Modeling of Jupiter s auroral curtain and upper atmospheric thermal structure

Size: px
Start display at page:

Download "Modeling of Jupiter s auroral curtain and upper atmospheric thermal structure"

Transcription

1 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi: /2010ja016037, 2011 Modeling of Jupiter s auroral curtain and upper atmospheric thermal structure I. J. Cohen 1 and J. T. Clarke 1 Received 17 August 2010; revised 1 May 2011; accepted 9 May 2011; published 3 August [1] A three dimensional simulation that takes into account the altitude extent of auroral emission along the line of sight has been applied to the analysis of auroral images of Jupiter taken by the Hubble Space Telescope (HST). The simulation s input auroral emission profile with altitude was expanded by an emission scale height factor ranging from n = 1 to n = 4 representing different vertical extents of the auroral emission (i.e., one to four times greater than the theoretical emission profile from Grodent et al. (2001)). A radial cut of the auroral brightness averaged over an angle of 5 was compared between the original HST images and each of the series simulation outputs. We found that four of the five northern series showed the original image s emission profile well bounded by the n = 1 and n = 2 simulation outputs, while four of the five southern series showed the original image s auroral emission profile better correlated with the n = 3 simulation. This hemispheric difference could be the result of increased heating or a different distribution of influx electron energies at the southern hemisphere. The discovery of this hemispheric temperature difference supports predictions made by a three dimensional thermospheric wind model and makes a strong case for further study of the effects of Joule heating on the auroral regions. Citation: Cohen, I. J., and J. T. Clarke (2011), Modeling of Jupiter s auroral curtain and upper atmospheric thermal structure, J. Geophys. Res., 116,, doi: /2010ja Introduction 1 Center for Space Physics, Boston University, Boston, Massachusetts, USA. Copyright 2011 by the American Geophysical Union /11/2010JA [2] Jovian auroral emission in the ultraviolet was first detected with Voyager 1 s UV spectrometer by Broadfoot et al. [1979]. It was soon followed with more data from Voyager 2 [Sandel et al., 1979], and since then the aurora has been studied extensively by the International Ultraviolet Explorer [Clarke et al., 1989], the EUV and EUVS instruments on the Galileo spacecraft [Ajello et al., 1998], and most recently with the Hubble Space Telescope (HST) by several groups as detailed in a review chapter by Clarke et al. [2004]. Broadfoot et al. [1979] suggested a total auroral input flux on the order of W in each hemisphere, roughly 3 orders of magnitude stronger than the input flux seen on Earth. Globally, this auroral energy input exceeds the solar UV flux absorbed by the upper atmosphere across the planet by a factor of depending on solar activity. Thus, the Jovian upper atmosphere is energetically driven by the aurora rather than by absorbed sunlight, as on Earth [Clarke et al., 2004]. [3] Unlike the terrestrial aurora, which is modulated by the solar wind, the Jovian aurora consists of three auroral emission regions (Figure 1) which are physically separated from each other and vary independently, implying independent processes driving those emissions [Clarke et al., 2004]. The emission in the main auroral oval is driven by the enforcement of corotation of ions originating from the Io plasma torus. As the plasma diffuses radially away from the planet, its angular velocity drops due to conservation of angular momentum, and a large scale system of currents is set up which tends to accelerate the plasma back to corotation. It is the upward component of this current system, which is associated with downward precipitating electrons, that is thought to drive the emission [Cowley and Bunce, 2001; Hill, 2001; Nichols and Cowley, 2003]. The variable polar emission that is found in the region poleward of the main auroral oval is more likely mapping to the openclosed field line boundary and open field region [Clarke et al., 1980]. Finally, the satellite footprint emissions and trails seen outside the main oval are caused by atmospheric collisions of energetic particles accelerated along magnetic field lines connected to Galilean satellites. [4] In addition to the auroral emission, this energy input results in heating and ionization of the Jovian thermosphere. Energetic electrons traveling along the planet s magnetic field lines transfer their energy to H 2 molecules in the upper atmosphere through collisions. Ajello et al. [2001] suggest an electron distribution in the auroral atmosphere with three components: (1) a low energy tail resembling a power law from 0.01 to 0.2 kev, (2) a primary Maxwellian distribution with characteristic energy of kev, and (3) a highenergy tail in the form of a distribution as measured by the Galileo energetic particle detector (EPD) [Mauk et al., 1of8

2 Figure 1. Log scaled image showing the three emission regions of Jovian aurora seen in an image from the 2007 HST auroral imaging campaign. 1996, 1999] with a characteristic energy of 15 kev. Yelle and Miller [2004] suggest that the hard or high energy electrons produce auroral emissions from relatively deep levels, near the base of the thermosphere. The peak of the UV emission was found to be just above the homopause, 245 km from the 1 bar pressure level [Vasavada et al., 1999; Ingersoll et al., 1998]. [5] Grodent et al. [2001] summarized measurements of rovibrational H 2 temperatures determined from observation of high resolution ( Å) UV spectra obtained with the Goddard High Resolution Spectrograph (GHRS) on board HST [Clarke et al., 2004;Trafton et al., 1994, 1998; Liu and Dalgarno, 1996; Kim et al., 1997; Dols et al., 2000]. The H 2 temperature reflected the temperature along the line of sight weighted by the auroral volume emission rate. It was found to vary between 300 and 700 K with little correlation to the H 2 emission brightness. The Galileo Plasma Science (PLS) instrument has observed precipitation of electrons with energies of 0.1 to 10 kev between 6.8 R J and R J toward both hemispheres [Frank and Paterson, 2002], corresponding to a precipitated power about W/m 2 in the auroral atmosphere. Such a large energy input in narrow auroral regions along the main oval can also strongly modify the upper atmosphere and ionosphere with consequences for the ionospheric conductance and magnetosphere ionosphere coupling processes [Millward et al., 2002; Nichols and Cowley, 2004]. [6] The 2007 auroral imaging campaign consisted of 128 HST orbits of observations of auroral emission on the gas giants Jupiter and Saturn. This survey has yielded important results [Bunce et al., 2008; Clarke et al., 2009; Nichols et al., 2009; Gérard et al., 2009; Wannawichian et al., 2010]; however, the analysis of the auroral emissions has been limited by their two dimensionality. Previous analysis of the two dimensional images did not take into account the third dimension of depth along the line of sight and therefore did not allow accurate interpretation of where the auroral emission actually occurs on the three dimensional planet. A new simulation presented in this paper allows the application of a theoretical auroral emission profile that takes into account both altitude above the limb and depth along the line of sight of the HST images. This new dimension of altitude allows the simulation to more accurately reproduce the electrons degradation of energy and subsequent emission falloff with altitude (emission curtain). Successful mapping of the auroral emission profile with altitude can reveal information about the thermal structure of the upper atmosphere and the energy distribution of incoming particles in the auroral regions. Gaining an accurate auroral emission profile can allow a better understanding of the distribution of the precipitating particles and the extent to which the atmosphere is heated via collision of the primary particles or Joule heating. A previous, but unpublished version, of the simulation was updated to allow the application of different emission scale height factors (representing different thermal structures) in the atmosphere. This study focuses on the auroral emission scale height above the peak, whose altitude is not determined with sufficient accuracy to determine the characteristic energy of the incoming particles. The thermal structure of the upper atmosphere is then the main factor affecting the emission altitude profile, with an added contribution from the particle energy distribution. We interpret the simulation output with the best fit to the original HST image as most accurately reflecting the upper atmospheric thermal structure, and have searched for extended high altitude emissions beyond the model as evidence for a soft particle population. The energy distribution of these soft particles is not well constrained. 2. Simulation [7] First, ten time series (five of each hemisphere) were selected with the number of images in each ranging from 8 to 30. The number of images in each time series varied substantially because of the geometry requirement. All of the image series were selected because they best presented the emission of the main auroral oval running parallel to the limb of the planet. This orientation was desirable because it ensures the thinnest emission depth along the line of sight, limiting complications from the spherical geometry. For each series of images, lat/long projections of each individual image were overlaid with each other and averaged, essentially eliminating the significance of the number of images in each series. The theoretical altitude emission profile for Jovian auroral ultraviolet emission created by Grodent et al. [2001] (see Figure 2) was input into the simulation routine and used to calculate the emission brightness at every point in three dimensions. This simulation includes a parameterization of the Grodent model of emission versus altitude based on an input emission scale height factor. The simulation routine algorithmically calculates angles to the line of sight and integrates the brightness along each line of sight 2of8

