Space Weather & the Radiation Environment at Mars: Energetic Particle Measurements with MSL RAD

Size: px
Start display at page:

Download "Space Weather & the Radiation Environment at Mars: Energetic Particle Measurements with MSL RAD"

Transcription

1 Space Weather & the Radiation Environment at Mars: Energetic Particle Measurements with MSL RAD Donald M. Hassler Southwest Research Institute, Boulder, CO & Institut d Astrophysique Spatiale, Orsay, France R.F. Wimmer-Schweingruber (CAU/Kiel), C. Zeitlin (NASA/JSC) B. Ehresmann (SwRI) and the MSL RAD Team Artist s Concept. NASA/JPL-Caltech

2 The Radiation Assessment Detector (RAD) Overview MSL RAD is a working Asset on the Surface of Mars characterizing the changing Radiation Environment on Mars over the Solar Cycle, due to Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) originating from CMEs & Solar Flares. Mass = 1.56 kg Power = 4.2 W RAD 2

3 Space Weather on Mars The surface of Mars is much more exposed to space radiation than is the surface of Earth, for two reasons: Mars lacks a planetary magnetic field (magnetosphere) Mars atmosphere is much thinner ~1% of thickness of Earth s atmosphere

4 Secondary Particle Production from Galactic Cosmic Rays Why we need to make Ground-Truth Measurements to validate our models!

5 Astronaut Safety Requires Measuring ALL of the Important Energetic Particles Heavy ions contribute disproportionately to the radiation dose rate for humans (called Dose Equivalent), which is the radiation which affects astronauts and other life (Wilson et al., 1997).

6 The RAD Instrument (Overview) First Radiation Measurements on the Surface of Mars RAD consists of a combined: Charged Particle and Neutral Particle analyzer Mass = 1.56 kg Power = 4.2 W RAD is comprised of: Solid state detector telescope and CsI calorimeter with active coincidence logic to identify charged particles. Separate scintillators w/ anti-coincidence logic to detect neutrons and g-rays.

7 RAD Measurement Capability (Overview) Charge particles (protons and heavy ions up to Fe) (1 Z 26) vs energy & time Neutral particles (neutrons and γ-rays) (1-100 MeV neutrons) vs energy and time Absorbed Dose and Dose rate (LET of 0.3 to 1000 kev/mm) as a function of time Dose Equivalent (timeresolved Si LET spectra to determine LET-based Quality Factors) /n

8 RAD Observations (Inside the MSL Spacecraft) During Cruise On its way to Mars, inside the MSL Spacecraft, RAD served as a proxy to help validate models of the radiation levels expected inside a spacecraft that future astronauts may experience MSL Spacecraft during Cruise Manned Crew Exploration Vehicle (Orion)

9 During Cruise: magnetically well connected with Earth Earth MSL Mars

10 MSL RAD Measurements during the cruise GCR Average dose rate: 480 ± 80 ugy/day Dose equivalent rate: 1.84 ± 0.30 msv/day Zeitlin et al 2013, Science

11 RAD Saw Several Large SEP Events during Cruise Flare & SEP Event on March 7, 2012 Courtesy Tim Howard (SwRI)

12 RAD & GOES 13 Observations of the SEP Event on March 7, 2012 GOES Satellite (Earth Orbit) RAD (Inside MSL Spacecraft)

13 Particle Flux (protons/cm 2 /s/sr) Particle Flux (protons/cm 2 /s/sr) MSL Spacecraft Provided Shielding to Solar Energetic Particle Events Day (March 2012) The MSL spacecraft structure (backshell, heatshield, etc.) provides significant shielding from the deep space radiation environment, reducing significantly the particle flux observed by RAD. Particle flux observed by RAD is several orders of magnitude less than that observed by the SIS instrument on ACE. 13

14 SEP Events Contribute to Total Dose During Cruise Time Period (2012) Integrated Dose Equivalent (msv) Total Jan SEP 4.0 Total March 7-15 SEP 19.5 Total May SEP 1.2 SEP Events Total 24.7 GCR average per day 1.84 TOTAL (GCR + SEP) (253 days) 490 During Cruise, SEP Events contributed ~5% to the Total Integrated Dose Equivalent. However, SEP Fluences & Energy Spectra ( Hardness ) are highly variable a very large SEP Event or Super-Event (similar to the 1972 SEP event) could potentially contribute substantially more (>order of magnitude) to the total integrated Dose Equivalent.

15 On the Surface of Mars 100 Years after the Discovery of Cosmic Rays on Earth August 7, 1912 Exactly 100 years after Victor Hess discovered Cosmic Rays from his balloon in Eastern Germany RAD makes the first observations of the radiation environment on the surface of another planet! Credit: Foray (New York Times)

16 NASA/JPL- Caltech/MSSS RAD s new Home: Mastcam image of Mount Sharp s Canyons and Buttes

17 RAD Dose Rate Measurements on the Martian Surface GCR Average dose rate: 210 ± 40 ugy/day Dose equivalent rate: 0.64 ± 0.12 msv/day

18 SEP Events Seen by RAD, GOES & STEREO-B (11 April 2013) Mars/RAD Earth/GOES STEREO-B

19 First SEP Event Observed from the Surface of Mars (11 April 2013) First SEP Event seen on the Surface of Mars!!! STEREO-B RAD GOES-13

20 Solar Events on the Surface of Mars Three one-sol spectra of SEP events (Apr 2013, Oct 2013, Jan 2014)

21 Summary: RAD total Dose Rate during cruise & on the surface thru Sol 1000 During Cruise several medium size SPEs observed On the Surface only small SPEs observed so far...

22 Radiation Environment Summary (after RTG subtraction) RAD Measurement Cruise Mars Surface Charged Particle Flux particles cm -2 s -1 sr -1 Fluence (A2*B) cm -2 s -1 Dose Rate 464 +/ /- 50 mgy/day Avg. Quality Factor <Q> 4.1 +/ /- 0.3 (dimensionless) Dose Equivalent Rate / / msv/day Representative Radiation Dose Rates in Other Environments Natural Bkg Radiation (Earth) ~0.01 msv/day DOE Limit for Radiation Workers ~0.14 msv/day International Space Station (ISS) msv/day

23 Radiation Levels Measured by RAD compared with Common Sources

24 Implication for Manned Mission to Mars: NASA Design Reference Mission Mission Phase Astronaut Career Limit* Dose Equivalent ~1 Sv Notes Depends on age, gender, etc. Cruise to Mars (180 days) ~340 msv near SolarMax Mars Surface Mission (600 days) Mars Surface Mission (450 days) ~420 msv ~315 msv Return to Earth (180 days) ~340 msv near SolarMax Total Mission Dose Equivalent (450 days on Mars) ~1.02 Sv 450 days Total Mission Dose Equivalent (600 days on Mars) ~1.1 Sv 600 days

25 Comparing RAD Observations on Mars with Radiation Transport Models Daniel Matthiae (DLR)

26 Comparing RAD Data with Models: Proton, deuteron, trition, 3 He, 4 He Matthiae et al, 2015 Zenith angle 30 MSL-RAD data: Ehresmann et al GEANT4, PHITS, OLTARIS2013, HZETRN/OLTARIS

