Formation: SNe & Hot CGM --> Compaction & BHs Avishai Dekel The Hebrew University of Jerusalem & UCSC Silk 75, December 2017 A Characteristic Mass for Galaxy Formation Efficiency

More information

The Schmidt Law at Sixty. Robert Kennicutt University of Arizona Texas A&M University

The Schmidt Law at Sixty. Robert Kennicutt University of Arizona Texas A&M University The Schmidt Law at Sixty Robert Kennicutt University of Arizona Texas A&M University Log (SFR surface density) Maarten Schmidt conjecture (1959, 1963): - volume/surface densities of star formation scale

More information

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %). Galaxies Collection of stars, gas and dust bound together by their common gravitational pull. Galaxies range from 10,000 to 200,000 light-years in size. 1781 Charles Messier 1923 Edwin Hubble The distribution

More information

high density low density Rayleigh-Taylor Test: High density medium starts on top of low density medium and they mix (oil+vinegar) Springel (2010)

high density low density Rayleigh-Taylor Test: High density medium starts on top of low density medium and they mix (oil+vinegar) Springel (2010) GAS MIXES high density Springel (2010) low density Rayleigh-Taylor Test: High density medium starts on top of low density medium and they mix (oil+vinegar) HOT HALO highest resolved density nth= 50x10

More information

quenching and structural & morphological evolution: physics

quenching and structural & morphological evolution: physics quenching and structural & morphological evolution: physics rachel somerville Rutgers University with thanks to: Ryan Brennan, Viraj Pandya, Ena Choi Guillermo Barro, Stijn Wuyts, Dale Kocevski, Arjen

More information

Bright Cluster Galaxy formation and the role of AGN feedback. Romain Teyssier

Bright Cluster Galaxy formation and the role of AGN feedback. Romain Teyssier Bright Cluster Galaxy formation and the role of AGN feedback Romain Teyssier KITP 2011: Monster Inc. Romain Teyssier 1 Outline - Feedback and galaxy formation - The role of AGN feedback in Milky Way halos

More information

Upcoming class schedule

Upcoming class schedule Upcoming class schedule Thursday March 15 2pm AGN evolution (Amy Barger) th Monday March 19 Project Presentation (Brad) nd Thursday March 22 postponed to make up after spring break.. Spring break March

More information

Galaxy Evolution & Black-Hole Growth (review)

Galaxy Evolution & Black-Hole Growth (review) Galaxy Evolution & Black-Hole Growth (review) Avishai Dekel The Hebrew University of Jerusalem & UCSC Delivered by Fangzhou Jiang Dali, China, November 2018 See also Claude-Andre s talk and Joel s talk

More information

STAR FORMATION RATES observational overview. Ulrike Kuchner

STAR FORMATION RATES observational overview. Ulrike Kuchner STAR FORMATION RATES observational overview Ulrike Kuchner Remember, remember.. Outline! measurements of SFRs: - techniques to see what the SF rate is - importance of massive stars and HII regions - the

More information

Feeding High-z Galaxies from the Cosmic Web

Feeding High-z Galaxies from the Cosmic Web Feeding High-z Galaxies from the Cosmic Web Avishai Dekel The Hebrew University of Jerusalem Jerusalem Winter School 2012/13 Lecture 1 z=0 z=2 z=8 Cosmological simulations Toy modeling Oxford Dictionary:

More information

Coupling small and large scales: how massive and dying stars drive the formation of a galaxy

Coupling small and large scales: how massive and dying stars drive the formation of a galaxy Coupling small and large scales: how massive and dying stars drive the formation of a galaxy P. Monaco, Trieste University and INAF-Osservatorio Astronomico di Trieste Micro-physics of star formation and

More information

SFEs in clusters. Final value of the SFE. For an isolated clump SFE exp. (t exp. = SFE(t exp. M ( cluster. t ) exp M clump. (t) M gas,i.

SFEs in clusters. Final value of the SFE. For an isolated clump SFE exp. (t exp. = SFE(t exp. M ( cluster. t ) exp M clump. (t) M gas,i. SFEs in clusters SFE(t) Final value of the SFE M cluster (t) M gas,i + M gas,acc (t) SFE exp = SFE(t exp ) M cluster (t exp ) M gas,i + M gas,acc ( t ) exp For an isolated clump SFE exp M ( cluster t )

More information

What Doesn t Quench Galaxy Formation?