3 Figure 2. Theoretical auroral emission curtain (Chapman profile) from Grodent et al. [2001] that will be used as the primary input for our three dimensional simulation (solid line) and the same profile after being convolved using the 125 nm point spread function (dashed line). assuming optically thin emission and an optically thick absorption at and below the homopause. This thick homopause creates a planetary disk on top of which the auroral emission curtain is seen in the output image. The Grodent volume emission profile used in this work results from the loss of energy of the primary particles that enter the top of the atmosphere, and most of the emission is produced by secondary electron collisions [Grodent et al., 2001]. [8] After the line of sight integration is complete, the resultant two dimensional output image is oriented to match the angle of view of the original HST image. The simulation output takes into account emission extent in altitude (mirroring the theoretical profile) including emission above the limb of the planet. Figures 3a and 3c show HST images from a series taken on February 24, 2007 of the northern and southern aurora respectively. Figure 3b shows the simulation output for the HST image shown in Figure 3a with an emission scale height factor (explained in section 3) of n =1. Figure 3d shows the simulation output for the image shown in Figure 3c with an emission scale height of n = 2. Note the difference in emission extent between the n = 1 simulation output in Figure 3b and the n = 2 output in Figure 3d. 3. Analysis [9] The main objective in creating this simulation is to obtain an observation based altitude profile of the brightness of the auroral emission. The simulation output s emission profile can then be compared to the emission profile of the original HST image to find the most accurate emission scale height. The emission scale height is the vertical distance over which the emission strength falls by 1/e, comparable to the atmospheric scale height and expressed similarly as HðÞ¼kT z = Mg where k is the Boltzmann constant, T is the temperature in K, M is the mean molecular mass of the atmospheric particles, and g is the acceleration due to gravity. Knowing the correct auroral emission scale height (of the order of 500 km) will allow us to reach conclusions about the atmosphere s thermal structure and the energy distribution of the incident particles. [10] Analysis of the simulation model began with a convolution to simulate HST s imaging response. Only images ð1þ taken with HST s 125 nm filter (band pass: nm) were selected for simulation to avoid bright Lyman a emission, and so that H 2 could be isolated as the optically thin emission. A 0.08 arcsec point spread function for the 125 nm filter was created from an HST field of reference stars and tested on a simulated planetary disk of uniform brightness without any auroral emission. A small fractional base level of light ( 10 4 ) remained at the wings of the point spread function, but was subtracted off so that the convolved test disk reproduced the brightness profile from a nonauroral region of an actual HST image. This removes the ambiguity between light from the planet disk scattered in the ACS instrument and faint auroral emissions at high altitudes. [11] All of the series included images where the auroral curtain of the main oval was near the limb of the planet; this allowed for easy determination of the brightness falloff in the atmosphere above the homopause (i.e., the region of optically thin atmosphere directly above the planet s optically thick disk in the images). Preferentially selecting Figure 3. (a) A log scaled HST original image of the northern aurora. The white wedge indicates the 5 auroral region of interest. (b) The simulation output of the same HST image seen in Figure 3a with an emission scale height factor of n =1,or1 Grodent et al. s [2001] theoretical profile, as indicated by equation (2). (c) A log scaled HST original image of the southern aurora. Again, the white wedge indicates the 5 auroral region of interest. (d) The simulation output of the same HST image as Figure 3c with an emission scale height factor of n =3, or 3 Grodent et al. s theoretical profile as indicated by equation (2). Note how the atmospheric extent of the auroral emission changes when the scale height factor is changed between Figures 3b and 3d. 3of8

4 Figure 4. (a e) Auroral emission profiles for five northern hemisphere image series. The solid line represents the emission profile of the original HST image, while the dashed lines represent the simulation outputs with n = 1 through n = 4. In Figures 4b 4e, note that the original image lies within the boundaries of n =1andn = 2 for four of the five northern series. The HST image s emission profile in Figure 4a shows better correlation with the n = 3 simulation emission. images where the emission curtain was clearly displayed near the limb of the planet helped us to limit the region from which the emission occurred and avoid emission that might be beyond the limb of the planet that would otherwise have added to the line of sight intensity. [12] We applied the point spread function convolution to the three dimensional simulation output image that came from each series lat/long composite projection, and then took a radial profile of brightness from the center of the planet outwards averaging over an angular width of 5 (see Figure 3). Background residuals from the original HST image were removed by subtracting off the radial profile of a region of the planet without aurora. 4of8

5 Figure 5. (a e) Auroral emission profiles for five southern hemisphere image series. The solid line represents the emission profile of the original HST image, while the dashed lines represent the simulation outputs for n =1throughn = 4. Note that only one of the series (Figure 5d) shows the HST image between the n = 1 and n = 2 boundaries that was seen for the northern hemisphere in Figure 4. The other four images (Figures 5a 5c and 5e) are composed of two separate components: a very hot lower component which correlates to an emission scale height of n = 4 or higher from 247 to 1000 km and a hot upper component which correlates to an emission scale height of n = 3 at altitudes above 1000 km. [13] The parameterization of added heating in the upper atmosphere proceeded as follows. The several hundred km altitude resolution of the data, combined with the long path lengths through the auroral emission regions, do not permit us to determine the fine scale altitude structure of the auroral atmosphere. We can characterize the general altitude extent of the auroral emission at high altitudes, and assign a corresponding characteristic temperature. We have done this in 5of8

6 Figure 6. Parameterized temperature profiles characteristic of the northern pole (dotted line), which has an emission scale height factor of n = 1.5, and the southern pole (dashed line), which has a factor of n = 3. Each is compared to the input Grodent et al. [2001] theoretical profile at n = 1 (solid line) via equation (3). comparison with the Grodent et al. [2001] model of the UV auroral emission versus altitude, which is tied to an assumed altitude profile of the atmospheric temperature. The parameterization is based on the requirement that incident particles of a given energy stop after passing through a constant column of atmosphere, while the entire atmosphere expands with altitude as the temperature increases. Since the vertical column equals the number density times the neutral scale height, the column is directly proportional to the scale height and thus the temperature. The emission profile with altitude will thus scale linearly with temperature. [14] Simulated profiles of emission versus altitude were thus created by multiplying the Grodent profile of emission versus altitude by a constant IðÞ¼I z 0 Fz ðþwhere FðÞ¼Grodent z distribution n where I(z) is the intensity of photons per volume (equivalent to the emission intensity), I 0 is the peak emission intensity, and n is our emission scale height factor. This parameterization does not take into account the detailed changes in the thermal structure of the upper atmosphere that would result from the deposition of heat from different energy distributions of incident particles. Such a treatment would be a logical next step for the analysis but is beyond the scope of this work. 4. Results [15] Figure 4 shows a comparison of the emission profile of the original HST image (solid line) from the peak auroral emission near the homopause ( 240 km) to 3000 km and the simulation outputs with emission scale height factor values of n = 1 through n = 4 (dashed lines) for five northern hemisphere image series. Figure 5 shows the original HST image compared with outputs of n = 1 through n = 4 for five southern hemisphere series over the same range. [16] The comparison in Figure 4 shows that the original HST image lies well within the boundaries of the n = 1 and n = 2 simulation outputs for four of the five northern series, ð2þ suggesting that the appropriate emission scale height value is between n = 1 and n = 2. This implies that actual temperatures at the northern pole may be slightly higher than predicted by Grodent et al. s [2001] theoretical model. Additionally, emission seen as high as 3000 km ( 10 kr) seems to agree with atmospheric data obtained from the model presented by Chaufray et al. [2010] that predicts a sufficient density of H 2 at that altitude ( cm 3 ) to allow for collisions to create the faint emission seen at the higher altitudes. However, due to the low number of counts that can be obtained at this altitude, we cannot draw further conclusions about the contribution of a soft particle distribution. [17] Figure 5 shows that the emission profiles of the HST images of the southern pole are not bounded by the n =1 and n = 2 simulation outputs as the northern hemisphere images were. Four of the five southern series display a twocomponent profile composed of a very hot lower component, which resembles an emission scale height of n =4or higher from km, and a hot upper component which resembles an emission scale height of n = 3 at altitudes above 1000 km. This resemblance with higher scale height factors implies that temperatures at the southern pole are higher than those at the northern pole. Unfortunately, we still lack the imaging ability to fully resolve the emission curtain and interpret the thermal structure of the low altitude emission below about 1000 km and thus cannot make a strong conclusion about this very hot lower component. However, based on the high altitude emissions seen in the HST images, it does appear that the emission scale height factor in the southern auroral region is one to three times higher than its northern counterpart in the region z km. Figure 6 shows a first order parameterization of the resultant temperature profiles of the northern and southern poles (dotted and dashed lines, respectively) compared to the discrete thermal profile from Grodent et al. [2001] (solid line) by TðÞ¼T z 0 Gz ðþwhere GðzÞ ¼ Grodent thermal profile n where T(z) is the atmospheric temperature as a function of altitude, T 0 is the peak atmospheric temperature, and n is again the emission scale height factor. As with the emission scale height factor, this preserves the column of molecules through which an incoming particle passes before stopping, but does not take into account the added heat deposited in the atmosphere. We approximated the northern hemispheric value of n = 1.5 since a precise value of the emission scale height factor is not known. Figure 6 shows the northern temperatures roughly 500 K higher near 800 km and the southern temperatures roughly 1700 K higher than the discrete auroral cases proposed by Grodent et al. [2001]. The southern hemispheric results are also significantly higher than the temperature profiles created by Melin et al. [2006], who used their own scaling factor of the Grodentetal. [2001] thermal profile to model an auroral heating event observed in the IR. [18] We have also investigated the nature of the high altitude extent of the auroral curtain. The slopes of the HST images emission profiles increase just above 1000 km and take on slopes characteristic of higher temperature emission. ð3þ 6of8