27 Comparing RAD Data with Models: Li/Be/B, C/N/O, Z=9-13, Z=14-24, Z 25 Matthiae et al, 2015 Zenith angle 30 MSL-RAD data: Ehresmann et al GEANT4, PHITS, OLTARIS2013, HZETRN/OLTARIS Li/Be/B: PHITS underestimates C/N/O, Z=9-13: agreement reasonable Z=14-24: G4 good, PHITS, HZETRN and OLTARIS2013 overestimate Z>24: all underestimate

28 Comparing RAD Data with Models: Neutrons & Photons Matthiae et al., 2015 MSL-RAD data: Köhler et al Neutrons (GEANT4, PHITS, HZETRN, OLTARIS2013) Good agreement above 1GeV Lower neutron fluxes from OLTARIS2013 below 1GeV (upward fluxes are missing) Photons: Good agreement G4/PHITS HZETRN significantly lower (higher) at energies < 10MeV (>1GeV)

29 MSL/RAD Radiation Transport Modeling Workshop Upcoming Workshop to bring the radiation transport modeling community together to compare their models with each other & with data from MSL/RAD and elsewhere When: Week of May 23-27, 2016 Where: Boulder, Colorado Stay tuned for more information Sponsored by NASA/JSC SRAG, RadWorks & NASA Advanced Exploration Systems Division (AES)

30 What might we expect from an Extreme SPE, Carrington Event or Super-Storm?

31 What should we expect from historically large SPEs or GLEs on Mars Wilson et al., 1997

32 56 e e e, 1956 Feb E Jul E May 04 SEP 8 Event 8.156E+05 Exposure Estimates from Date 1960 Sep E Nov Selected GLEs 7.540E+08 (Kim et al., AGU, ) Nov E Nov E Probabilistic Forecast of Solar Particle Fluence for Mission Durations and Exposure Assessment in Consideration of Integral Proton Fluence at High Energies 1961 Jul E Jan E Nov E Mar E during Extra Vehicular Activity and Inside 5 g/cm Myung-Hee Y. Kim 1, Allan J. Tylka 2, William F. Dietrich 2,3, and Aluminum Francis A. Cucinotta Jan E Sep E Aug E+15 Band Fit Parameters BFO dose, mgy-eq NASA E, msv Date Aug 07 Official 25 No. J0, 6.340E+06 p/cm Consultant R (GV) EVA g/cm Al EVA g/cm Al Feb Apr E E during Extra Vehicular Activity and Inside 5 g/cm Aluminum Apr Jul E E May Sep E E Sep E E+08 Band Fit Parameters BFO dose, mgy-eq NASA E, msv Date Nov Official No. J0, 3.020E E+08 p/cm R0 (GV) EVA g/cm Al EVA g/cm SPEonset date 2 Al May Feb Nov E E E Propensity of SPEs: Hazard Function of Sep Nov Jul E E E Offset Distribution Density Function May Jul E E E Sep Oct Jan E E E p q K ( p q) t t Nov E E E ( t) ( p) ( q) Nov Dec Mar E E E ( t ) Nov Feb Jan E E E Sep Jul E E Aug Date E E Nov Sep Aug E E E Sep Mar Apr E E E Jan Oct Apr a E E E Sep Oct b E E E Aug Sep Oct E E E Aug Nov Oct Date E E E rch Association, Division of Space Life Sciences, SK/SRPE/B37, 2101 NASA Parkway, Houston, TX 77058, USA my 2 Space Science Division, Naval Research Laboratory, Washington, DC 20375, USA allan.tylka@nrl.navy.mil ASA Johnson Space Center, SK/B37, 2101 NASA Parkway Houston, TX 77058, USA francis.a.cucinotta@nasa.go, 1/1957 2/1/1960 2/1/1958 2/1/1960 2/1/1963 2/1/1962 2/1/1966 2/1/1969 2/1/1964 2/1/1966 2/1/1968 2/1/1970 2/1/1972 2/1/1972 2/1/1975 2/1/1974 2/1/1976 2/1/1978 2/1/1978 2/1/1981 2/1/1980 2/1/1982 2/1/1984 2/1/1984 2/1/1987 2/1/1986 2/1/1988 2/1/1990 2/1/1990 2/1/1993 2/1/1992 2/1/1994 2/1/1996 2/1/1996 Probabilistic Forecast of Solar Particle Fluence for Mission Durations 2/1/1999 2/1/1998 2/1/2002 2/1/2005 2/1/2000 2/1/2002 2/1/2004 2/1/2006 (t) 30, protonscm -2 1.E+11 1.E+10 1.E+09 1.E+08 1.E+07 1.E+06 1.E+05 1.E E+11 E E 95 percentile 90 60, protonscm -2 cm -2 1.E+10 1.E+09 1.E+08 1.E+07 1.E+06 1.E+05 1.E E+11 1.E+10 1.E

33 Dose Equivalent (msv) Comparison of Total Radiation Dose Equivalent measured by RAD to modeled Historic SPE Events No significant SPEs to date Contribution of SPEs to Total Dose Eq. (msv) (behind 5 g/cm2 Al shielding) RAD Measurements (to date) Historical SPE Events (Modeled) *SPE Dose Equivalent values modeled behind 5 g/cm2 Aluminum by M.-H. Kim, F. Cucinotta, et al. (AGU, 2012). 400 RAD cruise measurements from Jan-July Nov. 60 SPE includes contributions from 2 events RAD Cruise GCR (6 mo) RAD Cruise SPEs (total) RAD Mars SPEs Feb 1956 SPE July 1959 SPE Nov 1960 SPE Aug 1972 SPE Oct 1989 SPE Oct. 89 SPE includes contributions from 5 events over 1 month.

34 Prospects for the Next Solar Cycle

35 Descending Phase of Cycle 24 more events to come?

36 Large Solar Particle Events are seen throughout the Solar Cycle Histogram of large SPEs (green bars) vs time. Large events are seen throughout the solar cycle.

37 However, predicting the Solar Cycle is difficult! Cycle 23 Data Predictions Actual Cycle 24 Deepest minimum of Space Age in 2009, not predicted. Cycle 24 maximum occurred late & is weakest in over 100 years, not predicted.

38 NSO (National Solar Observatory) Solar Cycle Prediction Sunspot Formation Fraction from Kitt Peak Sunspot Magnetic Field Measurements (Penn et al. 2013) MSFC Cycle 24 Sunspot Number Prediction (Hathaway et al. 2013)

39 Extreme Conditions throughout the Solar Cycle Extreme variations in the past 2 solar cycles have shown that current models clearly lack sufficient predictive capability. If cycle 24 minimum is as deep as 23 s, GCR dose rate will approach worst-case conditions for human expeditions. How bad can it get? We don t really know. We need to characterize these Extreme Conditions 1) Extreme Cycle variations (solar min, solar max) 2) Extreme SPEs (X-Class flares, GLEs, Super-Events )

40 Extended Mission Plan for MSL RAD 1) Characterization of the radiation environment at SOLAR MINIMUM. RAD has ONLY made measurements during Solar Maximum. Current predictions are for Solar Min to occur between ) Characterization of Extreme Solar Particle Events (SPEs). So far on the surface, RAD has only observed small SPEs. Large SPEs can occur well outside solar maximum. 3) MSL and RAD continue to be healthy and operate nominally on the surface of Mars. These data will continue to be useful for both research and operations through the next solar minimum to address these needs.