What Doesn t Quench Galaxy Formation? What Doesn t Quench Galaxy Formation? Phil Hopkins Dusan Keres, Claude Faucher-Giguere, Jose Onorbe, Freeke van de Voort, Sasha Muratov, Xiangcheng Ma, Lena Murchikova, Norm Murray, Eliot Quataert, James

More information

J. Sánchez Almeida, B. Elmegreen, C. Muñoz-Tuñón, D. Elmegreen, and PORTO team Instituto de Astrofisica de Canarias, Spain

J. Sánchez Almeida, B. Elmegreen, C. Muñoz-Tuñón, D. Elmegreen, and PORTO team Instituto de Astrofisica de Canarias, Spain Evidence for gas accretion from the cosmic web feeding star formation in the local Universe J. Sánchez Almeida, B. Elmegreen, C. Muñoz-Tuñón, D. Elmegreen, and PORTO team Instituto de Astrofisica de Canarias,

More information

Characterizing z~2 Galaxies in HYDRO-ART Simulations and Observations

Characterizing z~2 Galaxies in HYDRO-ART Simulations and Observations Characterizing z~2 Galaxies in HYDRO-ART Simulations and Observations Mark Mozena (UCSC) Sandra Faber, Avishai Dekel, Daniel Ceverino, Joel Primack, Kamson Lai, David Koo, David Rosario, Dale Kocevski,

More information

Disk Formation and the Angular Momentum Problem. Presented by: Michael Solway

Disk Formation and the Angular Momentum Problem. Presented by: Michael Solway Disk Formation and the Angular Momentum Problem Presented by: Michael Solway Papers 1. Vitvitska, M. et al. 2002, The origin of angular momentum in dark matter halos, ApJ 581: 799-809 2. D Onghia, E. 2008,

More information

Star Formation Theory: Connecting the Local to the Extra- Galactic

Star Formation Theory: Connecting the Local to the Extra- Galactic Star Formation Theory: Connecting the Local to the Extra- Galactic Mark Krumholz University of California, Santa Cruz Frontiers in Star Formation Conference Yale, October 27, 2012 Leroy+ 2008 SF Laws on

More information

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Galactic Winds: Mathews, W. et al. 1971 Effects of Supernovae on the Early Evolution of Galaxies: Larson, R. 1974 The origin

More information

On the influence of environment on star-forming galaxies

On the influence of environment on star-forming galaxies On the influence of environment on star-forming galaxies Lizhi Xie 谢利智 Tianjin Normal University; INAF-OATS Collaborators: G. De Lucia; F. Fontanot; D. Wilman; M. Fossati Galaxy properties correlate with

More information

Fundamental Issues in Star Formation

Fundamental Issues in Star Formation Fundamental Issues in Star Formation - Formation and statistical properties of dense molecular cloud cores (mass function of cores, scaling relations, gravitational boundedness, rotational properties)

More information

Cosmological formation of slowly rotating massive elliptical galaxies

Cosmological formation of slowly rotating massive elliptical galaxies Cosmological formation of slowly rotating massive elliptical galaxies Thorsten Naab with ATLAS 3D MPA L. Oser, M.Hilz, E. Emsellem, M. Cappellari, D. Krajnovic, R. M. McDermid, N. Scott, P. Serra, G. A.

More information

FEEDBACK IN GALAXY FORMATION

FEEDBACK IN GALAXY FORMATION FEEDBACK IN GALAXY FORMATION Disks SMBH growth AGN and star formation Joe Silk IAP/JHU/Oxford Collaborators: Vincenzo Antonnucio-Deloglou, Volker Gaibler, Sadegh Khochfar Feedback is needed t cool t dyn

More information

Galaxy Formation Made Simple thanks to Sloan! Sloan Science Symposium Sandra M. Faber August 1 5,

Galaxy Formation Made Simple thanks to Sloan! Sloan Science Symposium Sandra M. Faber August 1 5, Galaxy Formation Made Simple thanks to Sloan! Sloan Science Symposium Sandra M. Faber August 1 5, 2 0 0 8 Outline of talk Part I: Review of basic galaxy formation Part II: Emerging paradigm: mass sequence

More information

The specific star formation rate of high redshift galaxies: the case for two modes of star formation

The specific star formation rate of high redshift galaxies: the case for two modes of star formation Mon. Not. R. Astron. Soc. 410, L42 L46 (2011) doi:10.1111/j.1745-3933.2010.00976.x The specific star formation rate of high redshift galaxies: the case for two modes of star formation Sadegh Khochfar 1

