Lecture 3+1: Cosmic Microwave Background

Size: px
Start display at page:

Download "Lecture 3+1: Cosmic Microwave Background"

Transcription

1 Lecture 3+1: Cosmic Microwave Background Structure Formation and the Dark Sector Wayne Hu Trieste, June 2002

2 Tie-ins to Morning Talk

3 Predicting the CMB: Nucleosynthesis Light element abundance depends on baryon/photon ratio Existence and temperature of CMB originally predicted (Gamow 1948) by light elements + visible baryons With the CMB photon number density fixed by the temperature light elements imply dark baryons Burles, Nollett, Turner (1999)

4 Spectrum FIRAS Spectrum Perfect Blackbody chemical potential is zero (re: morning talk) 12 GHz B ν ( 10 5 ) error frequency (cm 1 )

5 Thermalization Compton upscattering: y distortion - seen in Galaxy clusters Redistribution: µ-distortion 0.1 T / Tinit y distortion µ-distortion p/t init

6 Outline Temperature Maps Thermal History Acoustic Oscillations Harmonic Extrema Dark Energy (First Peak) Testing Inflation (Cosmological Defects) Dark Baryons (Second Peak) Dark Matter (Third Peak) Damping Tail Polarization Secondary Anisotropies More info:

7 Temperature Maps

8 Large Angle Anisotropies Actual Temperature Data Really Isotropic!

9 Large Angle Anisotropies dipole anisotropy 1 part in 1000

10 Large Angle Anisotropies 10º 90º anisotropy 1 part in

11 Understanding Maps COBE's fuzzy vision

12 Understanding Maps COBE's fuzzy vision

13 Understanding Maps COBE's imperfect reception

14 Understanding Maps Our best guess for the original map

15 Small Angle Anisotropies? <1º anisotropy seeing inside the horizon

16 Recent DASI Data µK 100µK

17 MAP Satellite has Launched!

18 What MAP Should See Simulated Data

19 Original Power Spectra of Maps 64º Band Filtered

20 Ringing in the New Cosmology

21 Power Spectrum Today 100 IAB Sask T (µk) FIRS COBE Viper BAM QMAP SP Ten ARGO IAC BOOM Pyth TOCO BOOM RING CAT MAX MSAM DASI BOOM WD VSA Maxima OVRO CBI ATCA SuZIE BIMA W. Hu 5/ l

22 Projected MAP Errors 10 1 θ (degrees) T (µk) W. Hu Feb l (multipole)

23 Physical Landscape

24 Thermal History

25 A Brief Thermal History CMB photons hotter at high redhift z At z~1000, T~3000K: photons ionize hydrogen

26 Very Brief History CMB g 3 min 3x10 5 yrs 5x10 9 yrs e p n He Nucleo- Synthesis Last Scattering Galaxy Formation

27 A Brief Thermal History Rapid scattering couples photons and baryons Plasma behaves as perfect fluid

28 Acoustic Oscillations

29 From Lecture 2: Photon-Baryon System Photons and baryons described as a single system. Conservation law for the photon-baryon system [ ] d dη + 3ȧ δρ γb + 3ȧ a a δp γb = (ρ γb + p γb )(kv γb + 3 Φ), [ ] d dη + 4ȧ [(ρ γb + p γb )v γb /k] = δp γb + (ρ + p)ψ, a or with Θ = δρ γ /4ρ γ and R=3ρ b /4ρ γ Θ = k 3 v γb Φ v γb = Ṙ 1 + R v γb + 1 kθ + kψ 1 + R Forced oscillator equation see Zaldarriaga s (now my) talk(s) Anisotropic stresses and entropy generation through non-adiabatic stress Silk damps fluctuations Silk 1968

30 Basics Take a simple photon dominated system, neglecting gravity Continuity Equation: Θ = 1 3 kv γ where Θ = δρ γ /4ρ γ is the temperature fluctuation in the Newtonian gauge expresses number conservation n γ T 3 Euler Equation: v γ = kθ expresses momentum conservation q = F where the force is provided by pressure gradients δp γ = δρ γ /3 = 4Θ/3.