41 Take-Away Points Observations from RAD on Mars provide additional heliospheric data points to help us improve our understanding & modeling of the 3-D structure of the heliosphere, & the propagation of CMEs & SPEs For a SEP event to make it to the Mars surface, it needs to be relatively hard (high energy) event otherwise the only observed effect is a Forbush decrease We have not yet observed a large SPE from the surface of Mars, but the current solar cycle is proving to be very unpredictable stay tuned! Space Weather Monitoring: As human exploration extends out into the heliosphere and Mars, we will need to provide independent space weather monitoring at the astronaut s location (i.e. since Mars is on the far side of the Sun from Earth 50% of the time )

42 Mahalo! RAD Acknowledgements RAD is supported by NASA (HEOMD/AES) under JPL subcontract # to SwRI....and by DLR in Germany under contract with Christian-Albrechts- Universitat (CAU). 42

Charged Particle Measurements during Cruise and on Mars with the Radiation Assessment Detector (MSL/RAD)

Charged Particle Measurements during Cruise and on Mars with the Radiation Assessment Detector (MSL/RAD) Charged Particle Measurements during Cruise and on Mars with the Radiation Assessment Detector (MSL/RAD) Bent Ehresmann Southwest Research Institute, Boulder, Colorado, USA C. Zeitlin, D.M. Hassler, S.

More information

Solar Particle Events in Aviation and Space. Günther Reitz Insitute of Aerospace Medicine German Aerospace Center, DLR, Cologne, Germany

Solar Particle Events in Aviation and Space. Günther Reitz Insitute of Aerospace Medicine German Aerospace Center, DLR, Cologne, Germany Solar Particle Events in Aviation and Space Günther Reitz Insitute of Aerospace Medicine German Aerospace Center, DLR, Cologne, Germany Radiation Field in the Heliosphere LEO orbit Fluxes of primary space

More information

A generalized approach to model the spectra and radiation dose rate of solar particle events on the surface of Mars

A generalized approach to model the spectra and radiation dose rate of solar particle events on the surface of Mars A generalized approach to model the spectra and radiation dose rate of solar particle events on the surface of Mars Jingnan Guo*, Cary Zeitlin, Robert F. Wimmer-Schweingruber, Thoren McDole, Patrick Kühl,

More information

Implications of the Worsening GCR Radiation Environment

Implications of the Worsening GCR Radiation Environment Implications of the Worsening GCR Radiation Environment N. A. Schwadron University of New Hampshire GCRs from the Galaxy and Beyond SEPs from Flares and CMEs Protracted Min (23) and Mini Max (24) Dropping

More information

Radiation Protection Dosimetry (2015), Vol. 166, No. 1 4, pp Advance Access publication 11 May 2015

Radiation Protection Dosimetry (2015), Vol. 166, No. 1 4, pp Advance Access publication 11 May 2015 Radiation Protection Dosimetry (2015), Vol. 166, No. 1 4, pp. 290 294 Advance Access publication 11 May 2015 doi:10.1093/rpd/ncv297 MSL-RAD RADIATION ENVIRONMENT MEASUREMENTS Jingnan Guo 1, *, Cary Zeitlin

More information

Monthly Proton Flux. Solar modulation with AMS. Veronica Bindi, AMS Collaboration

Monthly Proton Flux. Solar modulation with AMS. Veronica Bindi, AMS Collaboration Solar modulation with AMS Monthly Proton Flux Veronica Bindi, AMS Collaboration Physics and Astronomy Department University of Hawaii at Manoa Honolulu, Hawaii, US 1 AMS on the ISS May 19, 2011 and for

More information

Launched April 01, reached Mars Oct. 01. Two-hour circular, polar mapping orbit established by Feb p.m. day/5 a.m. night

Launched April 01, reached Mars Oct. 01. Two-hour circular, polar mapping orbit established by Feb p.m. day/5 a.m. night Results from MARIE C. Zeitlin LBNL & NSBRI T. Cleghorn, F. Cucinotta, P. Saganti NASA JSC V. Andersen, K. Lee, L. Pinsky University of Houston W. Atwell Boeing Company, R. Turner ANSER Odyssey Mission

More information

GCR Methods in Radiation Transport. F.A. Cucinotta And M.Y. Kim NASA Johnson Space Center

GCR Methods in Radiation Transport. F.A. Cucinotta And M.Y. Kim NASA Johnson Space Center GCR Methods in Radiation Transport F.A. Cucinotta And M.Y. Kim NASA Johnson Space Center Overview CRÈME used in HZETRN and other codes 1986-1992 Badhwar and O Neill Model developed for HZETRN applications

More information

An Overview of a Solar Storm at Mars

An Overview of a Solar Storm at Mars MAVEN Outreach Webinar 19 September 2018 An Overview of a Solar Storm at Mars Christina O. Lee Space Sciences Laboratory, UC Berkeley clee@ssl.berkeley.edu Comparison of Mars with Earth Diameter: 53%,

More information

Evaluation of Various Material Properties to Shield from Cosmic Radiation Using FLUKA Transport Code

Evaluation of Various Material Properties to Shield from Cosmic Radiation Using FLUKA Transport Code Evaluation of Various Material Properties to Shield from Cosmic Radiation Using FLUKA Transport Code Roman Savinov GRADUATE SEMINAR CAL POLY April 7, 2016 Presentation Outline Thesis Statement Background

More information

H. Koshiishi, H. Matsumoto, A. Chishiki, T. Goka, and T. Omodaka. Japan Aerospace Exploration Agency

H. Koshiishi, H. Matsumoto, A. Chishiki, T. Goka, and T. Omodaka. Japan Aerospace Exploration Agency 9 th Workshop on Radiation Monitoring for the International Space Station Evaluation of Neutron Radiation Environment inside the International Space Station based on the Bonner Ball Neutron Detector Experiment

More information

A New JPL Interplanetary Solar HighEnergy Particle Environment Model

A New JPL Interplanetary Solar HighEnergy Particle Environment Model A New JPL Interplanetary Solar HighEnergy Particle Environment Model Insoo Jun (JPL), Randall Swimm (JPL), Joan Feynman (JPL), Alexander Ruzmaikin (JPL), Allan Tylka (NRL), and William Dietrich (NRL/Consultant)

More information

Deep Space Test Bed. POC Deep Space Test Bed (DSTB)

Deep Space Test Bed. POC   Deep Space Test Bed (DSTB) Deep Space Test Bed Workshop for Radiation Monitoring on the International Space Station September 3-5, 2003 Berkeley, California Presented by Eric Benton POC Mark.J.Christl@NASA.GOV http://sd.msfc.nasa.gov/cosmicray/dstb/dstb.htm

More information

U.S. Radiation Dose Limits for Astronauts

U.S. Radiation Dose Limits for Astronauts U.S. Radiation Dose Limits for Astronauts Link to Abstract Link to Menu Health Physics Society 56 th Annual Meeting, West Palm Beach, Florida In lieu of TAM-E.6, Tuesday, June 28, 2011 Daniel J. Strom,

More information

Radiation Shielding Materials, Transport Modeling

Radiation Shielding Materials, Transport Modeling Radiation Shielding Materials, Protection Technologies, and Transport Modeling presented for National Research Council Human Health and Surface Exploration Panel Workshop Lunar and Planetary Institute,

