THE SEARCH FOR NITROGEN IN SATURN S MAGNETOSPHERE. Author: H. Todd Smith, University of Virginia Advisor: Robert E. Johnson University of Virginia

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "THE SEARCH FOR NITROGEN IN SATURN S MAGNETOSPHERE. Author: H. Todd Smith, University of Virginia Advisor: Robert E. Johnson University of Virginia"

Transcription

1 THE SEARCH FOR NITROGEN IN SATURN S MAGNETOSPHERE Author: H. Todd Smith, University of Virginia Advisor: Robert E. Johnson University of Virginia Abstract We have discovered N + in Saturn s inner magnetosphere by using a combination of modeling and analysis of Cassini Plasma Science (CAPS) instrument data. The presence of N + in Saturn s magnetosphere has been a source of much debate since Voyager s detection of unresolved mass/charge amu ions in this region. Two principal nitrogen sources have been suggested: Titan s atmosphere and nitrogen compounds trapped in Saturn s icy satellite surfaces (Sittler et al 2004a, b). The latter may contain primordial nitrogen, likely as NH 3 in ice (Stevenson 1982; Squyers et al. 1983) or N + that has been implanted in the surface (Delitsky and Lane 2002). Here I present the initial nitrogen cloud modeling generated from Titan s atmosphere as well as our detection of N + in Saturn s magnetosphere in the range L~3.5 to ~9.5 using data collected by the CAPS during Saturn Orbit Insertion and the following orbit (Rev A). In addition to our nitrogen detection results, I present an initial examination of possible sources of these ions. Introduction Beyond Saturn s five inner icy satellites (Mimas, Enceladus, Tethys, Dione and Rhea) lies Titan, its largest satellite (Figure 1). A common feature of the giant planets in the outer solar system is the presence of toroidal clouds of neutrals and ions that reside within the planet s magnetosphere. This is material that is ejected from the planet s moons or ring particles and orbits within its magnetosphere. Once ionized, this ejected material is picked up and trapped in the planet s magnetic field where it resides until it is lost by a plasma process. Until recently, our analysis of this system relied on limited data gathered from terrestrial and Hubble Space Telescope observations and from three spacecraft (Pioneer 11 and Voyager 1 & 2) that passed through Saturn s magnetosphere. These data indicated both thermal and energetic plasmas composed of a light ion component (protons) and a heavier ion component. However, the earlier instruments were not able to determine if the heavy ions were oxygen and/or nitrogen. The arrival of the Cassini mission at Saturn on 1 July, 2004 is rapidly increasing our data on this region We initiated our research with modeling of Titan as a likely source of nitrogen in Saturn s magnetosphere. Nitrogen ions from Titan can diffuse inward become energized and can be implanted in and sputter these moons (Sittler et al. 2004), ultimately driving nitrogen chemistry (Delitsky and Lane 2002). After Cassini s arrival at Saturn, we then shifted our research focus to searching for indications of N + in the data. Here, we present the post-cassini arrival modeling results as well as the N + detections. Initial Neutral Cloud Modeling In preparation for Cassini s arrival at Saturn, we constructed a model to generate the topography of the neutral particle distributions and the source of nitrogen ions in Saturn s magnetosphere as shown in Fig 2a (Smith et al., 2004). A 3D Monte-Carlo Particle Tracking Model was used which accounted for electron & photo- ionization, electron & photo-dissociation charge exchange based on plasma parameters derived from Voyager data (Richardson and Sittler 1990). The initial Titan nitrogen source for this model is ~5 x per second (Michael et. al., Shematovich et. al.). Satellite gravitational effects (Titan, in particular) cause the nitrogen cloud to extend toward the inner magnetosphere. Fig.2b gives the source rate of fresh nitrogen ions for the cloud in Fig. 2a. Because nitrogen is ionized faster in the Smith 1

2 Figure 1. Saturnian system Figure 2. Titan generated Nitrogen Cloud Modeling Smith 2

3 inner magnetosphere the N + source rate peaks in this region despite the small neutral particle density. For the entire region, the N + source is 1.3 x per second which is several orders of magnitude smaller than the entire H 2 O source (~10 28 per second) estimated by Jurac et. al. (2004). Additionally, they estimates an icy satellite H 2 O source of ~0.9 x /s. If one assumes 3% of N for this source, then a potential satellite N source starts to compete with a Titan generated source. Nitrogen Detection Data collected by CAPS (IMS) just prior to Saturn Orbit Insertion (SOI) (30 June, 2004, 18:00 to 24:00 SCET) when Cassini was in Saturn s inner magnetosphere were analyzed. Figure 3 shows the LEF SOI ion counts vs. Time of Flight (TOF) channel (higher masses generally have longer TOFs) integrated over the entire 6 hour period. Each series represents a different energy band. The inset in figure 3 expands the region where nitrogen is expected with the red line showing the estimated N + peak (channel 258 based on computations & prototype calibration data). The initial data showed a peak in the spectrum where we expected to see N +. Figure 4 shows the data when only channel 258 is examined for energies below 1 KeV as a function of SOI time. This figure illustrates how the energy distribution of this shifts to lower energies as Cassini moves closer to Saturn consistent with a local pickup source. In figure 5 (Smith et al. 2005), we show this data for ions with energies around 333 ev because they produce the largest number of counts during the 6-hour period. This figure shows a reduced spectrum integrated over 6 hours in the vicinity of the peak in nitrogen flux at 333 ev. The dotted line shows a model fit to the spectrum with the N + peak on the left and the water group ion (referred to as W + representing the sum of O +, OH +, H 2 O + and H 3 O + ) peak on the right. We also examined all other species in the calibration data (at 375 ev) that could produce a peak in the vicinity of N +. Specifically, we considered N 2 +, CH 4 +, O 2 + and CO + however all of these species require a peak to the left of N + that is not present in our spectra. We also detected N + during the next orbit (Rev A) around Saturn when the spacecraft returned to the inner magnetosphere. We examined IMS data collected from 12:00 until 24:00 UTC on 28 October 2004 (DOY 302), covering the out-bound trajectory from ~6.2 to ~9.5 Rs from Saturn. We integrate counts at the peak in the energy spectrum (~333 ev) over the 12-hour period. Figure 6 (Smith et al. 2005) shows a model fit to the spectra. All other species in the calibration data at 375 ev in the vicinity of the N + peak again do not appear present. These results indicate the presence of N + on two passes through Saturn s inner magnetosphere. Smith 3