7 This high altitude emission could be a superthermal component, in addition to the known upper atmospheric thermal excess recounted by Yelle and Miller [2004]. Count rates are sufficient for the region from 1300 to 3000 km to allow us to conclude that this increase in slope is real; however, due to our inability to obtain sufficient count rates at altitudes greater than 3000 km we can present this evidence for, but not the specific nature of, a superthermal component. 5. Discussion [19] The hemispheric temperature variation seen in our study could be explained by two possible phenomena. The first could be an increase in atmospheric heating in the southern polar region, or inversely that the northern polar region is relatively cooler because of either a lower heating rate or more rapid loss of heat. The second possibility is that the southern polar region receives a different influx of electron energies than the northern polar region. The southern auroral region could see more soft particles heating the upper atmosphere, or a softer overall energy distribution. [20] The circulation model of Jupiter s thermosphere used by Majeed et al. [2009] found a global asymmetry in the planet s thermospheric wind system that blows hydrogen to a preferential position in the northern hemisphere (see Bougher et al. [2005] for details). This wind driven realignment of H 2 molecules lessens Joule heating (heat produced by the nonemission causing electrons with energies below 10 ev) in the northern hemisphere. The obvious difference in temperature between the two hemispheres found by analysis of the simulation outputs could be attributable to the influence of this restraint of Joule heating in the northern hemisphere. Whether or not this is the correct explanation, the results do indicate that the Grodent et al. [2001] model of the auroral thermal structure falls a factor of two or three short in its prediction of the correct atmospheric temperature profile when applied to Jupiter s southern auroral hemisphere. [21] If the difference in altitudinal emission distribution seen between the two hemispheres is simply a result of a larger number of incident electron collisions, either hard or soft, then assumptions made about the global thermal structure may still be correct. The increased heat seen at the southern pole might be a direct result of higher or more concentrated auroral emission. Yelle and Miller [2004] agree that low energy electron precipitation such as this would provide a source for the upper atmospheric thermal excess, but there is no explanation for why this increased electron population would exist only at the southern pole. [22] The derived high temperatures are not consistent with recent H 3 + results from Lystrup et al. [2008] nor those found by Melin et al. [2006] which both agree with the thermal profile found by Grodent et al. [2001], the latter treating cases only differing from Grodent et al. by about 20%. One possible explanation lies in the differences between the UV and IR observations. Imaging in the UV is sensitive to layered emission curtains where the emission is being produced by incident electrons. These separate emission curtains are washed out when viewed from Earth, but they dominate the signal in the observed UV images. UV images thus sample the regions of the atmosphere where the energy is being deposited, and reflect those higher temperatures. By contrast, the H 3 + images are sensitive to number density and temperature of the ionosphere, and present the average temperature over the entirety of the auroral ionosphere, including both the auroral emission curtains and the neighboring ionosphere that is only indirectly heated by the incident auroral particles. This could explain in part the difference in apparent thermal profiles in the UV and IR. 6. Conclusion [23] We have created a three dimensional simulation that allows a further analysis of HST images of Jovian auroral emissions. Using this simulation, we find that the emission profile of the northern aurora demonstrates a thermal structure similar to the profile theorized by Grodentetal. [2001], while the southern aurora has a structure which shows temperatures a factor of three larger than Grodent et al. predict. Majeed et al. [2009] predicted this hemispheric temperature difference using a three dimensional thermospheric model. [24] A difference in temperature between the two hemispheres could be caused by preferential alignment of H 2 molecules at the northern hemisphere that lessens Joule heating (as suggested by Majeed et al. [2009]) or by an unexplained larger influx of incident electrons at the southern hemisphere which would increase local heating (as explained by Yelle and Miller [2004]). The increased slope at high altitudes suggests a superthermal component in the high altitude atmosphere, but low count rates at high altitudes limit us from reaching specific conclusions about its nature. [25] The first three dimensional analysis of HST images of the Jovian aurora agrees with predictions made by threedimensional models of the Jovian thermosphere. The northsouth temperature difference found by our HST simulation makes a strong case for future study of the effects of collisional heating on auroral regions by soft non emission causing electrons. The thermal variation also serves as motivation to develop updates and advances to models of auroral thermal structure that allow response to atmospheric heating. [26] Acknowledgments. This work is based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the AURA Inc. for NASA. We acknowledge the contributions of Juwhan Kim and Dan Golembeski to earlier versions of the simulation program and Denis Grodent for model data contributed to this analysis. This research was supported by NASA grants HST GO A and HST GO A from the Space Telescope Science Institute to Boston University. [27] Masaki Fujimoto thanks Takeshi Sakanoi and two other reviewers for their assistance in evaluating this paper. References Ajello, J., et al. (1998), Galileo orbiter ultraviolet observations of Jupiter aurora, J. Geophys. Res., 103(E9), 20,125 20,148. Ajello, J. M., D. E. Shemansky, W. R. Pryor, A. I. Stewart, K. E. Simmons, T. Majeed, J. H. Waite, G. R. Gladstone, and D. Grodent (2001), Spectroscopic evidence for high altitude aurora at Jupiter from Galileo extreme ultraviolet spectrometer and Hopkins ultraviolet telescope observations, Icarus, 152, , doi: /icar Bougher, S. W., J. H. Waite, T. Majeed, and G. R. Gladstone (2005), Jupiter Thermospheric General Circulation Model (JTGCM): Global studies and dynamics driven by auroral and joule heating, J. Geophys. Res., 110, E04008, doi: /2003je of8