More information

Solar Particle Effects in Aircrew Dosimetry

Solar Particle Effects in Aircrew Dosimetry Solar Particle Effects in Aircrew Dosimetry Graeme Taylor Neutron Measurement Workshop 26 th October 2006 1 Presentation Overview Overview of aircrew exposure to cosmic radiation NPL s involvement in aircrew

More information

Radiation Measurements of the Mars Science Lab Radiation Assessment Detector (MSL-RAD) on the Surface of Mars

Radiation Measurements of the Mars Science Lab Radiation Assessment Detector (MSL-RAD) on the Surface of Mars 46th 10-14 July 2016, Vienna, Austria ICES-2016-437 Radiation Measurements of the Mars Science Lab Radiation Assessment Detector (MSL-RAD) on the Surface of Mars Guenther Reitz 1 German Aerospace Center

More information

The Impact of Solar Particle Events on Radiation Risk for Human Explorers of Mars. by Camron Saul Gorguinpour

The Impact of Solar Particle Events on Radiation Risk for Human Explorers of Mars. by Camron Saul Gorguinpour The Impact of Solar Particle Events on Radiation Risk for Human Explorers of Mars by Camron Saul Gorguinpour A dissertation submitted in partial satisfaction of the requirements for the degree of Joint

More information

TITLE. Paper presented at HPS 54 th Annual Meeting, July 12-16, Minneapolis, MN USA

TITLE. Paper presented at HPS 54 th Annual Meeting, July 12-16, Minneapolis, MN USA TITLE Organ Dose and Organ Dose Equivalent Rate Calculations from October 26, 2003 (Halloween Event) Solar Energetic Particle (SEP) Event using Earth-Moon- Mars Radiation Environment Module (EMMREM) M.

More information

USING SPACE WEATHER VARIABILITY IN EVALUATING THE RADIATION ENVIRONMENT DESIGN SPECIFICATIONS FOR NASA'S CONSTELLATION PROGRAM

USING SPACE WEATHER VARIABILITY IN EVALUATING THE RADIATION ENVIRONMENT DESIGN SPECIFICATIONS FOR NASA'S CONSTELLATION PROGRAM USING SPACE WEATHER VARIABILITY IN EVALUATING THE RADIATION ENVIRONMENT DESIGN SPECIFICATIONS FOR NASA'S CONSTELLATION PROGRAM Victoria N Coffey 1, Joseph I Minow 1, William C Blackwell, Jr 2, Margaret

More information

Solar Energetic Particles measured by AMS-02

Solar Energetic Particles measured by AMS-02 Solar Energetic Particles measured by AMS-02 Physics and Astronomy Department, University of Hawaii at Manoa, 96822, HI, US E-mail: bindi@hawaii.edu AMS-02 collaboration The Alpha Magnetic Spectrometer

More information

Overview. Objective Background Design Constraints User Requirements Alternatives Selected Concept Design Evaluation Plan

Overview. Objective Background Design Constraints User Requirements Alternatives Selected Concept Design Evaluation Plan Overview Objective Background Design Constraints User Requirements Alternatives Selected Concept Design Evaluation Plan Objective To design the outer structure and material components of a lunar base to

More information

ASSESSMENT OF RADIATION EXPOSURE IN MANNED MISSIONS TO MARS FOR THREE PROFILES *

ASSESSMENT OF RADIATION EXPOSURE IN MANNED MISSIONS TO MARS FOR THREE PROFILES * ISSN 2466-4294 (online) rad-journal.org Vol. 3 Issue 1 pp. 27 33, 2018 doi: 10.21175/RadJ.2018.01.006 Original research paper ASSESSMENT OF RADIATION EXPOSURE IN MANNED MISSIONS TO MARS FOR THREE PROFILES

More information

M. Vuolo M. Giraudo. June 17 th, /06/2015. Ref.: DOC-TAS-EN-001

M. Vuolo M. Giraudo. June 17 th, /06/2015. Ref.: DOC-TAS-EN-001 83230913-DOC-TAS-EN-001 M. Vuolo M. Giraudo June 17 th, 2015 22/06/2015 Ref.: Introduction Cancer risk caused by radiation exposure is the main obstacle to interplanetary travel No simple and effective

More information

On the possibility to forecast severe radiation storms by data from surface and space-born facilities

On the possibility to forecast severe radiation storms by data from surface and space-born facilities On the possibility to forecast severe radiation storms by data from surface and space-born facilities Ashot Chilingarian Cosmic Ray Division, Yerevan Physics Institute, Armenia Aragats Space-Environmental

More information

Fragmentation and space radioprotection

Fragmentation and space radioprotection Fragmentation and space radioprotection C. La Tessa 1,2, E. Tracino 3, C. Schuy 2, M. Rovituso 2, C. Lobascio 3, A. Menicucci 4, E. Daly 4, M. Sivertz 1, A. Rusek 1, M. Durante 2 1 BNL (USA) 2 GSI (Germany)

More information

Prologue: By 1998, concern was clearly building over the upcoming Cycle 23 Solar Max

Prologue: By 1998, concern was clearly building over the upcoming Cycle 23 Solar Max Prologue: By 1998, concern was clearly building over the upcoming Cycle 23 Solar Max... 1996... 1998... More recently, (2001) Cycle 23 must be meeting expectations; Tthe mood looks much more relaxed! Significant

More information

NMDB - the European neutron monitor database

NMDB - the European neutron monitor database NMDB - the European neutron monitor database Karl-Ludwig Klein, ludwig.klein@obspm.fr for the NMDB consortium NMDB data Providers Initially (2008-09, FP7) 26 stations from Europe and some neighbouring

More information

ISSCREM: International Space Station Cosmic Radiation Exposure Model

ISSCREM: International Space Station Cosmic Radiation Exposure Model 17 th WRMISS Conference Austin, USA September 4-6, 2012 ISSCREM: International Space Station Cosmic Radiation Exposure Model S. El-Jaby, B. Lewis Royal Military College of Canada L. Tomi Canadian Space

More information

Radiation Health Risks to Commercial Space Flight (Suborbital and Orbital)

Radiation Health Risks to Commercial Space Flight (Suborbital and Orbital) Radiation Health Risks to Commercial Space Flight (Suborbital and Orbital) Presented at: 15th Annual Commercial Space Transportation Conference Feb 15, 2012 By Dr. Ronald E. Turner Fellow Analytic Services

More information

Even if not soon to. humans will still be in Space (ISS)

Even if not soon to. humans will still be in Space (ISS) ESS 7 Lectures 22 and 23 May 28 and June 2, 2010 Humans in Space Even if not soon to the Moon or Mars, humans will still be in Space (ISS) NASA Feb 19 2010 Radiation Doses and Risks When high energy particles

More information

ICRP Symposium on the International System of Radiological Protection

ICRP Symposium on the International System of Radiological Protection ICRP Symposium on the International System of Radiological Protection October 24-26, 2011 Bethesda, MD, USA Günther Dietze ICRP Committee 2 Members of ICRP ask Group 67 D.. Bartlett (UK) Comm. 2 D. A.

More information

EVALUATION OF EFFICIENCY OF VARIOUS MATERIALS TO SHIELD FROM RADIATION IN SPACE USING THE MONTE CARLO TRANSPORT CODE CALLED FLUKA.