4 Figure 3. SOI six hour Spectrum Figure 4. SOI ion counts by energy and time Smith 4

5 Figure 5. SOI six hour reduced spectrum with ion fits Figure 6. Rev A twelve hour reduced spectrum with ion fits Nitrogen Detection Figure 7 (Smith et al. 2005) shows the average ion energies (10 minute integration intervals) for the estimated nitrogen peak for the SOI and Rev A passes. The average energies decrease as the spacecraft moves closer to Saturn and these energies appear lower that anticipated for an N+ source that is ionized near Titan. Figure 8 (Smith et al. 2005) shows the average ion count rates (10 minute integration intervals) for the estimated nitrogen peak for the SOI and Rev A passes. The lower portion of figure 8 shows the vertical height of Cassini relative to the ring plane with the icy satellite orbital shells identified as well. Notice these count rates counts increase as the spacecraft is closer to Saturn which may be indicative of icy satellite nitrogen sources vs. the originally postulated Titan source. Smith 5

6 Figure 7. SOI and Rev A average nitrogen ion energies Figure 8. SOI and Rev A average nitrogen ion count rates Smith 6

7 Summary & Conclusions The CAPS data clearly indicates the presence of nitrogen ions in the inner magnetosphere, and the low energies indicate that they are locally formed. Since the count rate increases near the icy satellite orbits, we have concluded that the inner icy satellites, and not Titan, are the nitrogen sources. The lack of identification to date of other nitrogen containing ions that must also be present (e.g., NH x +, NO +, etc.), means we can yet fully rule out that the nitrogen is from Titan and is locally ionized (Smith et al 2004). However, the latter source should appear strongly peaked between about 6-11 Rs, whereas the signal detected here appears to increase with decreasing distance from Saturn with the largest values close to the orbit of Enceladus, strongly suggesting an icy satellite source. Therefore, this is the first indication that a nitrogen containing species is present in the surfaces of the icy satellites. We will use the data from future passes to confirm this conclusion and to look for the related nitrogen species. In this way we hope to obtain a better understanding of the role of nitrogen in Saturn s magnetosphere and the possible consequences for satellite surface compositions. Acknowledgements I wish to recognize M. Shappirio, E.C. Sittler, D. Reisenfeld, R.E. Johnson, R.A. Baragiola, F. J. Crary, D.J. McComas, V. Shematovich, D. T. Young and the rest of the CAPS team for their contributions to this research. This work is supported by the Virginia Space Grant Consortium Graduate Research Fellowship, NASA Planetary Atmospheres, NASA Graduate Student Research, and CAPS Cassini instrument team programs. References Delitsky, M. L. and A. L. Lane (2002), Saturn s inner satellites: Ice chemistry and magnetospheric effects, J. Geophys. Res., 107(E11), Johnson, R. E (1990). Energetic Charged Particle Interaction with Atmospheres and Surfaces, Springer-Verlag, New York. Johnson, R. E., and Sittler, E. C. (1990), Sputter-produced Plasma as a Measure of Satellite Surface Composition: Cassini Mission, Geophys. Res. Letts. 17, Lanzerotti, L. J., Brown, W. L., Marcantonio, K. J., and Johnson, R. E. (1984), Production of Ammonia-Depleted Surface Layers on the Saturnian Satellites by Ion Sputtering, Nature, 139, p Jurac, S., J.D. Richardson (2004). A selfconsistent model of plasma and neutrals at Saturn: Neutral cloud morphology. Submitted for publication in J. Geophys. Res. Krimigis et al. (2005), Dynamics of Saturn's Magnetosphere from MIMI During Cassini's Orbital Insertion, Science, 307, Richardson, J.D., S. Jurac (2004). A selfconsistent model of plasma and neutrals at Saturn: The ion tori. Accepted for publication in Geophys. Res. Lett. Richardson, J.D., and E.C. Sittler, Jr. (1990), A Plasma Density Model for Saturn Based on Voyager Observations, J. Geophys. Res., 95, 12,019-12,031. Shematovich, V.I., R.E. Johnson, M. Micheal, and J.G. Luhmann (2003), Nitrogen loss from Titan, J. Geophys. Res., 108, No. E8, Sittler, et al., (2004a), Pickup ions at Dione and Enceladus: Cassini Plasma Spectrometer simulations, J. Geophys. Res. Vol. 109, A1. Sittler, E.C et al, Energetic Nitrogen Ions within the Inner Magnetosphere of Saturn, J. Geophys. Res. Submitted, 2004b. Sittler et al, Preliminary Results on Saturn s Inner Plasmasphere as Observed by Cassini: Comparison with Voyager, Geophys. Res. Lett. Submitted Smith, H.T., R.E. Johnson, and V.I. Shematovich (2004), Titan's Atomic Smith 7