More information

AGN/Galaxy Co-Evolution. Fabio Fontanot (HITS)

AGN/Galaxy Co-Evolution. Fabio Fontanot (HITS) AGN/Galaxy Co-Evolution Fabio Fontanot (HITS) 21/11/2012 AGN activity in theoretical models of galaxy formation Represents a viable solution for a number of long-standing theoretical problems Properties

More information

The growth channel of massive galaxies

The growth channel of massive galaxies The growth channel of massive galaxies Nacho Trujillo Instituto de Astrofísica de Canarias www.iac.es/project/traces The enormous size evolution: how that it happens? M * 10 11 M sun z=0 z=2 r e ~1 kpc

More information

Galaxy Formation: The Radio Decade (Dense Gas History of the Universe) Chris Carilli (NRAO) Santa Fe, March 2011

Galaxy Formation: The Radio Decade (Dense Gas History of the Universe) Chris Carilli (NRAO) Santa Fe, March 2011 Galaxy Formation: The Radio Decade (Dense Gas History of the Universe) Chris Carilli (NRAO) Santa Fe, March 2011 Recombination (t univ ~ 0.4Myr) Power of radio astronomy: dust, cool gas, and star formation

More information

Turbulence, kinematics & galaxy structure in star formation in dwarfs. Mordecai-Mark Mac Low Department of Astrophysics

Turbulence, kinematics & galaxy structure in star formation in dwarfs. Mordecai-Mark Mac Low Department of Astrophysics Turbulence, kinematics & galaxy structure in star formation in dwarfs Mordecai-Mark Mac Low Department of Astrophysics Outline Turbulence inhibits star formation, but slowly Interplay between turbulence

More information

What FIREs Up Star Formation? The Emergence of Kennicutt- Schmidt from Feedback

What FIREs Up Star Formation? The Emergence of Kennicutt- Schmidt from Feedback What FIREs Up Star Formation? The Emergence of Kennicutt- Schmidt from Feedback SFDE7, Quy Nhon, Vietnam August, 7 Matt Orr Ph.D. Advisor: Dr. Philip F. Hopkins TAPIR California Institute of Technology

More information

AGN Feedback In an Isolated Elliptical Galaxy

AGN Feedback In an Isolated Elliptical Galaxy AGN Feedback In an Isolated Elliptical Galaxy Feng Yuan Shanghai Astronomical Observatory, CAS Collaborators: Zhaoming Gan (SHAO) Jerry Ostriker (Princeton) Luca Ciotti (Bologna) Greg Novak (Paris) 2014.9.10;

More information

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures April 2006 The Iguaçu Lectures Nonlinear Structure Formation: The growth of galaxies and larger scale structures Simon White Max Planck Institute for Astrophysics z = 0 Dark Matter ROT EVOL Cluster structure

More information

arxiv: v1 [astro-ph.ga] 25 Apr 2018

arxiv: v1 [astro-ph.ga] 25 Apr 2018 Draft version April, 0 Typeset using LATEX twocolumn style in AASTeX THE ORIGIN OF THE RELATION BETWEEN METALLICITY AND SIZE IN STAR-FORMING GALAXIES J. Sánchez Almeida, and C. Dalla Vecchia, arxiv:0.090v

More information

Stellar Populations: Resolved vs. unresolved

Stellar Populations: Resolved vs. unresolved Outline Stellar Populations: Resolved vs. unresolved Individual stars can be analyzed Applicable for Milky Way star clusters and the most nearby galaxies Integrated spectroscopy / photometry only The most

More information

Next Generation (Semi-)Empirical galaxy formation models - Matching individual galaxies

Next Generation (Semi-)Empirical galaxy formation models - Matching individual galaxies Next Generation (Semi-)Empirical galaxy formation models - Matching individual galaxies Benjamin Moster (IoA/KICC)! Simon White, Thorsten Naab (MPA), Rachel Somerville (Rutgers), Frank van den Bosch (Yale),

More information

Origin of Bi-modality

Origin of Bi-modality Origin of Bi-modality and Downsizing Avishai Dekel HU Jerusalem Galaxies and Structures Through Cosmic Times Venice, March 2006 Summary Q: z