8 Broadfoot, A. L., et al. (1979), Extreme ultraviolet observations from Voyager 1: Encounter with Jupiter, Science, 204, , doi: / science Bunce, E. J., et al. (2008), Origin of Saturn s aurora: Simultaneous observations by Cassini and the Hubble Space Telescope, J. Geophys. Res., 113, A09209, doi: /2008ja Chaufray, J. Y., G. R. Gladstone, J. H. Waite Jr., and J. T. Clarke (2010), Asymmetry in the Jovian auroral Lyman a line profile due to thermospheric high speed flow, J. Geophys. Res., 115, E05002, doi: / 2009JE Clarke, J. T., H. W. Moos, S. K. Atreya, and A. L. Lane (1980), Observations from Earth orbit and variability of the polar aurora on Jupiter, Astrophys. J., 241, L179 L182, doi: / Clarke, J. T., J. Caldwell, T. Skinner, and R. Yelle (1989), The aurora and airglow of Jupiter, NASA Spec. Publ., SP 494, Clarke, J. T., D. Grodent, S. W. H. Cowley, E. J. Bunce, P. Zarka, J. E. P. Connerney, and T. Satoh (2004), Jupiter s aurora, in Jupiter: The Planet, Satellites and Magnetosphere, edited by F. Bagenal, T. Dowling, and W. McKinnon, pp , Cambridge Univ. Press, Cambridge, U. K. Clarke, J. T., et al. (2009), Response of Jupiter s and Saturn s auroral activitytothesolarwind,j. Geophys. Res., 114, A05210, doi: / 2008JA Cowley, S. H. W., and E. J. Bunce (2001), Origin of the main auroral oval in Jupiter s coupled magnetosphere ionosphere system, Planet. Space Sci., 49, , doi: /s (00) Dols, V., J. C. Gérard, J. T. Clarke, J. Gustin, and D. Grodent (2000), Diagnostics of the Jovian aurora deduced from ultraviolet spectroscopy: Model and GHTD observations, Icarus, 147, , doi: / icar Frank, L. A., and W. R. Paterson (2002), Galileo observations of electrons beams and thermal ions in Jupiter s magnetosphere and their relationship to the auroras, J. Geophys. Res., 107(A12), 1478, doi: / 2001JA Gérard, J. C., B. Bonfond, J. Gustin, D. Grodent, J. T. Clarke, D. Bisikalo, and V. Shematovich (2009), Altitude of Saturn s aurora and its implications for the characteristic energy of precipitated electrons, Geophys. Res. Lett., 36, L02202, doi: /2008gl Grodent, D., J. H. Waite Jr., and J. C. Gerard (2001), A self consistent model of the Jovian auroral thermal structure, J. Geophys. Res., 106(A7), 12,933 12,952, doi: /2000ja Hill, T. W. (2001), The Jovian auroral oval, J. Geophys. Res., 106(A5), , doi: /2000ja Ingersoll, A. P., et al. (1998), Imaging Jupiter s aurora at visible wavelengths, Icarus, 135, , doi: /icar Kim, Y. H., J. L. Fox, and J. J. Caldwell (1997), Temperatures and altitudes of Jupiter s ultraviolet aurora inferred from GHRS observations with the Hubble Space Telescope, Icarus, 128, , doi: /icar Liu, W., and A. Dalgarno (1996), The ultraviolet spectrum of the Jovian aurora, Astrophys. J., 467, 446, doi: / Lystrup, M. B., S. Miller, N. D. Russo, R. J. Vervack Jr., and T. Stallard (2008), First vertical ion density profile in Jupiter s auroral atmosphere: Direct observations using the KECK II telescope, Astrophys. J., 677, Majeed, T., J. H. Waite, S. W. Bougher, and G. R. Gladstone (2009), Processes of auroral thermal structure at Jupiter: Analysis of multispectral temperature observations with Jupiter Thermosphere General Circulation Model, J. Geophys. Res., 114, E07005, doi: /2008je Mauk, B. H., S. A. Gary, M. Kane, E. P. Keath, S. M. Krimigis, and T. P. Armstrong (1996), Hot plasma parameters of Jupiter s magnetosphere, J. Geophys. Res., 101(A4), , doi: /96ja Mauk, B. H., D. J. Williams, R. W. McEntire, K. K. Khurana, and J. G. Roederer (1999), Storm like dynamics of Jupiter s inner and middle magnetosphere processes, in Auroral Physics, editedbyc. I. Meng, M. J. Rycroft, and L. A. Frank, pp , Cambridge Univ. Press, New York. Melin, H., S. Miller, T. Stallard, C. Smith, and D. Grodent (2006), Estimated energy balance in the Jovian upper atmosphere during an auroral heating event, Icarus, 181, , doi: /j.icarus Millward,G.,S.Miller,T.Stallard, A. D. Aylward, and N. Achilleos (2002), On the dynamics of the Jovian ionosphere and thermosphere III. The modeling of auroral conductivity, Icarus, 160, , doi: /icar Nichols, J. D., and S. W. H. Cowley (2003), Magnetosphere ionosphere coupling currents in Jupiter s middle magnetosphere: Dependence on the effective ionospheric Pedersen conductivity and iogenic plasma mass outflow rate, Ann. Geophys., 21, , doi: /angeo Nichols, J. D., and S. W. H. Cowley (2004), Magnetosphere ionosphere coupling currents in Jupiter s middle magnetosphere: Effect of precipitationinduced enhancement of the ionospheric Pedersen conductivity, Ann. Geophys., 22, , doi: /angeo Nichols, J. D., J. T. Clarke, J. C. Gérard, D. Grodent, and K. C. Hansen (2009), Variation of different components of Jupiter s auroral emission, J. Geophys. Res., 114, A06210, doi: /2009ja Sandel, B. R., et al. (1979), Extreme ultraviolet observations from Voyager 2 encounter with Jupiter, Science, 206, , doi: /science Trafton, L. M., J. C. Gérard, G. Munhoven, and J. H. Waite Jr. (1994), High resolution spectra of Jupiter s northern auroral ultraviolet emission with the Hubble Space Telescope, Astrophys. J., 421, , doi: / Trafton, L. M., V. Dols, J. C. Gérard, J. H. Waite, G. R. Gladstone, and G. Munhoven (1998), HST spectra of the Jovian ultraviolet aurora: Search for heavy ion precipitation, Astrophys. J., 507, , doi: / Vasavada, A. R., A. H. Bouchez, A. P. Ingersoll, B. Little, and C. D. Anger (1999), Jupiter s visible aurora and Io footprint, J. Geophys. Res., 104(E11), 27,133 27,142. Wannawichian, S., J. T. Clarke, and J. D. Nichols (2010), Ten year HST observations of the variation of the Jovian satellites auroral footprint brightness, J. Geophys. Res., 115, A02206, doi: /2009ja Yelle, R. V., and S. Miller (2004), Jupiter s thermosphere and ionosphere, in Jupiter: The Planet, Satellites and Magnetosphere, edited by F. Bagenal, T. Dowling, and W. McKinnon, pp , Cambridge Univ. Press, Cambridge, U. K. J. T. Clarke and I. J. Cohen, Center for Space Physics, Boston University, 725 Commonwealth Ave., Boston, MA 02215, USA. (icohen121@gmail.com) 8of8

Characteristic time scales of UV and IR auroral emissions at Jupiter and Saturn and their possible observable effects

Characteristic time scales of UV and IR auroral emissions at Jupiter and Saturn and their possible observable effects Characteristic time scales of UV and IR auroral emissions at Jupiter and Saturn and their possible observable effects Chihiro Tao 1, Sarah V. Badman 1, and Masaki Fujimoto 1 1 ISAS/JAXA, Yoshinodai 3-1-1,

More information

Peak emission altitude of Saturn s H 3 + aurora

Peak emission altitude of Saturn s H 3 + aurora GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl052806, 2012 Peak emission altitude of Saturn s H 3 + aurora Tom S. Stallard, 1 Henrik Melin, 1 Steve Miller, 2 Sarah V. Badman, 3 Robert H. Brown,

More information

Clues on Ionospheric Electrodynamics From IR Aurora at Jupiter and Saturn

Clues on Ionospheric Electrodynamics From IR Aurora at Jupiter and Saturn Clues on Ionospheric Electrodynamics From IR Aurora at Jupiter and Saturn Tom Stallard Department of Physics and Astronomy, University of Leicester, Leicester, UK Steve Miller Atmospheric Physics Laboratory,

More information

AURORA: GLOBAL FEATURES

AURORA: GLOBAL FEATURES AURORA: GLOBAL FEATURES Jean-Claude Gérard LPAP Université de Liège OUTLINE - collisional processes involved in the aurora - remote sensing of auroral electron energy - Jupiter - Saturn MOP meeting - 2011

More information

Equatorward diffuse auroral emissions at Jupiter: Simultaneous HST and Galileo observations

Equatorward diffuse auroral emissions at Jupiter: Simultaneous HST and Galileo observations Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L07101, doi:10.1029/2009gl037857, 2009 Equatorward diffuse auroral emissions at Jupiter: Simultaneous HST and Galileo observations A.

More information

UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity?

UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity? Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L05107, doi:10.1029/2007gl032418, 2008 UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity?

More information

Ten years of Hubble Space Telescope observations of the variation of the Jovian satellites auroral footprint brightness

Ten years of Hubble Space Telescope observations of the variation of the Jovian satellites auroral footprint brightness Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009ja014456, 2010 Ten years of Hubble Space Telescope observations of the variation of the Jovian satellites auroral

More information

Auroral evidence of Io s control over the magnetosphere of Jupiter

Auroral evidence of Io s control over the magnetosphere of Jupiter GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2011gl050253, 2012 Auroral evidence of Io s control over the magnetosphere of Jupiter B. Bonfond, 1 D. Grodent, 1 J.-C. Gérard, 1 T. Stallard, 2 J. T.