EVALUATION OF EFFICIENCY OF VARIOUS MATERIALS TO SHIELD FROM RADIATION IN SPACE USING THE MONTE CARLO TRANSPORT CODE CALLED FLUKA. EVALUATION OF EFFICIENCY OF VARIOUS MATERIALS TO SHIELD FROM RADIATION IN SPACE USING THE MONTE CARLO TRANSPORT CODE CALLED FLUKA A Thesis presented to the Faculty of California Polytechnic State University,

More information

THE NEWEST HUNGARIAN COSMIC RADIATION MEASUREMENT RESULTS IN THE STRATOSPHERE USING STRATOSPHERIC BALLOONS AND SOUNDING ROCKETS

THE NEWEST HUNGARIAN COSMIC RADIATION MEASUREMENT RESULTS IN THE STRATOSPHERE USING STRATOSPHERIC BALLOONS AND SOUNDING ROCKETS THE NEWEST HUNGARIAN COSMIC RADIATION MEASUREMENT RESULTS IN THE STRATOSPHERE USING STRATOSPHERIC BALLOONS AND SOUNDING ROCKETS Balázs Zábori Centre for Energy Research, Hungarian Academy of Sciences zabori.balazs@energia.mta.hu

More information

18-th Workshop on Radiation Monitoring for the International Space Station. 3-5 September 2013, Budapest, Hungary

18-th Workshop on Radiation Monitoring for the International Space Station. 3-5 September 2013, Budapest, Hungary 18-th Workshop on Radiation Monitoring for the International Space Station. 3-5 September 2013, Budapest, Hungary RESULTS OF THE RADIATION MONITORING SYSTEM MEASUREMENTS ON SERVICE MODULE OF ISS DURING

More information

A Novel Configuration for Superconducting Space Radiation Shield. The Pumpkin Configuration

A Novel Configuration for Superconducting Space Radiation Shield. The Pumpkin Configuration A Novel Configuration for Superconducting Space Radiation Shield The Pumpkin Configuration Valerio Calvelli Mar 11 th, 2016 Overview SR2S Project The Problem of the Radiation Shielding in the Deep Space

More information

MARIE The Martian Radiation Environment Experiment

MARIE The Martian Radiation Environment Experiment MARIE The Martian Radiation Environment Experiment Gautam Badhwar, T. Cleghorn, F. Cucinotta, P. Saganti JSC V. Andersen, K. Lee, L. Pinsky U. Houston W. Atwell Boeing; R. Turner ANSER C. Zeitlin NSBRI

More information

Overview of the ISS radiation environment observed during EXPOSE- R2 mission in

Overview of the ISS radiation environment observed during EXPOSE- R2 mission in Overview of the ISS radiation environment observed during EXPOSE- R2 mission in 2014-2016 T.P. Dachev a, N.G. Bankov a, B. T. Tomov a, Yu. N. Matviichuk a, Pl. G. Dimitrov a, D.-P. Häder b, G. Horneck

More information

Effect of Shielding Materials from SPEs on the Lunar and Mars Surface

Effect of Shielding Materials from SPEs on the Lunar and Mars Surface Space 25 August - September 25, Long Beach, California AIAA 25-665 Effect of Shielding Materials from SPEs on the Lunar and Mars Surface Myung-Hee Y. Kim * Wyle Laboratories, Houston, Texas, 7758 Xiaodong

More information

Radiation Shielding Simulation For Interplanetary Manned Missions

Radiation Shielding Simulation For Interplanetary Manned Missions Radiation Shielding Simulation For Interplanetary Manned Missions S. Guatelli1, B. Mascialino1, P. Nieminen2, M.G. Pia1 Credit: ESA Credit: ESA 1 INFN Genova, Italy ESA-ESTEC, The Netherlands 2 IPRD 06

More information

Radiation Shielding Simulation For Interplanetary Manned Missions

Radiation Shielding Simulation For Interplanetary Manned Missions Radiation Shielding Simulation For Interplanetary Manned Missions S. Guatelli 1, B. Mascialino 1, P. Nieminen 2, M.G. Pia 1 Credit: ESA 1 INFN Genova, Italy 2 ESA-ESTEC, The Netherlands Credit: ESA IPRD

More information

Radiation hazards for astronauts: the part of cosmic rays.

Radiation hazards for astronauts: the part of cosmic rays. Radiation hazards for astronauts: the part of cosmic rays. - History - Apollo - ISS and current Mars missions. - Future Christian Muller Cosmic Rays: first space discovery 1910-1912: Victor Hess by flying

More information

Earth-Moon-Mars Radiation Environment Module (EMMREM): A Tool For Energetic Particle Fluxes and Radiation Doses Prediction In the Inner Heliosphere

Earth-Moon-Mars Radiation Environment Module (EMMREM): A Tool For Energetic Particle Fluxes and Radiation Doses Prediction In the Inner Heliosphere Earth-Moon-Mars Radiation Environment Module (EMMREM): A Tool For Energetic Particle Fluxes and Radiation Doses Prediction In the Inner Heliosphere K. A. Kozarev, N. A. Schwadron, M. A. Dayeh, A. Fuegi,

More information

November 2013 analysis of high energy electrons on the Japan Experimental Module (JEM: Kibo)

November 2013 analysis of high energy electrons on the Japan Experimental Module (JEM: Kibo) November 2013 analysis of high energy on the Japan Experimental Module (JEM: Kibo) Francis F. Badavi (ODU) Haruhisa Matsumoto, Kiyokazu Koga (JAXA) Christopher J. Mertens, Tony C. Slaba, John W. Norbury

More information

Evaluation of Galactic Cosmic Rays Models Using AMS2 Data. Francis F. Badavi 1. Christopher J. Mertens 2 Tony C. Slaba 2

Evaluation of Galactic Cosmic Rays Models Using AMS2 Data. Francis F. Badavi 1. Christopher J. Mertens 2 Tony C. Slaba 2 Evaluation of Galactic Cosmic Rays Models Using AMS2 Data Francis F. Badavi 1 Christopher J. Mertens 2 Tony C. Slaba 2 1 Old Dominion University, Norfolk, VA, USA 2 NASA Langley Research Center, Hampton,

More information

INTERPLANETARY ASPECTS OF SPACE WEATHER

INTERPLANETARY ASPECTS OF SPACE WEATHER INTERPLANETARY ASPECTS OF SPACE WEATHER Richard G. Marsden Research & Scientific Support Dept. of ESA, ESTEC, P.O. Box 299, 2200 AG Noordwijk, NL, Email: Richard.Marsden@esa.int ABSTRACT/RESUME Interplanetary

More information

This project has received funding from the European Union s Horizon 2020 research and innovation programme under the Marie-Sklodowska-Curie grant

This project has received funding from the European Union s Horizon 2020 research and innovation programme under the Marie-Sklodowska-Curie grant This project has received funding from the European Union s Horizon 2020 research and innovation programme under the Marie-Sklodowska-Curie grant agreement number 721624. Space weather and the variable

More information

SPENVIS Tutorial: Radiation models in SPENVIS and their accuracy

SPENVIS Tutorial: Radiation models in SPENVIS and their accuracy SPENVIS Tutorial: Radiation models in SPENVIS and their accuracy D. Heynderickx DH Consultancy, Leuven, Belgium Outline Radiation environments Sources of model uncertainties Running radiation models in