8 and Molecular Nitrogen Tori, Geophys. Res. Lett. 31, 029GL Smith, H.T., et al., Discovery of Nitrogen in Saturn s Inner Magnetosphere, Geophys. Res. Lett Submitted Squyres, S., Reynolds, R., Cassen, P. (1983), The evolution of Enceladus. Icarus 53, Stevenson, D.J. (1982), Volcanism and igneous processes in small icy satellites, Nature, 298,142. Young, D.T. et al (2004), Cassini Plasma Spectrometer Investigation, Space Sci. Rev. 114, Young, D.T. et al (2005), Composition and Dynamics of Plasma in Saturn s Magnetosphere, Science, 307, Smith 8

Titan s Atomic and Molecular Nitrogen Tori

Titan s Atomic and Molecular Nitrogen Tori s Atomic and Molecular Nitrogen Tori H.T. Smith a, R.E. Johnson a, V.I. Shematovich b a Materials Science and Engineering, University of Virginia, Charlottesville, VA 9 USA b Institute of Astronomy, RAS,

More information

Enceladus: The likely dominant nitrogen source in Saturn s magnetosphere

Enceladus: The likely dominant nitrogen source in Saturn s magnetosphere Icarus 188 (2007) 356 366 www.elsevier.com/locate/icarus Enceladus: The likely dominant nitrogen source in Saturn s magnetosphere H.T. Smith d,, R.E. Johnson a, E.C. Sittler b, M. Shappirio b,d.reisenfeld

More information

The plasma density distribution in the inner region of Saturn s magnetosphere

The plasma density distribution in the inner region of Saturn s magnetosphere JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 970 974, doi:10.100/jgra.5018, 013 The plasma density distribution in the inner region of Saturn s magnetosphere A. M. Persoon, 1 D. A. Gurnett,

More information

Saturn s neutral torus versus Jupiter s plasma torus

Saturn s neutral torus versus Jupiter s plasma torus GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L09105, doi:10.1029/2007gl029437, 2007 Saturn s neutral torus versus Jupiter s plasma torus P. A. Delamere, 1 F. Bagenal, 1 V. Dols, 1 and L. C. Ray 1 Received 22

More information

Jupiter & Saturn. Moons of the Planets. Jupiter s Galilean satellites are easily seen with Earth-based telescopes. The Moons

Jupiter & Saturn. Moons of the Planets. Jupiter s Galilean satellites are easily seen with Earth-based telescopes. The Moons The Moons Jupiter & Saturn Earth 1 Mars 2 Jupiter 63 Saturn 47 Uranus 27 Neptune 13 Pluto 3 Moons of the Planets Galileo (1610) found the first four moons of Jupiter. Total 156 (as of Nov. 8, 2005) Shortened

More information

Amazing Saturn. Saturn from the ground

Amazing Saturn. Saturn from the ground 1 Amazing Saturn Saturn from the ground 2 Saturn Information Overload The Cassini Mission started orbiting Saturn in 2004. 3 Getting There Planetary pinball with passes by Venus, Venus, Earth, and Jupiter

More information

Longitudinal plasma density variations at Saturn caused by hot electrons

Longitudinal plasma density variations at Saturn caused by hot electrons GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L03107, doi:10.1029/2007gl031095, 2008 Longitudinal plasma density variations at caused by hot electrons P. A. Delamere 1 and F. Bagenal 1 Received 22 June 2007;

More information

Our Planetary System. Chapter 7

Our Planetary System. Chapter 7 Our Planetary System Chapter 7 Key Concepts for Chapter 7 and 8 Inventory of the Solar System Origin of the Solar System What does the Solar System consist of? The Sun: It has 99.85% of the mass of the

More information

Earth 110 Exploration of the Solar System Assignment 4: Jovian Planets Due in class Tuesday, Feb. 23, 2016

Earth 110 Exploration of the Solar System Assignment 4: Jovian Planets Due in class Tuesday, Feb. 23, 2016 Name: Section: Earth 110 Exploration of the Solar System Assignment 4: Jovian Planets Due in class Tuesday, Feb. 23, 2016 The jovian planets have distinct characteristics that set them apart from the terrestrial

More information

Satellites of giant planets. Satellites and rings of giant planets. Satellites of giant planets

Satellites of giant planets. Satellites and rings of giant planets. Satellites of giant planets Satellites of giant planets Satellites and rings of giant planets Regular and irregular satellites Regular satellites: The orbits around the planet have low eccentricity and are approximately coplanar

More information

Jupiter and Saturn. Guiding Questions. Long orbital periods of Jupiter and Saturn cause favorable viewing times to shift

Jupiter and Saturn. Guiding Questions. Long orbital periods of Jupiter and Saturn cause favorable viewing times to shift Jupiter and Saturn 1 2 Guiding Questions 1. Why is the best month to see Jupiter different from one year to the next? 2. Why are there important differences between the atmospheres of Jupiter and Saturn?

More information

Lecture 24: Saturn. The Solar System. Saturn s Rings. First we focus on solar distance, average density, and mass: (where we have used Earth units)

Lecture 24: Saturn. The Solar System. Saturn s Rings. First we focus on solar distance, average density, and mass: (where we have used Earth units) Lecture 24: Saturn The Solar System First we focus on solar distance, average density, and mass: Planet Distance Density Mass Mercury 0.4 1.0 0.06 Venus 0.7 0.9 0.8 Earth 1.0 1.0 1.0 Mars 1.5 0.7 0.1 (asteroid)

More information

Chapter 11 Jovian Planet Systems. Comparing the Jovian Planets. Jovian Planet Composition 4/10/16. Spacecraft Missions

Chapter 11 Jovian Planet Systems. Comparing the Jovian Planets. Jovian Planet Composition 4/10/16. Spacecraft Missions Chapter 11 Jovian Planet Systems Jovian Planet Interiors and Atmospheres How are jovian planets alike? What are jovian planets like on the inside? What is the weather like on jovian planets? Do jovian

More information

Survey of the Solar System. The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems

Survey of the Solar System. The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems Survey of the Solar System The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems Definition of a dwarf planet 1. Orbits the sun 2. Is large enough to have become round due to the

More information

Saturn. Slightly smaller 1/3 the mass density 700 kg/m 3. Interior - light elements, lack of rocky materials. Voyager 2, NASA

Saturn. Slightly smaller 1/3 the mass density 700 kg/m 3. Interior - light elements, lack of rocky materials. Voyager 2, NASA Saturn Slightly smaller 1/3 the mass density 700 kg/m 3 Interior - light elements, lack of rocky materials Voyager 2, NASA 1 Saturn - Atmosphere belts - driven by rapid rotation period - 10 hrs 14 min

More information

Charged particle environment of Titan during the T9 flyby

Charged particle environment of Titan during the T9 flyby GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L24S03, doi:10.1029/2007gl030677, 2007 Charged particle environment of Titan during the T9 flyby K. Szego, 1 Z. Bebesi, 1 C. Bertucci, 2 A. J. Coates, 3 F. Crary,

More information

The observations. The deductions. Determine the density of the Galilean satellites. Two classes of Galilean satellites

The observations. The deductions. Determine the density of the Galilean satellites. Two classes of Galilean satellites The Galilean satellites are easily seen Spacecraft reveal unique properties The Galilean satellites mimic a planetary system Io is covered with volcanic sulfur compounds Io s interior is affected by Jupiter

More information

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts Jupiter Orbit, Rotation Physical Properties Atmosphere, surface Interior Magnetosphere Moons (Voyager 1) Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by

More information

Consequences of negative ions for Titan s plasma interaction

Consequences of negative ions for Titan s plasma interaction GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl053835, 2012 Consequences of negative ions for Titan s plasma interaction Stephen A. Ledvina 1 and Stephen H. Brecht 2 Received 11 September 2012;

More information

Last Class. Today s Class 11/28/2017

Last Class. Today s Class 11/28/2017 Today s Class: The Jovian Planets & Their Water Worlds 1. Exam #3 on Thursday, Nov. 30 th! a) Covers all the reading Nov. 2-28. b) Covers Homework #6 and #7. c) Review Space in the News articles/discussions.

More information

Saturn. AST 101 chapter 12. Spectacular Rings and Mysterious Moons Orbital and Physical Properties Orbital and Physical Properties

Saturn. AST 101 chapter 12. Spectacular Rings and Mysterious Moons Orbital and Physical Properties Orbital and Physical Properties Saturn Spectacular Rings and Mysterious Moons 12.1 Orbital and Physical Properties This figure shows the solar system from a vantage point that emphasizes the relationship of the jovian planets to the

More information

Energy Balance in the Core of the Saturn Plasma Sheet

Energy Balance in the Core of the Saturn Plasma Sheet UNCLASSIFIED SPACE ENVIIRONMENT TECHNOLOGIIES 1070 SET TR 2011-001 Energy Balance in the Core of the Saturn Plasma Sheet Jean Michi Yoshii Contract F19628-03-C-0076 Dec 2011 Notice: This document is released

More information

Jupiter and Saturn s Satellites of Fire and Ice. Chapter Fifteen

Jupiter and Saturn s Satellites of Fire and Ice. Chapter Fifteen Jupiter and Saturn s Satellites of Fire and Ice Chapter Fifteen ASTR 111 003 Fall 2006 Lecture 12 Nov. 20, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap.

More information

The Fathers of the Gods: Jupiter and Saturn

The Fathers of the Gods: Jupiter and Saturn The Fathers of the Gods: Jupiter and Saturn Learning Objectives! Order all the planets by size and distance from the Sun! How are clouds on Jupiter (and Saturn) different to the Earth? What 2 factors drive

More information

Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017

Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017 Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017 1 2 Jovian Planets 3 Jovian Planets -- Basic Information Jupiter Saturn Uranus Neptune Distance 5.2 AU 9.5 AU 19 AU 30 AU Spin

More information

Unit 3 Lesson 5 The Gas Giant Planets. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 5 The Gas Giant Planets. Copyright Houghton Mifflin Harcourt Publishing Company Florida Benchmarks SC.8.E.5.3 Distinguish the hierarchical relationships between planets and other astronomical bodies relative to solar system, galaxy, and universe, including distance, size, and composition.

More information

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona LEARNING ABOUT THE OUTER PLANETS Can see basic features through Earth-based telescopes. Hubble Space Telescope especially useful because of sharp imaging. Distances from Kepler s 3 rd law, diameters from

More information

MAGNETOSPHERES OF THE OUTER PLANETS

MAGNETOSPHERES OF THE OUTER PLANETS ANDREW F. CHENG MAGNETOSPHERES OF THE OUTER PLANETS The Voyager explorations of the outer solar system have revealed that the magnetospheres of the outer planets interact strongly with embedded moons and

More information

The Jovian Planets (Gas Giants)

The Jovian Planets (Gas Giants) The Jovian Planets (Gas Giants) Discoveries and known to ancient astronomers. discovered in 1781 by Sir William Herschel (England). discovered in 1845 by Johann Galle (Germany). Predicted to exist by John

More information

Jovian Radiation Environment Models at JPL

Jovian Radiation Environment Models at JPL Copyright 2016 California Institute of Technology. Government sponsorship acknowledged. Jovian Radiation Environment Models at JPL By Insoo Jun and the JPL Natural Space Environments Group Jet Propulsion

More information

Chapter 8 Lecture. The Cosmic Perspective Seventh Edition. Formation of the Solar System

Chapter 8 Lecture. The Cosmic Perspective Seventh Edition. Formation of the Solar System Chapter 8 Lecture The Cosmic Perspective Seventh Edition Formation of the Solar System Formation of the Solar System 8.1 The Search for Origins Our goals for learning: Develop a theory of solar system