More information

A simple axisymmetric model of magnetosphere-ionosphere coupling currents in Jupiter s polar ionosphere

A simple axisymmetric model of magnetosphere-ionosphere coupling currents in Jupiter s polar ionosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2005ja011237, 2005 A simple axisymmetric model of magnetosphere-ionosphere coupling currents in Jupiter s polar ionosphere S. W. H. Cowley, 1 I.

More information

Longitudinal plasma density variations at Saturn caused by hot electrons

Longitudinal plasma density variations at Saturn caused by hot electrons GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L03107, doi:10.1029/2007gl031095, 2008 Longitudinal plasma density variations at caused by hot electrons P. A. Delamere 1 and F. Bagenal 1 Received 22 June 2007;

More information

Saturn s equinoctial auroras

Saturn s equinoctial auroras Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L24102, doi:10.1029/2009gl041491, 2009 Saturn s equinoctial auroras J. D. Nichols, 1 S. V. Badman, 1 E. J. Bunce, 1 J. T. Clarke, 2 S.

More information

Location of Saturn s northern infrared aurora determined from Cassini VIMS images

Location of Saturn s northern infrared aurora determined from Cassini VIMS images GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2010gl046193, 2011 Location of Saturn s northern infrared aurora determined from Cassini VIMS images S. V. Badman, 1 N. Achilleos, 2 K. H. Baines, 3

More information

A plasmapause like density boundary at high latitudes in Saturn s magnetosphere

A plasmapause like density boundary at high latitudes in Saturn s magnetosphere GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044466, 2010 A plasmapause like density boundary at high latitudes in Saturn s magnetosphere D. A. Gurnett, 1 A. M. Persoon, 1 A. J. Kopf, 1 W.

More information

PSWS meeting Multi-wavelength observations of Jupiter's aurora during Juno s cruise phase T. Kimura (RIKEN)

PSWS meeting Multi-wavelength observations of Jupiter's aurora during Juno s cruise phase T. Kimura (RIKEN) PSWS meeting 2017 Multi-wavelength observations of Jupiter's aurora during Juno s cruise phase T. Kimura (RIKEN) Background p a Bagenal+14 Planetary parameters p a Earth Jupiter Saturn Spin period (hr)

More information

Titan s Atomic and Molecular Nitrogen Tori

Titan s Atomic and Molecular Nitrogen Tori s Atomic and Molecular Nitrogen Tori H.T. Smith a, R.E. Johnson a, V.I. Shematovich b a Materials Science and Engineering, University of Virginia, Charlottesville, VA 9 USA b Institute of Astronomy, RAS,

More information

HST Observations of Planetary Atmospheres

HST Observations of Planetary Atmospheres HST Observations of Planetary Atmospheres John T. Clarke Boston University Hubble Science Legacy 3 April 2002 Venus - Near-UV images reveal cloud motions and winds - UV spectra track SO 2 composition,

More information

Joseph M. Ajello. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Joseph M. Ajello. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California Icarus 152, 151 171 (2001) doi:10.1006/icar.2001.6619, available online at http://www.idealibrary.com on Spectroscopic Evidence for High-Altitude Aurora at Jupiter from Galileo Extreme Ultraviolet Spectrometer

More information

G R O U P R E S E A R C H E R S

G R O U P R E S E A R C H E R S SW C O L L A B O R A T I O N J U P I T E R E A R T H G R O U P R E S E A R C H E R S Suwicha Wannawichian Tatphicha Promfu Paparin Jamlongkul Kamolporn Haewsantati 2 SW C O L L A B O R A T I O N C o l

More information

A simple quantitative model of plasma flows and currents in Saturn s polar ionosphere

A simple quantitative model of plasma flows and currents in Saturn s polar ionosphere A simple quantitative model of plasma flows and currents in Saturn s polar ionosphere S.W.H. Cowley*, E.J. Bunce, and J.M. O Rourke Department of Physics & Astronomy, University of Leicester, Leicester

More information

Please share your stories about how Open Access to this article benefits you.

Please share your stories about how Open Access to this article benefits you. KU ScholarWorks http://kuscholarworks.ku.edu Please share your stories about how Open Access to this article benefits you. Auroral ion precipitation at Jupiter: Predictions for Juno by N. Ozak, T. E. Cravens,

More information

Chapter 8 Geospace 1

Chapter 8 Geospace 1 Chapter 8 Geospace 1 Previously Sources of the Earth's magnetic field. 2 Content Basic concepts The Sun and solar wind Near-Earth space About other planets 3 Basic concepts 4 Plasma The molecules of an

More information

Juno. Fran Bagenal University of Colorado

Juno. Fran Bagenal University of Colorado Juno Fran Bagenal University of Colorado Cassini 2000 Cassini 2000 Jupiter s Pole When the Galileo Probe entered Jupiter clouds Expected ammonia + water clouds But found! very few clouds Probe entered

More information

The morphology of the ultraviolet Io footprint emission and its control by Io s location

The morphology of the ultraviolet Io footprint emission and its control by Io s location The morphology of the ultraviolet Io footprint emission and its control by Io s location Jean-Claude Gérard, Adem Saglam, Denis Grodent Laboratoire de Physique Atmosphérique et Planétaire Université de

More information

The Io UV footprint: Location, inter-spot distances and tail vertical extent

The Io UV footprint: Location, inter-spot distances and tail vertical extent Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2009ja014312, 2009 The Io UV footprint: Location, inter-spot distances and tail vertical extent B. Bonfond, 1 D. Grodent,

More information

GIANT PLANET IONOSPHERES AND THERMOSPHERES: THE IMPORTANCE OF ION-NEUTRAL COUPLING

GIANT PLANET IONOSPHERES AND THERMOSPHERES: THE IMPORTANCE OF ION-NEUTRAL COUPLING GIANT PLANET IONOSPHERES AND THERMOSPHERES: THE IMPORTANCE OF ION-NEUTRAL COUPLING STEVE MILLER, ALAN AYLWARD and GEORGE MILLWARD Atmospheric Physics Laboratory, Department of Physics and Astronomy, University

More information

Saturn s neutral torus versus Jupiter s plasma torus

Saturn s neutral torus versus Jupiter s plasma torus GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L09105, doi:10.1029/2007gl029437, 2007 Saturn s neutral torus versus Jupiter s plasma torus P. A. Delamere, 1 F. Bagenal, 1 V. Dols, 1 and L. C. Ray 1 Received 22

More information

2.A Material sources of gas and plasma

2.A Material sources of gas and plasma 2.A Material sources of gas and plasma The magnetosphere, extending from the top of the Saturn magnetosphere to beyond the magnetopause is dominated by neutral gas. The main components are atomic hydrogen,

More information

Simultaneous Cassini, HST, and ground-based observations of Saturn s aurorae during the 2013 auroral campaign

Simultaneous Cassini, HST, and ground-based observations of Saturn s aurorae during the 2013 auroral campaign Simultaneous Cassini, HST, and ground-based observations of Saturn s aurorae during the 2013 auroral campaign Henrik Melin! S. V. Badman, T. S. Stallard, K. H. Baines, J. Nichols, W. R. Pryor, U. Dyudina,

More information

Abstract HISAKI (SPRINT A) satellite is an earth orbiting EUV spectroscopic mission and launched on 14 Sep Extreme ultraviolet spectroscope (EX

Abstract HISAKI (SPRINT A) satellite is an earth orbiting EUV spectroscopic mission and launched on 14 Sep Extreme ultraviolet spectroscope (EX Pointing control of extreme ultraviolet spectroscope onboard the SPRINT A satellite F. Tsuchiya(1*), A. Yamazaki(2), G. Murakami(2), K. Yoshioka(2), T. Kimura(2), S. Sakai(2), K. Uemizu(3), T. Sakanoi(1),

More information

A statistical analysis of the location and width of Saturn s southern auroras

A statistical analysis of the location and width of Saturn s southern auroras European Geosciences Union 2006 Annales Geophysicae A statistical analysis of the location and width of Saturn s southern auroras S. V. Badman 1, S. W. H. Cowley 1, J.-C. Gérard 2, and D. Grodent 2 1 Department

More information

infrared emission II. A comparison with plasma flow models

infrared emission II. A comparison with plasma flow models Icarus 191 (2007) 678 690 www.elsevier.com/locate/icarus Saturn s auroral/polar H + 3 infrared emission II. A comparison with plasma flow models Tom Stallard a,, Chris Smith b, Steve Miller b, Henrik Melin

More information

AURORAL EMISSIONS OF THE GIANT PLANETS

AURORAL EMISSIONS OF THE GIANT PLANETS AURORAL EMISSIONS OF THE GIANT PLANETS Anil Bhardwaj Space Physics Laboratory Vikram Sarabhai Space Centre Trivandrum, India G. Randall Gladstone Southwest Research Institute San Antonio, Texas Abstract.