More information

Galaxy evolution in the cosmic web: galaxy clusters

Galaxy evolution in the cosmic web: galaxy clusters Galaxy evolution in the cosmic web: galaxy clusters Simona Mei GEPI - Observatory of Paris University of Paris Denis Diderot Paris Sorbonne Cité Color-Magnitude Relation - Red sequence z~0 SDSS, Baldry

More information

Cosmological simulations of galaxy formation

Cosmological simulations of galaxy formation Cosmological simulations of galaxy formation Modern galaxy formation simulations Mock gri SDSS composite image with dust absorption based on Draine opacity model. NGC4622 as seen from HST Outline - Impact

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

AGN/Galaxy Co-Evolution. Fabio Fontanot (HITS) AGN10 11/09/12

AGN/Galaxy Co-Evolution. Fabio Fontanot (HITS) AGN10 11/09/12 AGN/Galaxy Co-Evolution Fabio Fontanot (HITS) AGN10 11/09/12 Outline of review talk AGNs in theoretical models of galaxy formation Outline of (biased) review talk AGNs in theoretical models of galaxy formation

More information

Galaxy Evolution. Part 4. Jochen Liske Hamburger Sternwarte

Galaxy Evolution. Part 4. Jochen Liske Hamburger Sternwarte Galaxy Evolution Part 4 Jochen Liske Hamburger Sternwarte jochen.liske@uni-hamburg.de Astronomical picture of the week NGC 1275 Central galaxy of the Perseus cluster Active Source: APOD Astronomical picture

More information

Cosmological simulations of galaxy formation. Romain Teyssier

Cosmological simulations of galaxy formation. Romain Teyssier Cosmological simulations of galaxy formation 1 Outline Disc formation in LCDM cosmology Star formation efficiency and morphology connection The baryon fraction problem Star formation at high redshift:

More information

Galaxy Evolution Insights from Spatially & Spectrally Resolved Studies

Galaxy Evolution Insights from Spatially & Spectrally Resolved Studies Galaxy Evolution Insights from Spatially & Spectrally Resolved Studies N.M. Förster Schreiber and the KMOS 3D, SINS/zC-SINF, 3D-HST, PHIBSS/2 Teams E. Wisnioski, E. Wuyts, S. Wuyts, R. Genzel, L.J. Tacconi,

More information

Evolution of massive galaxies over cosmic time

Evolution of massive galaxies over cosmic time Evolution of massive galaxies over cosmic time Nacho Trujillo Instituto de Astrofísica de Canarias www.iac.es/project/traces he enormous size evolution: how that it happens? M * 10 11 M sun z=0 z=2 r e

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

SURVEYS: THE MASS ASSEMBLY AND STAR FORMATION HISTORY

SURVEYS: THE MASS ASSEMBLY AND STAR FORMATION HISTORY Lecture #4 SURVEYS: THE MASS ASSEMBLY AND STAR FORMATION HISTORY Observational facts Olivier Le Fèvre ON Rio de Janeiro School 2014 Putting it all together Clear survey strategies Instrumentation and observing

More information

What regulates star formation?

What regulates star formation? What regulates star formation? N. Bouché (UCSB) A. Dekel (Hebrew), R. Genzel, S. Genel (MPE) M. Murphy (Swinburne), C. Martin (UCSB), T. Contini (Toulouse) Great Success Hopkins Beacom 2008 Bouwens et

More information

The Evolution of Galaxy Angular Momentum

The Evolution of Galaxy Angular Momentum icc.dur.ac.uk/eagle KMOS redshift one spectroscopic survey The Evolution of Galaxy Angular Momentum The KROSS team: Harrison, Johnson, Tiley, Stott, Swinbank, Bower, Bureau, Smail, Bunker, Cirasuolo, Sobral,

More information

Secular Evolution of Galaxies

Secular Evolution of Galaxies Secular Evolution of Galaxies Outline:!Disk size evolution! Bar fraction vs mass & color! AM transfers, radial migrations! Bulges, thick disks Françoise Combes Durham, 19 July 2011 Two modes to assemble

More information

Assembly of Galaxies Across Cosmic Time: Formaton of te Hubble Sequence at High Redshift

Assembly of Galaxies Across Cosmic Time: Formaton of te Hubble Sequence at High Redshift Assembly of Galaxies Across Cosmic Time: Formaton of te Hubble Sequence at High Redshift Yicheng Guo University of Massachusetts Collaborator: Mauro Giavalisco (UMASS), Paolo Cassata (Marseille), Henry