More information

SOLAR SYSTEM B Division

SOLAR SYSTEM B Division SOLAR SYSTEM B Division Team Name: Team #: Student Names: IMAGE SHEET A E B C D F G H Spectrum I Spectrum II SS2014 Spectrum III Spectrum IV Spectrum V Spectrum VI 1. A. What satellite is pictured in Image

More information

Planets. Chapter 5 5-1

Planets. Chapter 5 5-1 Planets Chapter 5 5-1 The Solar System Terrestrial Planets: Earth-Like Jovian Planets: Gaseous Sun Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto Inferior Planets Superior Planets Inferior

More information

Titan Saturn System Mission: Jonathan Lunine Co Chair, TSSM JSDT

Titan Saturn System Mission: Jonathan Lunine Co Chair, TSSM JSDT Titan Saturn System Mission: Jonathan Lunine Co Chair, TSSM JSDT Kim Reh: JPL Study Lead Christian Erd: ESA Study Lead Pat Beauchamp, Nathan Strange, Tom Spilker, John Elliot, (JPL) Baseline mission architecture

More information

A diffusive equilibrium model for the plasma density in Saturn s magnetosphere

A diffusive equilibrium model for the plasma density in Saturn s magnetosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008ja013912, 2009 A diffusive equilibrium model for the plasma density in Saturn s magnetosphere A. M. Persoon, 1 D. A. Gurnett, 1 O. Santolik,

More information

JUNO: sopravvivere alle radiazioni

JUNO: sopravvivere alle radiazioni JUNO: sopravvivere alle radiazioni Alberto Adriani INAF Istituto di Fisica dello Spazio Interplanetario Roma Science Goals are aimed at understanding both our own solar system and extra-solar planetary

More information

Galilean Moons of Jupiter

Galilean Moons of Jupiter Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Satellites of Jupiter & Saturn Galilean satellites Similarities and differences among the Galilean satellites How the Galilean

More information

Jupiter and its Moons

Jupiter and its Moons Jupiter and its Moons Summary 1. At an average distance of over 5 AU, Jupiter takes nearly 12 years to orbit the Sun 2. Jupiter is by far the largest and most massive planet in the solar system being over

More information

Juno. Fran Bagenal University of Colorado

Juno. Fran Bagenal University of Colorado Juno Fran Bagenal University of Colorado Cassini 2000 Cassini 2000 Jupiter s Pole When the Galileo Probe entered Jupiter clouds Expected ammonia + water clouds But found! very few clouds Probe entered

More information

Electron sources in Saturn s magnetosphere

Electron sources in Saturn s magnetosphere Electron sources in Saturn s magnetosphere A. M. Rymer(1), B. H. Mauk(1), T. W. Hill(2), C. Paranicas(1), N. André(3), E. C. Sittler Jr.(4), D. G. Mitchell(1), H. T. Smith(5), R. E. Johnson(5), A. J. Coates(6),

More information

Initial interpretation of Titan plasma interaction as observed by the Cassini plasma spectrometer: Comparisons with Voyager 1

Initial interpretation of Titan plasma interaction as observed by the Cassini plasma spectrometer: Comparisons with Voyager 1 ARTICLE IN PRESS Planetary and Space Science 54 (2006) 1211 1224 www.elsevier.com/locate/pss Initial interpretation of Titan plasma interaction as observed by the Cassini plasma spectrometer: Comparisons

More information

Solar System revised.notebook October 12, 2016 Solar Nebula Theory

Solar System revised.notebook October 12, 2016 Solar Nebula Theory Solar System revised.notebook The Solar System Solar Nebula Theory Solar Nebula was a rotating disk of dust and gas w/ a dense center dense center eventually becomes the sun start to condense b/c of gravity

More information

The Main Point. Planetary Ring Systems

The Main Point. Planetary Ring Systems Lecture #31: Satellites and Rings II Ring Systems Overview of rings: Jupiter, Saturn, Uranus, Neptune. What are rings made of? How do they form? Reading: Chapter 11.3. The Main Point All of the giant planets

More information

Lecture: Planetology. Part II: Solar System Planetology. Orbits of Planets. Rotational Oddities. A. Structure of Solar System. B.

Lecture: Planetology. Part II: Solar System Planetology. Orbits of Planets. Rotational Oddities. A. Structure of Solar System. B. Part II: Solar System Planetology 2 A. Structure of Solar System B. Planetology Lecture: Planetology C. The Planets and Moons Updated: 2012Feb10 A. Components of Solar System 3 Orbits of Planets 4 1. Planets

More information

Sodium recycling at Europa: what do we learn from the sodium cloud variability?

Sodium recycling at Europa: what do we learn from the sodium cloud variability? Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L19201, doi:10.1029/2008gl035061, 2008 Sodium recycling at Europa: what do we learn from the sodium cloud variability? F. Cipriani, 1

More information

Cold plasma in the jovian system

Cold plasma in the jovian system Cold plasma in the jovian system Chris Arridge 1,2 and the JuMMP Consortium 1. Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, UK. 2. The Centre for

More information

Astronomy Ch. 11 Jupiter. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 11 Jupiter. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 11 Jupiter MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Jupiter is noticeably oblate because: A) it has a

More information

Uranus & Neptune: The Ice Giants. Discovery of Uranus. Bode s Law. Discovery of Neptune

Uranus & Neptune: The Ice Giants. Discovery of Uranus. Bode s Law. Discovery of Neptune Uranus & Neptune: The Ice Giants Discovery of Uranus Discovery of Uranus & Neptune Properties Density & Composition Internal Heat Source Magnetic fields Rings Uranus Rotational Axis by William Herschel