31 Oscillator: Take One Combine these to form the simple harmonic oscillator equation Θ + c 2 sk 2 Θ = 0 where the adiabatic sound speed is defined through c 2 s ṗγ ρ γ here c 2 s = 1/3 since we are photon-dominated Given an initial temperature perturbation and no velocity perturbation, solution is Θ(η) = Θ(0) cos(ks) where the sound horizon is defined as s c s dη

32 A Brief Thermal History Redshift-ionization Photon-baryon fluid with pressure

33 Harmonic Extrema

34 Harmonic Extrema All modes are frozen in at recombination (denoted with a subscript ) yielding temperature perturbations of different amplitude for different modes Θ(η ) = Θ(0) cos(ks ) Modes caught in the extrema of their oscillation will have enhanced fluctuations k n s = nπ yielding a fundamental scale or frequency, related to the inverse sound horizon k A = π/s and a harmonic relationship to the other extrema as 1 : 2 : 3...

35 Extrema=Peaks First peak = mode that just compresses Second peak = mode that compresses then rarefies: twice the wavenumber Recombination Recombination T/T Θ+Ψ First Peak T/T Θ+Ψ time time Ψ /3 k 1 =π/ sound horizon Ψ /3 k 2 =2k 1 Second Peak

36 Extrema=Peaks First peak = mode that just compresses Second peak = mode that compresses then rarefies: twice the wavenumber Harmonic peaks: 1:2:3 in wavenumber Recombination Recombination T/T Θ+Ψ First Peak T/T Θ+Ψ time time Ψ /3 k 1 =π/ sound horizon Ψ /3 k 2 =2k 1 Second Peak

37 Acoustic Landscape DT (mk) FIRS COBE Ten Viper BAM QMAP SP BOOM IAB Sask 1 st extrema TOCO compression ARGO IAC MAX MSAM Pyth compression RING CAT BOOM 3 rd extrema 2WD nd extrema rarefaction Maxima OVRO ATCA SuZIE BIMA W. Hu 11/ l

38 Dark Energy

39 Peak Location The fundmental physical scale is translated into a fundamental angular scale by simple projection according to the angular diameter distance D θ A = λ A /D l A = k A D In a flat universe, the distance is simply D = d η 0 η η 0, the horizon distance, and k A = π/s = 3π/η so θ A η η 0 In a matter-dominated universe η a 1/2 so θ A 1/30 2 or l A 200

40 Peak Locations: Dark Energy? 80 l 1 ~200 DT (mk) Boom98 CBI Maxima-1 DASI l (multipole)

41 Curvature In a curved universe, the apparent or angular diameter distance is no longer the conformal distance D = R sin(d/r) d α D d=rθ λ Objects in a closed universe are further than they appear! gravitational lensing of the background...

42 Curvature in the Power Spectrum Features scale with angular diameter distance Angular location of the first peak

43 Score Card 100 IAB Sask 80 Viper BAM TOCO 1st critical density DT (mk) FIRS COBE RING CAT QMAP SP MAX MSAM Ten IAC BOOM Pyth BOoM WD Maxima OVRO ATCA BIMA W. Hu 11/ l

44 1:2:3 Testing Inflation

45 Restoring Gravity Take a simple photon dominated system with gravity Continuity Equation: Θ = 1 3 kv γ Φ includes a redshift effect from the distortion of the spatial metric Recall that in the absence of stress fluctuations Φ =constant and Φ = 0. Euler Equation: v γ = k(θ + Ψ) includes graviational infall generating momentum.

46 Oscillator: Take Two Combine these to form the simple harmonic oscillator equation Θ + c 2 sk 2 Θ = k2 3 Ψ Φ In a CDM dominated expansion Φ = Ψ = 0. Also for photon domination c 2 s = 1/3 so the oscillator equation becomes Θ + Ψ + c 2 sk 2 (Θ + Ψ) = 0 Solution is just an offset version of the original [Θ + Ψ](η) = [Θ + Ψ](0) cos(ks) Θ + Ψ is also the observed temperature fluctuation since photons lose energy climbing out of gravitational potentials at recombination

47 Gravitational Ringing Potential wells = inflationary seeds of structure Fluid falls into wells, pressure resists: acoustic oscillations