More information

Discussion of Magnetosphere-ionosphere coupling at Jupiter

Discussion of Magnetosphere-ionosphere coupling at Jupiter Discussion of Magnetosphere-ionosphere coupling at Jupiter arry H. Mauk The Johns Hopkins University Applied Physics Laboratory Fran agenal University of Colorado LASP Auroral Workshop; 7-8 March 2016;

More information

arxiv: v1 [physics.space-ph] 27 Apr 2018

arxiv: v1 [physics.space-ph] 27 Apr 2018 submitted to Planetary and Space Science Journal Logo arxiv:1804.10564v1 [physics.space-ph] 27 Apr 2018 Periodic shearing motions in the Jovian magnetosphere causing a localized peak in the main auroral

More information

Overview of the 2014 Jupiter aurora multi-instrument campaign

Overview of the 2014 Jupiter aurora multi-instrument campaign Overview of the 2014 Jupiter aurora multi-instrument campaign - Key results - Outstanding questions - Lessons learned S.V. Badman (1), R.L. Gray (1), B. Bonfond (2), M. Fujimoto (3), M. Kagitani (4), Y.

More information

Optical Emissions from Proton Aurora

Optical Emissions from Proton Aurora Sodankylä Geophysical Observatory Publications (2003) 92:1 5 Optical Emissions from Proton Aurora D. Lummerzheim 1, M. Galand 2, and M. Kubota 3 1 Geophysical Institute, University of Alaska, Fairbanks,

More information

The auroral footprint of Ganymede

The auroral footprint of Ganymede 1 2 3 4 5 6 7 8 Denis Grodent (1) *, Bertrand Bonfond (1), Aikaterini Radioti (1), Jean-Claude Gérard (1), Xianzhe Jia (2), Jonathan D. Nichols (3), John T. Clarke (4) 9 10 11 12 13 14 15 (1) LPAP Université

More information

Meridional Transport in the Stratosphere of Jupiter

Meridional Transport in the Stratosphere of Jupiter Submitted to Astrophysical Journal Letters Meridional Transport in the Stratosphere of Jupiter Mao-Chang Liang 1, Run-Lie Shia 1, Anthony Y.-T. Lee 1, Mark Allen 1,2,A.James Friedson 2, and Yuk L. Yung

More information

Auroral evidence of a localized magnetic anomaly in Jupiter s northern hemisphere

Auroral evidence of a localized magnetic anomaly in Jupiter s northern hemisphere Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013185, 2008 Auroral evidence of a localized magnetic anomaly in Jupiter s northern hemisphere Denis Grodent, 1

More information

12a. Jupiter. Jupiter Data (Table 12-1) Jupiter Data: Numbers

12a. Jupiter. Jupiter Data (Table 12-1) Jupiter Data: Numbers 12a. Jupiter Jupiter & Saturn data Jupiter & Saturn seen from the Earth Jupiter & Saturn rotation & structure Jupiter & Saturn clouds Jupiter & Saturn atmospheric motions Jupiter & Saturn rocky cores Jupiter

More information

Io s volcanism controls Jupiter s radio emissions

Io s volcanism controls Jupiter s radio emissions GEOPHYSICAL RESEARCH LETTERS, VOL. 4, 67 675, doi:.2/grl.595, 23 Io s volcanism controls Jupiter s radio emissions M. Yoneda, F. Tsuchiya, H. Misawa, B. Bonfond, 2 C. Tao, 3 M. Kagitani, and S. Okano Received

More information

Icarus 278 (2016) Contents lists available at ScienceDirect. Icarus. journal homepage: H +

Icarus 278 (2016) Contents lists available at ScienceDirect. Icarus. journal homepage:  H + Icarus 278 (2016) 28 247 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Jupiter s hydrogen bulge: A Cassini perspective Henrik Melin, T.S. Stallard Department

More information

Origins of Saturn s Auroral Emissions and Their Relationship to Large-Scale Magnetosphere Dynamics

Origins of Saturn s Auroral Emissions and Their Relationship to Large-Scale Magnetosphere Dynamics Origins of Saturn s Auroral Emissions and Their Relationship to Large-Scale Magnetosphere Dynamics Emma J. Bunce Department of Physics and Astronomy, University of Leicester, Leicester, UK In this review

More information

Joule heating and nitric oxide in the thermosphere, 2

Joule heating and nitric oxide in the thermosphere, 2 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010ja015565, 2010 Joule heating and nitric oxide in the thermosphere, 2 Charles A. Barth 1 Received 14 April 2010; revised 24 June 2010; accepted

More information

Dawn dusk oscillation of Saturn s conjugate auroral ovals

Dawn dusk oscillation of Saturn s conjugate auroral ovals GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl045818, 2010 Dawn dusk oscillation of Saturn s conjugate auroral ovals J. D. Nichols, 1 S. W. H. Cowley, 1 and L. Lamy 2 Received 11 October 2010;

More information

Year Author(s) Title Cat. Link DOI

Year Author(s) Title Cat. Link DOI Year Author(s) Title Cat. Link DOI 1981 Moos, H. W. Ultraviolet emissions from the upper atmospheres of the planets, ASR, http://adsabs.harvard.edu/abs/1981adspr...1..155m 1, 9, 155-164 10.1016/0273 1981

More information

Cassini observations of the thermal plasma in the vicinity of Saturn s main rings and the F and G rings

Cassini observations of the thermal plasma in the vicinity of Saturn s main rings and the F and G rings GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L14S04, doi:10.1029/2005gl022690, 2005 Cassini observations of the thermal plasma in the vicinity of Saturn s main rings and the F and G rings R. L. Tokar, 1 R. E.

More information

The Performance of the EUV Spectroscope (EXCEED) Onboard the SPRINT-A Mission

The Performance of the EUV Spectroscope (EXCEED) Onboard the SPRINT-A Mission The Performance of the EUV Spectroscope (EXCEED) Onboard the SPRINT-A Mission K. Yoshioka, G. Murakami, A. Yamazaki, K. Uemizu, T. Kimura (ISAS/JAXA), I. Yoshikawa, K. Uji (Univ. Tokyo) F. Tsuchiya, and

More information

David versus Goliath 1

David versus Goliath 1 David versus Goliath 1 or A Comparison of the Magnetospheres between Jupiter and Earth 1 David and Goliath is a story from the Bible that is about a normal man (David) who meets a giant (Goliath) Tomas

More information

Ring Rain and Other Drivers Luke Moore, Marina Galand, Arv Kliore, Andy Nagy, James O Donoghue

Ring Rain and Other Drivers Luke Moore, Marina Galand, Arv Kliore, Andy Nagy, James O Donoghue Ring Rain and Other Drivers Luke Moore, Marina Galand, Arv Kliore, Andy Nagy, James O Donoghue Outline Introduction to Saturn s ionosphere Basic properties and theory Observations: what do we know? Radio

More information

Cassini VIMS observations of H + 3 emission on the nightside of Jupiter

Cassini VIMS observations of H + 3 emission on the nightside of Jupiter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Cassini VIMS observations of H + 3 emission on the nightside of Jupiter Tom S. Stallard 1, Henrik Melin 1, Steve Miller 2, Sarah V. Badman 3, Kevin H. Baines 4, Robert

More information

Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF)

Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF) GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L03202, doi:10.1029/2004gl021392, 2005 Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF) Keiichiro Fukazawa and Tatsuki Ogino

More information

Enhanced transport in the polar mesosphere of Jupiter: Evidence from Cassini UVIS helium 584 Å airglow

Enhanced transport in the polar mesosphere of Jupiter: Evidence from Cassini UVIS helium 584 Å airglow JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005je002539, 2006 Enhanced transport in the polar mesosphere of Jupiter: Evidence from Cassini UVIS helium 584 Å airglow C. D. Parkinson, 1,2 A.