More information

Long Term Solar Modulation with the AMS-02 detector on the International Space Station

Long Term Solar Modulation with the AMS-02 detector on the International Space Station Long Term Solar Modulation with the AMS-02 detector on the International Space Station TEACHER NOTES DESCRIPTION In this activity, students explore whether solar activity impacts the flux of galactic cosmic

More information

Geant4 Based Space Radiation Application for Planar and Spherical Geometries

Geant4 Based Space Radiation Application for Planar and Spherical Geometries Advances in Applied Sciences 2017; 2(6): 110-114 http://www.sciencepublishinggroup.com/j/aas doi: 10.11648/j.aas.20170206.13 ISSN: 2575-2065 (Print); ISSN: 2575-1514 (Online) Geant4 Based Space Radiation

More information

CRaTER Science Requirements

CRaTER Science Requirements CRaTER Science Requirements Lunar Reconnaissance Orbiter CRaTER Preliminary Design Review Justin Kasper (CRaTER Proj. Sci.) Outline Energy deposition Classical ionizing radiation Nuclear fragmentation

More information

N. A. Schwadron, J. K. Wilson, M. D. Looper, A. P. Jordan, H. E. Spence, J. B. Blake, A. W. Case, Y. Iwata, J. C. Kasper, W. M. Farrell, D. J.

N. A. Schwadron, J. K. Wilson, M. D. Looper, A. P. Jordan, H. E. Spence, J. B. Blake, A. W. Case, Y. Iwata, J. C. Kasper, W. M. Farrell, D. J. Signatures of Volatiles in the CRaTER Proton Albedo N. A. Schwadron, J. K. Wilson, M. D. Looper, A. P. Jordan, H. E. Spence, J. B. Blake, A. W. Case, Y. Iwata, J. C. Kasper, W. M. Farrell, D. J. Lawrence,

More information

Radiation Environment. Efforts at JPL. Dr. Henry Garrett. Jet Propulsion Laboratory 4800 Oak Grove Dr. Pasadena, CA 91109

Radiation Environment. Efforts at JPL. Dr. Henry Garrett. Jet Propulsion Laboratory 4800 Oak Grove Dr. Pasadena, CA 91109 Space Modeling Space Radiation Radiation Environment Environment Modeling Efforts Efforts at JPL JPL Dr. Henry Garrett Jet Propulsion Laboratory 4800 Oak Grove Dr. Pasadena, CA 91109 Spacecraft Environmental

More information

arxiv: v1 [astro-ph.ep] 19 Dec 2017

arxiv: v1 [astro-ph.ep] 19 Dec 2017 JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:10.1002/, Dependence of the Martian radiation environment on atmospheric depth: modelling and measurement Jingnan Guo, 1 Tony C. Slaba, 2 Cary Zeitlin,

More information

VISUALIZATION OF PARTICLE FLUX IN THE HUMANBODY

VISUALIZATION OF PARTICLE FLUX IN THE HUMANBODY VISUALIZATION OF PARTICLE FLUX IN THE HUMANBODY ON THE SURFACE OF MARS PREMKUMAR B. SAGANTI 1, 2, FRANCIS A. CUCINOTTA 2, JOHN W. WILSON 3 AND WALTER SCHIMMERLING 3 1 Lockheed Martin Space Operations,

More information

Status of ISS-RAD. Cary Zeitlin, Southwest Research Institute On behalf of the ISS-RAD Team

Status of ISS-RAD. Cary Zeitlin, Southwest Research Institute On behalf of the ISS-RAD Team Status of ISS-RAD Cary Zeitlin, Southwest Research Institute On behalf of the ISS-RAD Team ISS-RAD MSL-RAD + FND Add Fast Neutron Detector (FND) to RAD. Measure neutrons 0.5 8 MeV Many design changes.

More information

in the heliosphere P.Spillantini, University and INFN, Firenze, Italy

in the heliosphere P.Spillantini, University and INFN, Firenze, Italy Solar Cosmic Ray monitor and surveyor in the heliosphere P.Spillantini, University and INFN, Firenze, Italy Forecasting of the Radiation and Geomagnetic Storms by networks of particle detectors (FORGES-2008)

More information

DIN EN : (E)

DIN EN : (E) DIN EN 16603-10-04:2015-05 (E) Space engineering - Space environment; English version EN 16603-10-04:2015 Foreword... 12 Introduction... 13 1 Scope... 14 2 Normative references... 15 3 Terms, definitions

More information

Space Weather and Satellite System Interaction

Space Weather and Satellite System Interaction Space Engineering International Course, Kyutech, 4 th Quarter Semester 2017 Space Weather and Satellite System Interaction Lecture 2: Space Weather Concept, Reporting and Forecasting Assoc. Prof. Ir. Dr.

More information

Internal Charging Hazards in Near-Earth Space during Solar Cycle 24 Maximum: Van Allen Probes Measurements

Internal Charging Hazards in Near-Earth Space during Solar Cycle 24 Maximum: Van Allen Probes Measurements Internal Charging Hazards in Near-Earth Space during Solar Cycle 24 Maximum: Van Allen Probes Measurements T. Mulligan Skov, J.F. Fennell, J.L. Roeder, J.B. Blake, and S.G. Claudepierre The Aerospace Corporation,

More information

NAIRAS Model Predictions of Aircraft Radiation Exposure during the Halloween 2003 Storms

NAIRAS Model Predictions of Aircraft Radiation Exposure during the Halloween 2003 Storms NAIRAS Model Predictions of Aircraft Radiation Exposure during the Halloween 2003 Storms NAIRAS Team Christopher J. Mertens NASA/Langley W. Kent Tobiska (Co-I), Space Environment Technologies, Pacific

More information

Initial studies of the sensitivities of estimates of particle uence, absorbed dose, and dose equivalent to

Initial studies of the sensitivities of estimates of particle uence, absorbed dose, and dose equivalent to REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-088 Publicreporting burden for this collection of information is estimated to average hour per response, including the time for reviewing instructions,

More information

Paper PREDICTION OF FREQUENCY AND EXPOSURE LEVEL OF SOLAR PARTICLE EVENTS

Paper PREDICTION OF FREQUENCY AND EXPOSURE LEVEL OF SOLAR PARTICLE EVENTS Paper PREDICTION OF FREQUENCY AND EXPOSURE LEVEL OF SOLAR PARTICLE EVENTS Myung-Hee Y. Kim,* Matthew J. Hayat,* Alan H. Feiveson, and Francis A. Cucinotta Abstract For future space missions outside of

More information

Space weather. Introduction to lectures by Dr John S. Reid. Image courtesy:

Space weather. Introduction to lectures by Dr John S. Reid. Image courtesy: Space weather Introduction to lectures by Dr John S. Reid Image courtesy: http://www.astro-photography.com/ss9393.htm Sunspot 9393 First pass from late March to early April, 2001 See: Storms from the Sun

More information

Radiation Transport Tools for Space Applications: A Review

Radiation Transport Tools for Space Applications: A Review Radiation Transport Tools for Space Applications: A Review Insoo Jun, Shawn Kang, Robin Evans, Michael Cherng, and Randall Swimm Mission Environments Group, February 16, 2008 5 th Geant4 Space Users Workshop