48 Sachs-Wolfe Effect and the Magic 1/3 From comoving gauge, where the CMB temperature perturbation is initially negligible, to Newtonian gauge involves a temporal shift δt t = Ψ Temporal shift implies that during matter domination δa a = 2 δt 3 t CMB temperature is cooling as T a so Θ δt T = δa a = 2 3 Ψ Observed or effective temperature Θ + Ψ = 1 3 Ψ

49 Inflation and the Initial Conditions Inflation: (nearly) scale-invariant curvature (potential) perturbations Superluminal expansion superhorizon scales "initial conditions" Accompanying temperture perturbations due to cosmological redshift cold Time Newtonian Comoving hot Space Potential perturbation Ψ = time-time metric perturbation δt/t = Ψ δt/t = δa/a = 2/3δt/t = 2/3Ψ Sachs & Wolfe (1967); White & Hu (1997)

50 Causality and the CMB The harmonic series of peaks of comparable amplitude, now observed, depend on the existence of an initial spatial curvature fluctuation that is nearly scale-invariant. The Bardeen curvature ζ, from Lecture 2 is constant above the horizon ζ = 0 so that if ζ(0) = 0, ζ(η) = 0.

51 Causality and the CMB The harmonic series of peaks of comparable amplitude, now observed, depend on the existence of an initial spatial curvature fluctuation that is nearly scale-invariant. The Bardeen curvature ζ, from Lecture 2 is constant above the horizon ζ = 0 so that if ζ(0) = 0, ζ(η) = 0. A more severe form of the horizon problem: the mechanism which ensures the homogeneity of the universe must also imprint fluctuation to the spatial curvature that are scale invariant and correlated above the apparent horizon.

52 Causality and the CMB The harmonic series of peaks of comparable amplitude, now observed, depend on the existence of an initial spatial curvature fluctuation that is nearly scale-invariant. The Bardeen curvature ζ, from Lecture 2 is constant above the horizon ζ = 0 so that if ζ(0) = 0, ζ(η) = 0. A more severe form of the horizon problem: the mechanism which ensures the homogeneity of the universe must also imprint fluctuation to the spatial curvature that are scale invariant and correlated above the apparent horizon. Inflation to the rescue... Given the observations, restrictions on the would-be alternates to inflation are severe, e.g. cosmological defects cannot be the main source of structure

53 Inflationary Dynamics Any quantum field during inflation acquires quantum fluctuations Inflaton is only special in that it carries the energy density Gravitational waves also acquire quantum fluctuations Power in quantum fluctuations H 2 V E 4 Power in gravity waves measures energy scale of inflation Current upper limits: E < 2 x GeV Joint constraint with scalar slope distinguishes classes of inflationary models Tensor/Scalar power vs tensor slope tests the idea of slow-roll inflation itself Meaningful test by Planck only possible if tensors close to current upper limit

54 Score Card 100 IAB Sask 80 Viper BAM TOCO 1st critical density DT (mk) FIRS COBE RING CAT QMAP SP MAX MSAM Ten IAC BOOM Pyth BOoM 1:2:3 WD inflation Maxima OVRO ATCA BIMA W. Hu 11/ l

55 Dark Baryons

56 Baryon Loading Baryons add extra mass to the photon-baryon fluid Controlling parameter is the momentum density ratio: R p b + ρ b p γ + ρ γ 30Ω b h 2 of order unity at recombination ( a 10 3 ) Θ = k 3 v γb Φ v γb = Ṙ 1 + R v γb + 1 kθ + kψ 1 + R Baryons add to the inertial and gravitational mass but not to the radiation pressure

57 Oscillator: Take Three Combine these to form the not-quite-so simple harmonic oscillator equation c 2 s d dη (c 2 s Θ) + c 2 sk 2 Θ = k2 3 Ψ c2 s d dη (c 2 s Φ) where c 2 s ṗ γb / ρ γb c 2 s = R In a CDM dominated expansion Φ = Ψ = 0 and the adiabatic approximation Ṙ/R ω = kc s [Θ + (1 + R)Ψ](η) = [Θ + (1 + R)Ψ](0) cos(ks)

58 Baryon & Inertia Baryons add inertia to the fluid Equivalent to adding mass on a spring Same initial conditions Same null in fluctuations Unequal amplitudes of extrema