More information

The Jovian Planets. The Jovian planets: Jupiter, Saturn, Uranus and Neptune

The Jovian Planets. The Jovian planets: Jupiter, Saturn, Uranus and Neptune The Jovian planets: Jupiter, Saturn, Uranus and Neptune Their masses are large compared with terrestrial planets, from 15 to 320 times the Earth s mass They are gaseous Low density All of them have rings

More information

Tenuous ring formation by the capture of interplanetary dust at Saturn

Tenuous ring formation by the capture of interplanetary dust at Saturn JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004ja010577, 2005 Tenuous ring formation by the capture of interplanetary dust at Saturn C. J. Mitchell, 1 J. E. Colwell, and M. Horányi 1 Laboratory

More information

A Peek At Cassini After 7 Years In Saturn Orbit

A Peek At Cassini After 7 Years In Saturn Orbit After becoming humankind's first artificial satellite of Saturn on 1 July 2004, the Cassini orbiter shared headlines with its companion spacecraft Huygens until the latter reached the surface of Saturn's

More information

DIN EN : (E)

DIN EN : (E) DIN EN 16603-10-04:2015-05 (E) Space engineering - Space environment; English version EN 16603-10-04:2015 Foreword... 12 Introduction... 13 1 Scope... 14 2 Normative references... 15 3 Terms, definitions

More information

Production, ionization and redistribution of O 2 in Saturn s ring atmosphere

Production, ionization and redistribution of O 2 in Saturn s ring atmosphere Icarus 180 (2006) 393 402 www.elsevier.com/locate/icarus Production, ionization and redistribution of O 2 in Saturn s ring atmosphere R.E. Johnson a,b,, J.G. Luhmann c, R.L. Tokar d, M. Bouhram e, J.J.

More information

Chapter 8 Jovian Planet Systems

Chapter 8 Jovian Planet Systems Chapter 8 Jovian Planet Systems How do jovian planets differ from terrestrials? They are much larger than terrestrial planets They do not have solid surfaces The things they are made of are quite different

More information

Lecture 3: The Earth, Magnetosphere and Ionosphere.

Lecture 3: The Earth, Magnetosphere and Ionosphere. Lecture 3: The Earth, Magnetosphere and Ionosphere. Sun Earth system Magnetospheric Physics Heliophysics Ionospheric Physics Spacecraft Heating of Solar Corona Convection cells Charged particles are moving

More information

Life in the Outer Solar System

Life in the Outer Solar System Life in the Outer Solar System Jupiter Big Massive R = 11R M = 300 M = 2.5 x all the rest Day about 10 Earth hours Year about 12 Earth years Thick Atmosphere, mostly H 2, He But also more complex molecules

More information

Which of the following statements best describes the general pattern of composition among the four jovian

Which of the following statements best describes the general pattern of composition among the four jovian Part A Which of the following statements best describes the general pattern of composition among the four jovian planets? Hint A.1 Major categories of ingredients in planetary composition The following

More information

UNIT 3: Chapter 8: The Solar System (pages )

UNIT 3: Chapter 8: The Solar System (pages ) CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be turned in to your teacher

More information

A Survey of the Planets Earth Mercury Moon Venus

A Survey of the Planets Earth Mercury Moon Venus A Survey of the Planets [Slides] Mercury Difficult to observe - never more than 28 degree angle from the Sun. Mariner 10 flyby (1974) Found cratered terrain. Messenger Orbiter (Launch 2004; Orbit 2009)

More information

Some of the best pictures of the planets in our solar system 19 January 2015, by Matt Williams

Some of the best pictures of the planets in our solar system 19 January 2015, by Matt Williams Some of the best pictures of the planets in our solar system 19 January 2015, by Matt Williams Our Solar System is a pretty picturesque place. Between the Sun, the Moon, and the Inner and Outer Solar System,

More information

37. Planetary Geology p

37. Planetary Geology p 37. Planetary Geology p. 656-679 The Solar System Revisited We will now apply all the information we have learned about the geology of the earth to other planetary bodies to see how similar, or different,

More information

The Structure of the Magnetosphere

The Structure of the Magnetosphere The Structure of the Magnetosphere The earth s magnetic field would resemble a simple magnetic dipole, much like a big bar magnet, except that the solar wind distorts its shape. As illustrated below, the

More information

Physics Homework 4 Fall 2015

Physics Homework 4 Fall 2015 1) How were the rings of Uranus discovered? 1) A) by Percival Lowell, who observed two "bumps" on either side of Uranus B) photometric observations of the occultation of a star made from Earth C) by Voyager

More information

3. The moon with the most substantial atmosphere in the Solar System is A) Iapetus B) Io C) Titan D) Triton E) Europa

3. The moon with the most substantial atmosphere in the Solar System is A) Iapetus B) Io C) Titan D) Triton E) Europa Spring 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian

HNRS 227 Fall 2006 Chapter 13. What is Pluto? What is a Planet? There are two broad categories of planets: Terrestrial and Jovian Key Points of Chapter 13 HNRS 227 Fall 2006 Chapter 13 The Solar System presented by Prof. Geller 24 October 2006 Planets Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune Dwarf Planets Pluto,

More information

Solar System. The Solar System. Nebular animation. Planets drawn to scale. Mercury. Mariner 10. Chapter 22 Pages

Solar System. The Solar System. Nebular animation. Planets drawn to scale. Mercury. Mariner 10. Chapter 22 Pages The Solar System Chapter 22 Pages 612-633 Solar System Planets drawn to scale Nebular animation Distances not to scale Earth approximately 12,800 km diameter Earth is about 150,000,000 km from Sun Mercury

More information

The Giant Planets [10]

The Giant Planets [10] The Giant Planets [10] Distance Period Diameter Mass Rotation Tilt (au) (yrs) (hrs) (deg) Earth 1 1 1 1 24.0 23 Jupiter 5.2 11.9 11.2 318 9.9 3 Saturn 9.5 29.5 9.4 95 10.7 27 Uranus 19.2 84.1 4.0 14 17.2