More information

Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions

Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions 27-1-3116 Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions This paper is a work of the U.S. Government. M. Y. Kim 1,2, A. L. Ponomarev 1,3, H. Nounu 1,4,

More information

Engineering Models for Galactic Cosmic Rays and Solar Protons: Current Status

Engineering Models for Galactic Cosmic Rays and Solar Protons: Current Status Engineering Models for Galactic Cosmic Rays and Solar Protons: Current Status Stephen Gabriel Professor of Aeronautics and Astronautics School of Engineering Sciences University of Southampton England

More information

Cosmic RAy Telescope for the Effects of Radiation. (CRaTER): Science Overview

Cosmic RAy Telescope for the Effects of Radiation. (CRaTER): Science Overview Cosmic Ray Telescope for the Effects of Radiation (CRaTER): Science Overview Harlan E. Spence, Principal Investigator Boston University Department of Astronomy and Center for Space Physics My Background

More information

Requirements for Space Radiation Dosimetry Walter Schimmerling, Francis A. Cucinotta, and John W. Wilson

Requirements for Space Radiation Dosimetry Walter Schimmerling, Francis A. Cucinotta, and John W. Wilson Requirements for Space Radiation Dosimetry Walter Schimmerling, Francis A. Cucinotta, and John W. Wilson Workshop on Radiation Monitoring for the International Space Station Farnborough, UK 3-5 November

More information

Lunar Exploration Initiative. Ionizing Radiation on the Moon David A. Kring

Lunar Exploration Initiative. Ionizing Radiation on the Moon David A. Kring Briefing Topic: Ionizing Radiation on the Moon David A. Kring Ionizing Radiation on the Moon Low-E solar wind particles (dominant source) High-E galactic cosmic rays (smaller source) Solar flare particles

More information

The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) Investigation for the Lunar Reconnaissance Orbiter

The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) Investigation for the Lunar Reconnaissance Orbiter The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) Investigation for the Lunar Reconnaissance Orbiter J. E. Mazur 1, H. E. Spence 2, J. B. Blake 1, E. L. Kepko 2, J. Kasper 2,3, L. Townsend

More information

INTAS Solar and Galactic Cosmic Ray Acceleration and Modulation

INTAS Solar and Galactic Cosmic Ray Acceleration and Modulation INTAS 8777 Solar and Galactic Cosmic Ray Acceleration and Modulation University of Greifswald (Germany) University of Bern (Switzerland) University of Tel Aviv (Israel) Yerevan Physics Institute (Armenia)

More information

SPACE WEATHER: STORMS FROM THE SUN

SPACE WEATHER: STORMS FROM THE SUN GIFT 2013 - Natural Hazards Vienna, Austria, 10 April 2013 SPACE WEATHER: STORMS FROM THE SUN Norma B. Crosby Belgian Institute for Space Aeronomy Ringlaan-3-Avenue Circulaire, B-1180 Brussels, Belgium

More information

A survey of Radiation Hazards & Shields for Space Craft & Habitats

A survey of Radiation Hazards & Shields for Space Craft & Habitats A survey of Radiation Hazards & Shields for Space Craft & Habitats By Philip Erner pe4828@albany.edu Presented at Institute for Nuclear Theory s Summer School on Nuclear & Particle Astrophysics, University

More information

Charged Particle Measurements in Mars Orbit from 2002 to 2006

Charged Particle Measurements in Mars Orbit from 2002 to 2006 Charged Particle Measurements in Mars Orbit from 2002 to 2006 Cary Zeitlin, Lawrence Berkeley National Laboratory Kerry T. Lee, Lockheed Martin Aerospace Co. MARIE & MRME MRME The Mars Radiation Monitoring

More information

Space Radiation. Philip T. Metzger. Florida Space Institute, UCF

Space Radiation. Philip T. Metzger. Florida Space Institute, UCF Space Radiation Philip T. Metzger Florida Space Institute, UCF What is Normal? Radiation is a normal characteristics of the universe We grew up in a very abnormal corner of the universe If we want to go

More information

Analysis of the EVA Doses Observed by Liulin-Type Instruments on ISS

Analysis of the EVA Doses Observed by Liulin-Type Instruments on ISS Analysis of the EVA Doses Observed by Liulin-Type Instruments on ISS Ts.P. Dachev 1, B.T. Tomov 1, Pl.G. Dimitrov 1, Yu.N. Matviichuk 1, N.G. Bankov 1, O. Ploc 2, J. Kubancak 2 Space and Solar-Terrestrial

More information

OPTIMIZATION SHIELD MATERIALS TRADE STUDY FOR LUNAR/GATEWAY MISSION

OPTIMIZATION SHIELD MATERIALS TRADE STUDY FOR LUNAR/GATEWAY MISSION OPTIMIZATION SHIELD MATERIALS TRADE STUDY FOR LUNAR/GATEWAY MISSION R.K. Tripathi 1, J.W. Wilson 1, F.A. Cucinotta 2, B. M. Anderson 1 and L.C. Simonsen 1 1 NASA Langley Research Center, Hampton, VA, USA

More information

M. PourArsalan, L.W. Townsend Department of Nuclear Engineering University of Tennessee

M. PourArsalan, L.W. Townsend Department of Nuclear Engineering University of Tennessee Time-dependent estimates of organ dose and dose equivalent rates for human crews in deep space from the 26 October 2003 solar energetic particle event (Halloween Event) using the Earth-Moon-Mars Radiation

More information

COSMIC RAYS DAY INTRODUCTION TO COSMIC RAYS WINDWARD COMMUNITY COLLEGE - SEPTEMBER 26, 2015 VERONICA BINDI - UNIVERSITY OH HAWAII

COSMIC RAYS DAY INTRODUCTION TO COSMIC RAYS WINDWARD COMMUNITY COLLEGE - SEPTEMBER 26, 2015 VERONICA BINDI - UNIVERSITY OH HAWAII COSMIC RAYS DAY WINDWARD COMMUNITY COLLEGE - SEPTEMBER 26, 2015 VERONICA BINDI - UNIVERSITY OH HAWAII INTRODUCTION TO COSMIC RAYS MAJOR QUESTIONS: Are there forms of matter in the Universe that do not

More information

Space Radiation Protection during NASA Exploration Class Missions

Space Radiation Protection during NASA Exploration Class Missions Space Radiation Protection during NASA Exploration Class Missions Kerry Lee Space Radiation Analysis Group Operations Lead NASA Johnson Space Center Houston, TX Outline SRAG Operations and Instrumentation

More information

Space Weather and Amateur Radio: Science, Forecasting and Effects. The Aerospace Corporation Dayton Hamvention Antenna Forum 19 May 2017

Space Weather and Amateur Radio: Science, Forecasting and Effects. The Aerospace Corporation Dayton Hamvention Antenna Forum 19 May 2017 Space Weather and Amateur Radio: Science, Forecasting and Effects The Aerospace Corporation Dayton Hamvention Antenna Forum 19 May 2017 What is Space Weather? Essentially Space Weather is: A planet s interaction

More information

The Sun and the Solar System in Gamma Rays

The Sun and the Solar System in Gamma Rays The Sun and the Solar System in Gamma Rays R. Desiante1 on behalf of the Fermi-LAT collaboration SciNeGHE 2016 1 INFN Torino Outline Introduction The Fermi Gamma-Ray Space Telescope The active Sun as seen