More information

Modelling the galaxy population

Modelling the galaxy population Modelling the galaxy population Simon White Max Planck Institut für Astrophysik IAU 277 Ouagadougou 1 The standard model reproduces -- the linear initial conditions -- IGM structure during galaxy formation

More information

How environment shapes galaxy evolution: the satellite galaxies' perspective

How environment shapes galaxy evolution: the satellite galaxies' perspective How environment shapes galaxy evolution: the satellite galaxies' perspective Anna Pasquali Astronomisches Rechen Institut, Zentrum für Astronomie der Universität Heidelberg NGC 4651 Why do we care? At

More information

The angular momentum of z=1 star forming galaxies from deep MUSE observations

The angular momentum of z=1 star forming galaxies from deep MUSE observations The angular momentum of z=1 star forming galaxies from deep MUSE observations Nicolas Bouché T. Contini; B. Epinat + MUSE team: R. Bacon (PI); E. Emsellem; J. Brinchman; J. Richard; T. Martinsson; D. Krajnovic;

More information

Gas accretion from the cosmic web in the local Universe

Gas accretion from the cosmic web in the local Universe Gas accretion from the cosmic web in the local Universe J. Sánchez Almeida B. G. Elmegreen C. Muñoz Tuñón D. M. Elmegreen Instituto de Astrofisica de Canarias, Spain + a long list of collaborators Star

More information

The Monster Roars: AGN Feedback & Co-Evolution with Galaxies

The Monster Roars: AGN Feedback & Co-Evolution with Galaxies The Monster Roars: AGN Feedback & Co-Evolution with Galaxies Philip Hopkins Ø (Nearly?) Every massive galaxy hosts a supermassive black hole Ø Mass accreted in ~couple bright quasar phase(s) (Soltan, Salucci+,

More information

Chemodynamical Simulations Of the Universe & Elliptical Galaxies. Chiaki Kobayashi (Stromlo Fellow, RSAA, ANU)

Chemodynamical Simulations Of the Universe & Elliptical Galaxies. Chiaki Kobayashi (Stromlo Fellow, RSAA, ANU) Chemodynamical Simulations Of the Universe & Elliptical Galaxies Chiaki Kobayashi (Stromlo Fellow, RSAA, ANU) Chemodynamical Evolution AGN (negative & positive) Feedback? Gravity Hydrodynamics Star Formation?

More information

Yicheng Guo (UCO/Lick, UCSC)

Yicheng Guo (UCO/Lick, UCSC) Formation and Evolution of Clumpy Galaxies at z=0.5--3 Yicheng Guo (UCO/Lick, UCSC) Collaborators: Henry Ferguson, Eric Bell, David Koo, Chris Conselice, Mauro Giavalisco, Nir Mandelker, Swara Ravindranatch,

More information

ISM and Galaxy Evolution the ELT View Alvio Renzini, INAF Padova

ISM and Galaxy Evolution the ELT View Alvio Renzini, INAF Padova ISM and Galaxy Evolution the ELT View Alvio Renzini, INAF Padova Starlight, HII & AGN Dust & Molecules Where we stand and looking in perspective The current generation of ground & space telescopes are

More information

Stellar Orbits and Angular Momentum in Early-Type Galaxy Halos Ortwin Gerhard, MPE, Garching

Stellar Orbits and Angular Momentum in Early-Type Galaxy Halos Ortwin Gerhard, MPE, Garching Stellar Orbits and Angular Momentum in Early-Type Galaxy Halos Ortwin Gerhard, MPE, Garching gerhard@mpe.mpg.de 1. Preamble Arnaboldi et al 2013 2. Predictions: ETG halos in cosmological simulations 3.

More information

Gas in galaxies Roberto Maiolino

Gas in galaxies Roberto Maiolino ESO in the 2020 s Gas in galaxies Roberto Maiolino Evolution of cosmic SFR density (modulation of the) Schmidt-Kennicutt law S(SFR) Outflow Gas stripping S(Gas) H2 inactive HI (reservoir) HI (IGM) inflow

More information

Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ M gas / dyn. Log SFR. Kennicutt Log. gas / dyn

Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ M gas / dyn. Log SFR. Kennicutt Log. gas / dyn Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Ṁ 0.017 M gas / dyn Log SFR Kennicutt 1998 Log gas / dyn Motivation Q: WHY IS STAR FORMATION SO INEFFICIENT? Moster 2009 No Feedback 10% of baryons Log(