More information

Why are Saturn s rings confined to a thin plane? 1. Tidal forces 2. Newton s 1st law 3. Conservation of energy 4. Conservation of angular momentum

Why are Saturn s rings confined to a thin plane? 1. Tidal forces 2. Newton s 1st law 3. Conservation of energy 4. Conservation of angular momentum Announcements Astro 101, 12/2/08 Formation of the Solar System (text unit 33) Last OWL homework: late this week or early next week Final exam: Monday, Dec. 15, 10:30 AM, Hasbrouck 20 Saturn Moons Rings

More information

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight Comparative Planetology II: The Origin of Our Solar System Chapter Eight ASTR 111 003 Fall 2007 Lecture 07 Oct. 15, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6)

More information

Part 4: Exploration 1

Part 4: Exploration 1 Part 4: Exploration 1 Reaction Engine An engine, such as a jet or rocket engine, that ejects gas at high velocity and develops its thrust from the resulting reaction This movement follows Newton s Third

More information

23.1 The Solar System. Orbits of the Planets. Planetary Data The Solar System. Scale of the Planets The Solar System

23.1 The Solar System. Orbits of the Planets. Planetary Data The Solar System. Scale of the Planets The Solar System 23.1 The Solar System Orbits of the Planets The Planets: An Overview The terrestrial planets are planets that are small and rocky Mercury, Venus, Earth, and Mars. The Jovian planets are the huge gas giants

More information

Plasma wake of Tethys: Hybrid simulations versus Cassini MAG data

Plasma wake of Tethys: Hybrid simulations versus Cassini MAG data Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L04108, doi:10.1029/2008gl036943, 2009 Plasma wake of Tethys: Hybrid simulations versus Cassini MAG data S. Simon, 1,2 J. Saur, 1 F. M.

More information

Jovian planets, their moons & rings

Jovian planets, their moons & rings Jovian planets, their moons & rings The Moons of the Jovian Planets The terrestrial planets have a total of 3 moons. The jovian planets have a total of 166 moons. Each collection of moons orbiting the

More information

mhheeeeeiiiiiee IIIEIIIEEEEEEE

mhheeeeeiiiiiee IIIEIIIEEEEEEE A7A96 079 IOWA UNIV IOWA CITY DEPT OF PHYSICS AND ASTRONOMY F/S 3/2 PLASMAS IN SATURN'S MAGNETOSPHERE.(U) APR 80 L A FRANK, B 6 BUREK, K L ACKERSON UNCLASSIFIED U OF IOWA 80-12 NL mhheeeeeiiiiiee IIIEIIIEEEEEEE

More information

H. Luna, 1 C. McGrath, 1 M. B. Shah, 1 R. E. Johnson, 2 M. Liu, 2 C. J. Latimer, 1, 3 and E. C. Montenegro 4

H. Luna, 1 C. McGrath, 1 M. B. Shah, 1 R. E. Johnson, 2 M. Liu, 2 C. J. Latimer, 1, 3 and E. C. Montenegro 4 The Astrophysical Journal, 628:1086 1096, 2005 August 1 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. DISSOCIATIVE CHARGE EXCHANGE AND IONIZATION OF O 2 BY FAST H +

More information

2. Which of the following planets has exactly two moons? A) Venus B) Mercury C) Uranus D) Mars E) Neptune

2. Which of the following planets has exactly two moons? A) Venus B) Mercury C) Uranus D) Mars E) Neptune Summer 2015 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

1 of 5 4/21/2015 6:40 PM

1 of 5 4/21/2015 6:40 PM 1 of 5 4/21/2015 6:40 PM 1. Which of the following lists the outer planets in order of increasing mass?,,,,,,,,,,,, 2. The surface structure of 's largest satellite, Titan, is completely unknown because

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 8. The scale of time and nature of worlds (Page

More information

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006

Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Instructor: L. M. Khandro 10/19/06 Please Note: the following test derives from a course and text that covers the entire topic of

More information

Ringworld: Travellers' Tales from Saturn

Ringworld: Travellers' Tales from Saturn Utah State University DigitalCommons@USU Public Talks Astrophysics 3-21-2009 Ringworld: Travellers' Tales from Saturn Shane L. Larson Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/astro_pubtalks

More information

Are We Alone in the Universe? An Introduction to Astrobiology. Dr. Henry Throop Planetary Science Institute Tucson, Arizona, USA

Are We Alone in the Universe? An Introduction to Astrobiology. Dr. Henry Throop Planetary Science Institute Tucson, Arizona, USA Are We Alone in the Universe? An Introduction to Astrobiology Dr. Henry Throop Planetary Science Institute Tucson, Arizona, USA SciFest Africa, March 2013 The biggest question facing astronomers today...

More information

Outer Solar System. Jupiter. PHY outer-solar-system - J. Hedberg

Outer Solar System. Jupiter. PHY outer-solar-system - J. Hedberg Outer Solar System 1. Jupiter 1. Pressure & Density & size 2. Jupiter's Magnetosphere 3. Juno Mission 4. Jovian Satellites 2. Saturn 1. The Rings! 2. Saturn's Moons 3. Titan 3. Uranus 4. Neptune 5. Dwarf

More information

ESA s Juice: Mission Summary and Fact Sheet

ESA s Juice: Mission Summary and Fact Sheet ESA s Juice: Mission Summary and Fact Sheet JUICE - JUpiter ICy moons Explorer - is the first large-class mission in ESA's Cosmic Vision 2015-2025 programme. Planned for launch in 2022 and arrival at Jupiter