59 A Baryon-meter Low baryons: symmetric compressions and rarefactions T time Low Baryons

60 A Baryon-meter Load the fluid adding to gravitational force Enhance compressional peaks (odd) over rarefaction peaks (even) T time Baryon Loading

61 A Baryon-meter Enhance compressional peaks (odd) over rarefaction peaks (even) e.g. relative suppression of second peak T time

62 Baryons in the Power Spectrum

63 Second Peak Detected 80 DT (mk) l 2 ~ Boom98 CBI Maxima-1 DASI l (multipole)

64 Score Card 100 IAB Sask 80 Viper BAM TOCO 1st critical density DT (mk) FIRS COBE RING CAT QMAP SP MAX MSAM Ten ARGO IAC BOOM Pyth 2nd BOOM dark WD baryons Maxima OVRO ATCA SuZIE BIMA W. Hu 11/ l

65 Dark Matter

66 Oscillator: Take Three and a Half The not-quite-so simple harmonic oscillator equation is a forced harmonic oscillator c 2 s d dη (c 2 s Θ) + c 2 sk 2 Θ = k2 3 Ψ c2 s d dη (c 2 s Φ) changes in the gravitational potentials alter the form of the acoustic oscillations

67 Oscillator: Take Three and a Half The not-quite-so simple harmonic oscillator equation is a forced harmonic oscillator c 2 s d dη (c 2 s Θ) + c 2 sk 2 Θ = k2 3 Ψ c2 s d dη (c 2 s Φ) changes in the gravitational potentials alter the form of the acoustic oscillations If the forcing term has a temporal structure that is related to the frequency of the oscillation, this becomes a driven harmonic oscillator

68 Oscillator: Take Three and a Half The not-quite-so simple harmonic oscillator equation is a forced harmonic oscillator c 2 s d dη (c 2 s Θ) + c 2 sk 2 Θ = k2 3 Ψ c2 s d dη (c 2 s Φ) changes in the gravitational potentials alter the form of the acoustic oscillations If the forcing term has a temporal structure that is related to the frequency of the oscillation, this becomes a driven harmonic oscillator Term involving Ψ is the ordinary gravitational force Term involving Φ involves the Φ term in the continuity equation as a (curvature) perturbation to the scale factor

69 Relativistic Term in Continuity Continuity equation contains relativistic term from changes in the spatial curvature perturbation to the scale factor For w=0 (matter), simply density dilution; for w=1/3 (radiation) density dilution plus (cosmological) redshift a.k.a. ISW effect photon redshift from change in grav. potential

70 Matter-to-radiation ratio Radiation Driving ρ m ρ r 24Ω m h 2 ( a 10 3 of order unity at recombination in a low Ω m universe Radiation is not stress free and so impedes the growth of structure k 2 Φ = 4πGa 2 ρ 4Θ oscillates around a constant value, ρ a 4 so the Netwonian curvature decays. Decay is timed precisely to drive the oscillator 5 the amplitude of the Sachs-Wolfe effect! N.B. analytic solutions to E.O.M. exist but derivation too lengthy to present here see Hu & Sugiyama (1996) )

71 Radiation and Dark Matter Radiation domination: potential wells created by CMB itself Pressure support potential decay driving Heights measures when dark matter dominates

72 Driving Effects and Matter/Radiation Potential perturbation: Radiation Potential: k 2 Ψ = 4πGa 2 δρ generated by radiation inside sound horizon δρ/ρ pressure supported δρ hence Ψ decays with expansion Ψ T/T η Θ+Ψ Hu & Sugiyama (1995)

73 Driving Effects and Matter/Radiation Potential perturbation: Radiation Potential: Potential Radiation: Feedback stops at matter domination k 2 Ψ = 4πGa 2 δρ generated by radiation inside sound horizon δρ/ρ pressure supported δρ hence Ψ decays with expansion Ψ decay timed to drive oscillation 2Ψ + (1/3)Ψ = (5/3)Ψ 5x boost Ψ T/T Θ+Ψ η Hu & Sugiyama (1995)

74 Driving Effects and Matter/Radiation Potential perturbation: Radiation Potential: Potential Radiation: Feedback stops at matter domination k 2 Ψ = 4πGa 2 δρ generated by radiation inside sound horizon δρ/ρ pressure supported δρ hence Ψ decays with expansion Ψ decay timed to drive oscillation 2Ψ + (1/3)Ψ = (5/3)Ψ 5x boost Ψ T/T Θ+Ψ η Hu & Sugiyama (1995)