More information

FIRST VERTICAL ION DENSITY PROFILE IN JUPITER S AURORAL ATMOSPHERE: DIRECT OBSERVATIONS USING THE KECK II TELESCOPE

FIRST VERTICAL ION DENSITY PROFILE IN JUPITER S AURORAL ATMOSPHERE: DIRECT OBSERVATIONS USING THE KECK II TELESCOPE The Astrophysical Journal, 677:790Y797, 2008 April 10 # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. FIRST VERTICAL ION DENSITY PROFILE IN JUPITER S AURORAL ATMOSPHERE:

More information

Saturn upper atmospheric structure from Cassini EUV/FUV occultations

Saturn upper atmospheric structure from Cassini EUV/FUV occultations Saturn upper atmospheric structure from Cassini EUV/FUV occultations D. E. Shemansky 1 and X. Liu 1 Planetary and Space Science Div., Space Environment Technologies, Pasadena, CA, USA dshemansky@spacenvironment.net

More information

Algorithm for planetary limb/terminator extraction using Voronoi tessellation

Algorithm for planetary limb/terminator extraction using Voronoi tessellation Algorithm for planetary limb/terminator extraction using Voronoi tessellation Patrick Guio and N. Achilleos Department of Physics and Astronomy, University College London, UK Contact: p.guio@ucl.ac.uk,

More information

Small scale structures in Saturn s ultraviolet aurora

Small scale structures in Saturn s ultraviolet aurora JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2011ja016818, 2011 Small scale structures in Saturn s ultraviolet aurora D. Grodent, 1 J. Gustin, 1 J. C. Gérard, 1 A. Radioti, 1 B. Bonfond, 1 and

More information

Magnetosphere-Ionosphere- Thermosphere coupling and the aurora

Magnetosphere-Ionosphere- Thermosphere coupling and the aurora Magnetosphere-Ionosphere- Thermosphere coupling and the aurora UV Ingo Müller-Wodarg 1 Space & Atmospheric Physics Group Imperial College London i.mueller-wodarg@imperial.ac.uk Ionosphere of Earth The

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:.38/nature149 1 Observation information This study examines 2 hours of data obtained between :33:42 and 12:46:28 Universal Time (UT) on April 17 11 using the -metre Keck telescope. This dataset was

More information

Saturn s polar ionospheric flows and their relation to the main auroral oval

Saturn s polar ionospheric flows and their relation to the main auroral oval Annales Geophysicae (2003) 21: 1 16 European Geosciences Union 2003 Annales Geophysicae Saturn s polar ionospheric flows and their relation to the main auroral oval S. W. H. Cowley 1, E. J. Bunce 1, and

More information

Magnetic Reconnection

Magnetic Reconnection Magnetic Reconnection? On small scale-lengths (i.e. at sharp gradients), a diffusion region (physics unknown) can form where the magnetic field can diffuse through the plasma (i.e. a breakdown of the frozenin

More information

Periodic tilting of Saturn s plasma sheet

Periodic tilting of Saturn s plasma sheet GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L24101, doi:10.1029/2008gl036339, 2008 Periodic tilting of Saturn s plasma sheet J. F. Carbary, 1 D. G. Mitchell, 1 P. Brandt, 1 E. C. Roelof, 1 and S. M. Krimigis

More information

HST Aurora Observations: Transient Water Vapor at Europa s South Pole

HST Aurora Observations: Transient Water Vapor at Europa s South Pole HST Aurora Observations: Transient Water Vapor at Europa s South Pole Lorenz Roth 1,2, Joachim Saur 2, Kurt Retherford 1, Darrell Strobel, Paul Feldman, Melissa McGrath, and Francis Nimmo 1 Southwest Research

More information

Jovian Radiation Environment Models at JPL

Jovian Radiation Environment Models at JPL Copyright 2016 California Institute of Technology. Government sponsorship acknowledged. Jovian Radiation Environment Models at JPL By Insoo Jun and the JPL Natural Space Environments Group Jet Propulsion

More information

Variation of different components of Jupiter s auroral emission

Variation of different components of Jupiter s auroral emission JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2009ja014051, 2009 Variation of different components of Jupiter s auroral emission J. D. Nichols, 1,2 J. T. Clarke, 1 J. C. Gérard, 3 D. Grodent,

More information

12. Jovian Planet Systems Pearson Education Inc., publishing as Addison Wesley

12. Jovian Planet Systems Pearson Education Inc., publishing as Addison Wesley 12. Jovian Planet Systems Jovian Planet Properties Compared to the terrestrial planets, the Jovians: are much larger & more massive 2. are composed mostly of Hydrogen, Helium, & Hydrogen compounds 3. have

More information

Numerical Simulation of Jovian and Kronian Magnetospheric Configuration

Numerical Simulation of Jovian and Kronian Magnetospheric Configuration Feb. 16, 2015 Numerical Simulation of Jovian and Kronian Magnetospheric Configuration Keiichiro FUKAZAWA 1, 2 1.Academic Center for Computing and Media Studies, Kyoto University 2.CREST, JST Context Jovian

More information

Test-particle simulation of electron pitch angle scattering due to H 2 O originating from Enceladus

Test-particle simulation of electron pitch angle scattering due to H 2 O originating from Enceladus Test-particle simulation of electron pitch angle scattering due to H 2 O originating from Enceladus Hiroyasu Tadokoro 1 and Yuto Katoh 2 1 Tokyo University of Technology E-mail: tadokorohr@stf.teu.ac.jp

More information

Jupiter Thermospheric General Circulation Model (JTGCM): Global structure and dynamics driven by auroral and Joule heating

Jupiter Thermospheric General Circulation Model (JTGCM): Global structure and dynamics driven by auroral and Joule heating JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2003je002230, 2005 Jupiter Thermospheric General Circulation Model (JTGCM): Global structure and dynamics driven by auroral and Joule heating S.

More information

Weather in the Solar System

Weather in the Solar System Weather in the Solar System Sanjay S. Limaye Space Science and Engineering Center University of Wisconsin-Madison 8 February 2002 What is Weather? Webster s New Collegiate Dictionary: state of the atmosphere

More information

Modeling spectra of the north and south Jovian X-ray auroras

Modeling spectra of the north and south Jovian X-ray auroras JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013062, 2008 Modeling spectra of the north and south Jovian X-ray auroras V. Kharchenko, 1,2 Anil Bhardwaj, 3 A. Dalgarno, 1 D. R. Schultz,

More information

Rotational modulation and local time dependence of Saturn s infrared H 3 + auroral intensity

Rotational modulation and local time dependence of Saturn s infrared H 3 + auroral intensity JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012ja017990, 2012 Rotational modulation and local time dependence of Saturn s infrared H 3 + auroral intensity S. V. Badman, 1 D. J. Andrews, 2

More information

Topside interactions with the Titan atmosphere. Anne Wellbrock

Topside interactions with the Titan atmosphere. Anne Wellbrock Topside interactions with the Titan atmosphere Anne Wellbrock Outline 1. About me 2. Introduction 3. Introducing Titan and its atmosphere 4. The UCL Titan thermosphere code 5. The interaction with Saturn

More information

Jupiter s Thermosphere and Ionosphere

Jupiter s Thermosphere and Ionosphere 9 Jupiter s Thermosphere and Ionosphere R. V. Yelle University of Arizona S. Miller University College, London 9.1 INTRODUCTION Jupiter s upper atmosphere forms the boundary between the lower atmosphere

More information

Model of the Jovian magnetic field topology constrained by the Io auroral emissions

Model of the Jovian magnetic field topology constrained by the Io auroral emissions JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:10.1029/, Model of the Jovian magnetic field topology constrained by the Io auroral emissions S. L. G. Hess 1 B. Bonfond 2 P. Zarka 3 D. Grodent 2 Abstract.