More information

Astronomy. Uranus Neptune & Remote Worlds

Astronomy. Uranus Neptune & Remote Worlds Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Uranus Neptune & Remote Worlds Uranus and Neptune Orbits and Atmospheres Internal Structure Magnetic Fields Rings Uranus's

More information

Uranus & Neptune, The Ice Giants

Uranus & Neptune, The Ice Giants Uranus & Neptune, The Ice Giants What We Will Learn Today How & When were Uranus & Neptune discovered? How are the interiors and weather on these planets? Why is Neptune as warm as Uranus? What are their

More information

Inner Planets (Part II)

Inner Planets (Part II) Inner Planets (Part II) Sept. 18, 2002 1) Atmospheres 2) Greenhouse Effect 3) Mercury 4) Venus 5) Mars 6) Moon Announcements Due to technical difficulties, Monday s quiz doesn t count An extra credit problem

More information

ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics

ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics Instructions This exam is closed book and closed notes, although you may

More information

Icy Satellites: Geological Evolution and Surface Processes

Icy Satellites: Geological Evolution and Surface Processes Icy Satellites: Geological Evolution and Surface Processes Ralf Jaumann, Roger Clark, Francis Nimmo, Tilmann Denk, Amanda Hendrix, Bonnie Borutti, Jeff Moore, Paul Schenk, Ralf Srama ISSI WS January 2010

More information

known since prehistoric times almost 10 times larger than Jupiter

known since prehistoric times almost 10 times larger than Jupiter Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune 40.329407-74.667345 Sun Mercury Length of rotation Temperature at surface 8 official planets large number of smaller objects including Pluto, asteroids,

More information

The Gas Giants Astronomy Lesson 13

The Gas Giants Astronomy Lesson 13 The Gas Giants Astronomy Lesson 13 The four outer planets: Jupiter, Saturn, Uranus, and Neptune, are much larger and more massive than Earth, and they do not have solid surfaces. Because these planets

More information

Earth s Formation Unit [Astronomy] Student Success Sheets (SSS)

Earth s Formation Unit [Astronomy] Student Success Sheets (SSS) Page1 Earth s Formation Unit [Astronomy] Student Success Sheets (SSS) HS-ESSI-1; HS-ESS1-2; HS-ESS1-3; HS-ESSI-4 NGSS Civic Memorial High School - Earth Science A Concept # What we will be learning Mandatory

More information

Mercury Named after: Mercury, the fast-footed Roman messenger of the gods. Mean Distance from the Sun: 57,909,175 km (35,983,093.1 miles) or 0.

Mercury Named after: Mercury, the fast-footed Roman messenger of the gods. Mean Distance from the Sun: 57,909,175 km (35,983,093.1 miles) or 0. Mercury Named after: Mercury, the fast-footed Roman messenger of the gods. Mean Distance from the Sun: 57,909,175 km (35,983,093.1 miles) or 0.387 astronomical units Diameter: 4,879.4 km (3,031.92 miles)

More information

Investigating Astronomy Timothy F. Slater, Roger A. Freeman Chapter 7 Observing the Dynamic Giant Planets

Investigating Astronomy Timothy F. Slater, Roger A. Freeman Chapter 7 Observing the Dynamic Giant Planets Investigating Astronomy Timothy F. Slater, Roger A. Freeman Chapter 7 Observing the Dynamic Giant Planets Observing Jupiter and Saturn The disk of Jupiter at opposition appears about two times larger than

More information

Starting from closest to the Sun, name the orbiting planets in order.

Starting from closest to the Sun, name the orbiting planets in order. Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist

More information

Lecture: Planetology. Part II: Solar System Planetology. A. Components of Solar System. B. Formation of Solar System. C. Xtra Solar Planets

Lecture: Planetology. Part II: Solar System Planetology. A. Components of Solar System. B. Formation of Solar System. C. Xtra Solar Planets Part II: Solar System Planetology A. Components of Solar System 2 Lecture: Planetology B. Formation of Solar System C. Xtra Solar Planets Updated: Oct 31, 2006 A. Components of Solar System 3 The Solar

More information

1/13/16. Solar System Formation

1/13/16. Solar System Formation Solar System Formation 1 Your Parents Solar System 21 st Century Solar System 2 The 21 st Century Solar System Sun Terrestrial Planets Asteroid Belt Jovian Planets Kuiper Belt Oort Cloud The Solar System:

More information

Object Type Moons Rings Planet Terrestrial none none. Max Distance from Sun. Min Distance from Sun. Avg. Distance from Sun 57,910,000 km 0.

Object Type Moons Rings Planet Terrestrial none none. Max Distance from Sun. Min Distance from Sun. Avg. Distance from Sun 57,910,000 km 0. Mercury Mercury is the closest planet to the sun. It is extremely hot on the side of the planet facing the sun and very cold on the other. There is no water on the surface. There is practically no atmosphere.

More information

MERCURY S ATMOSPHERE. F. Leblanc

MERCURY S ATMOSPHERE. F. Leblanc MERCURY S ATMOSPHERE F. Leblanc Service d'aéronomie du CNRS/IPSL Presently at Osservatorio Astronomico di Trieste In collaboration with Università & INAF di Padova 1 OUTLINE Introduction I Why Mercury

More information

Jupiter. Jupiter, its atmosphere, and its magnetic field 10/19/17 PROBLEM SET #5 DUE TUESDAY AT THE BEGINNING OF LECTURE

Jupiter. Jupiter, its atmosphere, and its magnetic field 10/19/17 PROBLEM SET #5 DUE TUESDAY AT THE BEGINNING OF LECTURE Jupiter PROBLEM SET #5 DUE TUESDAY AT THE BEGINNING OF LECTURE 19 October 2017 ASTRONOMY 111 FALL 2017 1 Jupiter and Io as seen from Cassini as it flew by (JPL/NASA) Jupiter, its atmosphere, and its magnetic

More information