More information

SIMULATIONS OF SPACE RADIATION INTERACTIONS WITH MATERIALS AND DOSE ESTIMATES FOR A LUNAR SHELTER AND ABOARD THE INTERNATIONAL SPACE STATION

SIMULATIONS OF SPACE RADIATION INTERACTIONS WITH MATERIALS AND DOSE ESTIMATES FOR A LUNAR SHELTER AND ABOARD THE INTERNATIONAL SPACE STATION SIMULATIONS OF SPACE RADIATION INTERACTIONS WITH MATERIALS AND DOSE ESTIMATES FOR A LUNAR SHELTER AND ABOARD THE INTERNATIONAL SPACE STATION TAI T. PHAM AND MOHAMED S. EL-GENK Institute for Space and Nuclear

More information

The Two Sources of Solar Energetic Particles

The Two Sources of Solar Energetic Particles The Two Sources of Solar Energetic Particles Don Reames IPST, Univ. of Maryland, College Park and NASA Goddard Space Flight Center (emeritus) 2012 Hale lecture A Brief History of Two SEP Sources 1860 Carrington

More information

František SPURNÝ, Iva JADRNÍCKOVÁ. Nuclear Physics Institute Department of Radiation Dosimetry, Academy of Sciences of the Czech Republic, Prague

František SPURNÝ, Iva JADRNÍCKOVÁ. Nuclear Physics Institute Department of Radiation Dosimetry, Academy of Sciences of the Czech Republic, Prague DOSIMETRY AND MICRODOSIMETRY ONBOARD OF SPACE STATIONS AND RELATED TOPICS 2002-2004 František SPURNÝ, Iva JADRNÍCKOVÁ Nuclear Physics Institute Department of Radiation Dosimetry, Academy of Sciences of

More information

GAMINGRE 8/1/ of 7

GAMINGRE 8/1/ of 7 FYE 09/30/92 JULY 92 0.00 254,550.00 0.00 0 0 0 0 0 0 0 0 0 254,550.00 0.00 0.00 0.00 0.00 254,550.00 AUG 10,616,710.31 5,299.95 845,656.83 84,565.68 61,084.86 23,480.82 339,734.73 135,893.89 67,946.95

More information

Radiation tolerant passive and active optical fiber products for use in space environments

Radiation tolerant passive and active optical fiber products for use in space environments Radiation tolerant passive and active optical fiber products for use in space environments Mark Hill, Judith Hankey, Rebecca Gray Mark.Hill@fibercore.com Introduction Space radiation environment space

More information

Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA

Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA Long term data for Heliospheric science Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, MD 20771, USA IAU340 1-day School, Saturday 24th February 2018 Jaipur India CMEs & their Consequences

More information

NASA Use and Needs for Radiation and Spacecraft Charging Models

NASA Use and Needs for Radiation and Spacecraft Charging Models NASA Use and Needs for Radiation and Spacecraft Charging Models Joseph I. Minow NASA, Marshall Space Flight Center, Huntsville, AL Linda Neergaard Parker University Space Research Association, Huntsville,

More information

Mars Atmosphere and Volatile Evolution Mission (MAVEN) Status of the MAVEN Mission at Mars 18 May 2018

Mars Atmosphere and Volatile Evolution Mission (MAVEN) Status of the MAVEN Mission at Mars 18 May 2018 Mars Atmosphere and Volatile Evolution Mission (MAVEN) Status of the MAVEN Mission at Mars 18 May 2018 Bruce Jakosky Laboratory for Atmospheric and Space Physics University of Colorado at Boulder USA MAVEN

More information

Spacecraft Radiation Shielding by a Dispersed Array of Superconducting Magnets

Spacecraft Radiation Shielding by a Dispersed Array of Superconducting Magnets The Space Congress Proceedings 2016 (44th) The Journey: Further Exploration for Universal Opportunities May 26th, 7:30 AM Spacecraft Radiation Shielding by a Dispersed Array of Superconducting Magnets

More information

Center Data Analysis Service supported by the FAGS

Center Data Analysis Service supported by the FAGS Solar Influences Data analysis Center Data Analysis Service supported by the FAGS SUNSPOT BULLETIN 2 n Provisional international and normalized hemispheric daily sunspot numbers for September 2 computed

More information

Theory and Modeling (High Performance Simulation)

Theory and Modeling (High Performance Simulation) Theory and Modeling (High Performance Simulation) Mater. Res. Soc. Symp. Proc. Vol. 929 2006 Materials Research Society 0929-1101-01 Radiation Shielding Analysis for Various Materials in the Extreme Jovian

More information

Ultimate spectrum of solar/stellar cosmic rays. Space Research Institute, Profsoyuznaya st. 84/32, Moscow , Russia

Ultimate spectrum of solar/stellar cosmic rays. Space Research Institute, Profsoyuznaya st. 84/32, Moscow , Russia Ultimate spectrum of solar/stellar cosmic rays Space Research Institute, Profsoyuznaya st. 84/32, Moscow 117927, Russia E-mail: astrum@iki.rssi.ru We propose a physical approach to reconstruct the ultimate

More information

Radiation Effects in MMIC Devices

Radiation Effects in MMIC Devices Chapter. Radiation Effects in MMIC Devices C. Barnes and L. Selva I. Introduction The use of microelectronic devices in both civilian and military spacecraft requires that these devices preserve their

More information

Simulation of the charging process of the LISA test masses due to solar particles.

Simulation of the charging process of the LISA test masses due to solar particles. Simulation of the charging process of the LISA test masses due to solar particles. 5 th International Lisa Symposium 14 July 2004 Helios Vocca INFN Pg Solar Energetic Particles (SEPs( SEPs) SEPs are particles

More information

Estimates of SPE Radiation Exposures on Mars for Female Astronauts in Hemispherical Habitats

Estimates of SPE Radiation Exposures on Mars for Female Astronauts in Hemispherical Habitats Estimates of SPE Radiation Exposures on Mars for Female Astronauts in Hemispherical Habitats Lawrence W. Townsend 1, Mahmoud PourArsalan 2 and Michael I. Hall 3 University of Tennessee, Knoxville, Tennessee,

More information

Simultaneous Investigation of Galactic Cosmic Rays on Aircrafts and on International Space Station

Simultaneous Investigation of Galactic Cosmic Rays on Aircrafts and on International Space Station Simultaneous Investigation of Galactic Cosmic Rays on Aircrafts and on International Space Station T. Dachev(1), F. Spurny(2), G. Reitz(3), B.T. Tomov(1), P.G. Dimitrov(1), itrov(1), Y.N. Matviichuk(1)

More information

Data for Rapid Evaluation of Vehicle Structure Related Radiation Shielding of Occupants of Extreme- Altitude Aircraft and Spacecraft

Data for Rapid Evaluation of Vehicle Structure Related Radiation Shielding of Occupants of Extreme- Altitude Aircraft and Spacecraft DOT/FAA/AM-16/8 Office of Aerospace Medicine Washington, DC 20591 Data for Rapid Evaluation of Vehicle Structure Related Radiation Shielding of Occupants of Extreme- Altitude Aircraft and Spacecraft Kyle

More information