More information

Atmospheric escape. Volatile species on the terrestrial planets

Atmospheric escape. Volatile species on the terrestrial planets Atmospheric escape MAVEN s Ultraviolet Views of Hydrogen s Escape from Mars Atomic hydrogen scattering sunlight in the upper atmosphere of Mars, as seen by the Imaging Ultraviolet Spectrograph on NASA's

More information

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS Space Physics: Recent Advances and Near-term Challenge Chi Wang National Space Science Center, CAS Feb.25, 2014 Contents Significant advances from the past decade Key scientific challenges Future missions

More information

Consequences of negative ions for Titan s plasma interaction

Consequences of negative ions for Titan s plasma interaction GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl053835, 2012 Consequences of negative ions for Titan s plasma interaction Stephen A. Ledvina 1 and Stephen H. Brecht 2 Received 11 September 2012;

More information

Implications of Jovian X-ray emission for magnetosphere-ionosphere coupling

Implications of Jovian X-ray emission for magnetosphere-ionosphere coupling JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A12, 1465, doi:10.1029/2003ja010050, 2003 Implications of Jovian X-ray emission for magnetosphere-ionosphere coupling T. E. Cravens, 1 J. H. Waite, 2 T. I.

More information

arxiv: v1 [astro-ph.ep] 13 Sep 2017

arxiv: v1 [astro-ph.ep] 13 Sep 2017 RADIO EMISSION FROM SATELLITE JUPITER INTERACTIONS (ESPECIALLY GANYMEDE) arxiv:1709.04386v1 [astro-ph.ep] 13 Sep 2017 P. Zarka, M. S. Marques, C. Louis, V. B. Ryabov, L. Lamy, E. Echer, and B. Cecconi

More information

Noname manuscript No. (will be inserted by the editor)

Noname manuscript No. (will be inserted by the editor) Noname manuscript No. (will be inserted by the editor) Auroral processes at the giant planets: aeronomy, emission mechanisms, spectral and spatial characteristics OR Auroral precipitation, emission processes,

More information

Fran Bagenal University of Colorado

Fran Bagenal University of Colorado Fran Bagenal University of Colorado Magnetosphere Dynamics Internal Radial Transport In rotating magnetosphere If fluxtube A contains more mass than B they interchange A B A B Rayleigh-Taylor instability

More information

UPPER ATMOSPHERE OF JUPITER A POST VOYAGER PERSPECTIVE

UPPER ATMOSPHERE OF JUPITER A POST VOYAGER PERSPECTIVE 69 73. Adv. Space Res. Vol. 1, 0273 1177/81/0301 0069$05.OO/O pp. COSPAR, 1981. Printed in Great Britain. UPPER ATMOSPHERE OF JUPITER A POST VOYAGER PERSPECTIVE S. K. Atreya Department of Atmospheric and

More information

Cassini Detection of Water Group Pick-up Ions in Saturn s Toroidal Atmosphere

Cassini Detection of Water Group Pick-up Ions in Saturn s Toroidal Atmosphere Cassini Detection of Water Group Pick-up Ions in Saturn s Toroidal Atmosphere R.L.Tokar 1, R.J. Wilson 1, R.E. Johnson 2, M.G. Henderson 1, M.F.Thomsen 1, M.M. Cowee 1, E.C. Sittler, Jr. 3, D.T. Young

More information

Astronomy 1 Winter Lecture 15; February

Astronomy 1 Winter Lecture 15; February Astronomy 1 Winter 2011 Lecture 15; February 9 2011 Previously on Astro-1 Mercury, Venus, Mars (and Earth) Size and composition Crusts and cores Volcanism and internal activity Stargazing Events Santa

More information

Direct observation of warping in the plasma sheet of Saturn

Direct observation of warping in the plasma sheet of Saturn GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L24201, doi:10.1029/2008gl035970, 2008 Direct observation of warping in the plasma sheet of Saturn J. F. Carbary, 1 D. G. Mitchell, 1 C. Paranicas, 1 E. C. Roelof,

More information

JUNO: sopravvivere alle radiazioni

JUNO: sopravvivere alle radiazioni JUNO: sopravvivere alle radiazioni Alberto Adriani INAF Istituto di Fisica dello Spazio Interplanetario Roma Science Goals are aimed at understanding both our own solar system and extra-solar planetary

More information

Plasma interaction at Io and Europa

Plasma interaction at Io and Europa Plasma interaction at Io and Europa Camilla D. K. Harris Tidal Heating: Lessons from Io and the Jovian System Thursday, Oct 18 2018 1. Jupiter s Magnetosphere 2. Moon-Magnetosphere Plasma Interaction 3.

More information

arxiv: v1 [astro-ph.ep] 1 Jun 2015

arxiv: v1 [astro-ph.ep] 1 Jun 2015 Saturn s aurora observed by the Cassini camera at visible wavelengths. arxiv:1506.00664v1 [astro-ph.ep] 1 Jun 2015 Ulyana A. Dyudina a, Andrew P. Ingersoll a, Shawn P. Ewald a, Danika Wellington b a Division

More information

Io s auroral limb glow: Hubble Space Telescope FUV observations

Io s auroral limb glow: Hubble Space Telescope FUV observations JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A8, 1333, doi:10.1029/2002ja009710, 2003 Io s auroral limb glow: Hubble Space Telescope FUV observations K. D. Retherford, 1 H. W. Moos, and D. F. Strobel

More information

DENSITY FROM THE RINGS THROUGH INNER MAGNETOSPHERE

DENSITY FROM THE RINGS THROUGH INNER MAGNETOSPHERE O 2 AND O 2 DENSITY FROM THE RINGS THROUGH INNER MAGNETOSPHERE M.K. Elrod 1, R.E. Johnson 1, T. A. Cassidy 1, R. J. Wilson 2, R. L. Tokar 2, W. L. Tseng 3, W.H. Ip 3 1 University of Virginia, Charlottesville,

More information

Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc. Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric properties

More information

Juno UV, Optical, & IR Remote Sensing

Juno UV, Optical, & IR Remote Sensing Juno UV, Optical, & IR Remote Sensing Randy Gladstone UVS Lead Workshop on Jupiter s Aurora Anticipating Juno s Arrival 4 th July 2016 CU-LASP Boulder, CO 1 UVS Concept Drawing Telescope/Spectrograph Detector

More information

Signature of Saturn s auroral cusp: Simultaneous Hubble Space Telescope FUV observations and upstream solar wind monitoring

Signature of Saturn s auroral cusp: Simultaneous Hubble Space Telescope FUV observations and upstream solar wind monitoring JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2005ja011094, 2005 Signature of Saturn s auroral cusp: Simultaneous Hubble Space Telescope FUV observations and upstream solar wind monitoring Jean-Claude

More information

Synergistic observations of the giant planets with HST and JWST: Jupiter's auroral emissions

Synergistic observations of the giant planets with HST and JWST: Jupiter's auroral emissions Synergistic observations of the giant planets with HST and JWST: Jupiter's auroral emissions Denis GRODENT Laboratory for Planetary and Atmospheric Physics Université de Liège Belgium Denis GRODENT Jean-Claude

More information

THE SEARCH FOR NITROGEN IN SATURN S MAGNETOSPHERE. Author: H. Todd Smith, University of Virginia Advisor: Robert E. Johnson University of Virginia

THE SEARCH FOR NITROGEN IN SATURN S MAGNETOSPHERE. Author: H. Todd Smith, University of Virginia Advisor: Robert E. Johnson University of Virginia THE SEARCH FOR NITROGEN IN SATURN S MAGNETOSPHERE Author: H. Todd Smith, University of Virginia Advisor: Robert E. Johnson University of Virginia Abstract We have discovered N + in Saturn s inner magnetosphere

More information

Planetary magnetospheres

Planetary magnetospheres Planetary magnetospheres Text-book chapter 19 Solar system planets Terrestrial planets: Mercury Venus Earth Mars Pluto is no more a planet! Interiors of terrestrial planets are different very different

More information

Modeling of Saturn s magnetosphere during Voyager 1 and Voyager 2 encounters

Modeling of Saturn s magnetosphere during Voyager 1 and Voyager 2 encounters JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009ja015124, 2010 Modeling of Saturn s magnetosphere during Voyager 1 and Voyager 2 encounters M. Chou 1 and C. Z. Cheng 1,2 Received 20 November

More information

Significance of Dungey-cycle flows in Jupiter s and Saturn s magnetospheres, and their identification on closed equatorial field lines

Significance of Dungey-cycle flows in Jupiter s and Saturn s magnetospheres, and their identification on closed equatorial field lines Ann. Geophys., 25, 941 951, 2007 European Geosciences Union 2007 Annales Geophysicae Significance of Dungey-cycle flows in Jupiter s and Saturn s magnetospheres, and their identification on closed equatorial

More information