More information

Local Group See S&G ch 4

Local Group See S&G ch 4 Our galactic neighborhood consists of one more 'giant' spiral (M31, Andromeda), a smaller spiral M33 and lots of (>35 galaxies), most of which are dwarf ellipticals and irregulars with low mass; most are

More information

Stellar Population Mass Estimates. Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan)

Stellar Population Mass Estimates. Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan) Stellar Population Mass Estimates Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan) Overview Stellar Mass-to-Light (M/L) ratios from SEDs Comparing different SED fitting techniques Comparing

More information

Balance among gravitational instability, star formation and accretion determines the structure and evolution of disc galaxies

Balance among gravitational instability, star formation and accretion determines the structure and evolution of disc galaxies MNRAS 438, 1552 1576 2014) Advance Access publication 2013 December 21 doi:10.1093/mnras/stt2294 Balance among gravitational instability, star formation and accretion determines the structure and evolution

More information

Quasar Feedback in Galaxies

Quasar Feedback in Galaxies Quasar Feedback in Galaxies Philip Hopkins Lars Hernquist, Norm Murray, Eliot Quataert, Todd Thompson, Dusan Keres, Chris Hayward, Stijn Wuyts, Kevin Bundy, Desika Narayanan, Ryan Hickox, Rachel Somerville,

More information

Physical properties of galaxies at high redshifts II

Physical properties of galaxies at high redshifts II Physical properties of galaxies at high redshifts II Different galaxies at high z s Luminous Infra Red Galaxies (LIRGs): LFIR > 10 11 L Ultra Luminous Infra Red Galaxies (ULIRGs): LFIR > 10 12 L SubMillimeter-selected

More information

Galaxy formation and evolution II. The physics of galaxy formation

Galaxy formation and evolution II. The physics of galaxy formation Galaxy formation and evolution II. The physics of galaxy formation Gabriella De Lucia Astronomical Observatory of Trieste Outline: ü Observational properties of galaxies ü Galaxies and Cosmology ü Gas

More information

Galaxy Evolution at High Redshift: The Future Remains Obscure. Mark Dickinson (NOAO)

Galaxy Evolution at High Redshift: The Future Remains Obscure. Mark Dickinson (NOAO) Galaxy Evolution at High Redshift: The Future Remains Obscure Mark Dickinson (NOAO) Galaxy Evolution at High Redshift: The Future Remains Obscure Past Mark Dickinson (NOAO) IRAS FIDEL 60μm MIPS 160μm 70μm

More information

Benjamin Weiner Steward Observatory November 15, 2009 Research Interests

Benjamin Weiner Steward Observatory November 15, 2009 Research Interests Benjamin Weiner Steward Observatory November 15, 2009 Research Interests My recent research projects study galaxy evolution with emphasis on star formation histories, gas accretion and outflow, and galaxy

More information

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics The Millennium Simulation: cosmic evolution in a supercomputer Simon White Max Planck Institute for Astrophysics The COBE satellite (1989-1993) Two instruments made maps of the whole sky in microwaves

More information

The importance of galactic fountain in galaxy evolution

The importance of galactic fountain in galaxy evolution The importance of galactic fountain in galaxy evolution Federico Marinacci in collaboration with: L. Armillotta, A. Marasco, F. Fraternali, J. Binney, L. Ciotti & C. Nipoti Sydney, 4 November 214 Galactic

More information

A new mechanism for the formation of PRGs

A new mechanism for the formation of PRGs A new mechanism for the formation of PRGs Spavone Marilena (INAF-OAC) Iodice Enrica (INAF-OAC), Arnaboldi Magda (ESO-Garching), Longo Giuseppe (Università Federico II ), Gerhard Ortwin (MPE-Garching).

More information

Astro 358/Spring 2008 (49520) Galaxies and the Universe

Astro 358/Spring 2008 (49520) Galaxies and the Universe Astro 358/Spring 2008 (49520) Galaxies and the Universe Figures + Tables for Lecture 13 on Tu Mar 18 Lectures 9 to 12 1) Evidence for DM ; CDM vs HDM 2) Surface brightness profile and v/σ of Disks, Bulges,

More information

The main sequence from stars to galaxies pc kpc Mpc. Questions

The main sequence from stars to galaxies pc kpc Mpc. Questions The main sequence from stars to galaxies pc kpc Mpc Questions Is the SFR M scaling-law or main sequence of star forming galaxies probing the bulk of the formation of present-day stars? Can we learn information

More information

Star Formation in Disk Galaxies: From Kiloparsec to Giant Molecular Cloud Scales

Star Formation in Disk Galaxies: From Kiloparsec to Giant Molecular Cloud Scales Star Formation in Disk Galaxies: From Kiloparsec to Giant Molecular Cloud Scales Suzanne N. Shaske1 and Dr. Jonathan C. Tan2 1 2 Department of Chemical Engineering, University of Florida Departments of

More information

Implementing sub-grid treatments of galactic outflows into cosmological simulations. Hugo Martel Université Laval

Implementing sub-grid treatments of galactic outflows into cosmological simulations. Hugo Martel Université Laval Implementing sub-grid treatments of galactic outflows into cosmological simulations Hugo Martel Université Laval Leiden, June 19, 2013 GALACTIC OUTFLOWS Optical image of galaxy (Hubble Space Telescope)

More information

Recent Progress in Modeling of Galaxy Formation. Oleg Gnedin (University of Michigan)

Recent Progress in Modeling of Galaxy Formation. Oleg Gnedin (University of Michigan) Recent Progress in Modeling of Galaxy Formation Oleg Gnedin (University of Michigan) In current simulations, galaxies look like this: 10 kpc Disk galaxy at z=3: stars, molecular gas, atomic gas (Zemp,

More information

Galaxy Evolution: Emerging Insights and Future Challenges. University of Texas (UT) Austin Nov 11-14

Galaxy Evolution: Emerging Insights and Future Challenges. University of Texas (UT) Austin Nov 11-14 Galaxy Evolution: Emerging Insights and Future Challenges University of Texas (UT) Austin Nov 11-14 Thank You! Department of Astronomy & Mc Donald Observatory Board of Visitors Scientific Organizing Committee

More information

Star Formation in the Milky Way and Nearby Galaxies

Star Formation in the Milky Way and Nearby Galaxies 1/ Star Formation in the Milky Way and Nearby Galaxies Robert C. Kennicutt, Jr., 1 and Neal J. Evans II 2 Annu. Rev. Astron. Astrophys. 2012. 50:531 608 Abstract We review progress over the past decade

More information

GALAXIES. Edmund Hodges-Kluck Andrew Ptak

GALAXIES. Edmund Hodges-Kluck Andrew Ptak GALAXIES Edmund Hodges-Kluck Andrew Ptak Galaxy Science with AXIS How does gas get into and out of galaxies? How important is hot accretion for L* or larger galaxies? How does star formation/black hole

More information

EVLA + ALMA represent > 10x improvement in observational capabilities from 1GHz to 1 THz

EVLA + ALMA represent > 10x improvement in observational capabilities from 1GHz to 1 THz What is EVLA? Build on existing infrastructure, replace all electronics (correlator, Rx, IF, M/C) => multiply ten-fold the VLA s observational capabilities 80x Bandwidth (8 GHz, full stokes), with 4000

More information

Galaxy Simulations Using the N-Body/SPH code GADGET

Galaxy Simulations Using the N-Body/SPH code GADGET 1 2010 HIPACC Astro-Computing Summer School Galaxy Simulations Using the N-Body/SPH code GADGET T.J. Cox (Carnegie Observatories) 2 Outline 1. Who am I and what am I doing here? My perspective, my science,

More information

The Merger-Driven Star Formation History of the Universe

The Merger-Driven Star Formation History of the Universe The Merger-Driven Star Formation History of the Universe Lars Hernquist, TJ Cox, Dusan Keres, Volker Springel, Philip Hopkins 08/17/07 Rachel Somerville (MPIA), Gordon Richards (JHU), Kevin Bundy (Caltech),

More information

Two Phase Formation of Massive Galaxies

Two Phase Formation of Massive Galaxies Two Phase Formation of Massive Galaxies Focus: High Resolution Cosmological Zoom Simulation of Massive Galaxies ApJ.L.,658,710 (2007) ApJ.,697, 38 (2009) ApJ.L.,699,L178 (2009) ApJ.,725,2312 (2010) ApJ.,744,63(2012)

More information

Modelling star formation in galaxy formation simulations

Modelling star formation in galaxy formation simulations Modelling star formation in galaxy formation simulations Vadim Semenov (U.Chicago) Andrey Kravtsov University of Chicago Carving through the codes Davos, Switzerland 16 February, 2017 Nick Gnedin (Fermilab)

More information