75 Dark Matter in the Power Spectrum

76 Third Peak Constrained 80 DT (mk) l 3 20 Boom98 CBI Maxima-1 DASI l (multipole)

77 Score Card 100 IAB Sask 80 Viper BAM TOCO 1st critical density DT (mk) FIRS COBE QMAP SP Ten ARGO IAC BOOM Pyth MAX MSAM RING 3rd CAT dark matter 2nd BOOM dark WD baryons Maxima OVRO ATCA SuZIE BIMA W. Hu 11/ l

78 Damping Tail

79 Damping Tight coupling equations assume a perfect fluid: no viscosity, no heat conduction Fluid imperfections are related to the mean free path of the photons in the baryons λ C = τ 1 where τ = n e σ T a is the conformal opacity to Thompson scattering Dissipation is related to the diffusion length: random walk approximation λ D = Nλ C = η/λ C λ C = ηλ C the geometric mean between the horizon and mean free path λ D /η few %, soexpectthe peaks >3to be affected by dissipation

80 Dissipation / Diffusion Damping Imperfections in the coupled fluid mean free path λ C in the baryons Random walk over diffusion scale: geometric mean of mfp & horizon λ D ~ λ C N ~ λ C η >> λ C Overtake wavelength: λ D ~ λ ; second order in λ C /λ Viscous damping for R<1; heat conduction damping for R>1 N=η / λ C 1.0 λ D ~ λ C N λ Power 0.1 perfect fluid instant decoupling Silk (1968); Hu & Sugiyama (1995); Hu & White (1996) l

81 Equations of Motion Continuity Θ = k 3 v γ Φ, δb = kv b 3 Φ where the photon equation remains unchanged and the baryons follow number conservation with ρ b = m b n b Euler v γ = k(θ + Ψ) k 6 π γ τ(v γ v b ) v b = ȧ a v b + kψ + τ(v γ v b )/R where the photons gain an anisotropic stress term π γ from radiation viscosity and a momentum exchange term with the baryons and are compensated by the opposite term in the baryon Euler equation

82 Oscillator: Final Take Both viscosity and heat conduction through v γ v b are generated by gradients in the velocity field and add terms proportional to Θ to the oscillator equation c 2 s d dη (c 2 s Θ) + k2 c 2 s τ [A v + A h ] Θ + c 2 sk 2 Θ = k2 3 Ψ d c2 s dη (c 2 s where a leading order expansion in k/ τ in kinetic theory gives A v = 16 15, A h = R2 1 + R solution leads to a damping factor to the amplitude of order Φ) or k D exp( k 2 η/ τ) τ/η as expected from the random walk description

83 Dissipation / Diffusion Damping Rapid increase at recombination as mfp Independent of (robust to changes in) perturbation spectrum Robust physical scale for angular diameter distance test (Ω K, Ω Λ ) Recombination 1.0 Power 0.1 perfect fluid instant decoupling recombination Silk (1968); Hu & Sugiyama (1995); Hu & White (1996) l

84 Damping Length as Ruler Damping scale: physical scale for curvature test Independent of phase of oscillation

85 Spotless Laundry: Standard Rulers Calibrated the Standard Ruler Sound Horizon Baryons Matter/Radiation Damping Scale Cross-Check Baryons Matter/Radiation

86 The Peaks 100 IAB Sask 80 Viper TOCO 1st BAM critical density DT (mk) FIRS COBE Ten QMAP SP BOOM ARGO IAC MAX MSAM Pyth RING dark matter CAT BOOM 3rd WD 2nd baryonic dark matter Maxima checks OVRO ATCA SuZIE BIMA W. Hu 11/ l

87 Further Implications of Damping CMB anisotropies 10% polarized dissipation viscosity quadrupole quadrupole linear polarization Secondary anisotropies are observable at arcminute scales dissipation exponential suppression of primary anisotropy uncovery of secondary anisotropy from CMB photons traversing the large scale structure of the universe

88 Polarization

89 Polarization from Thomson Scattering Differential cross section depends on polarization and angle

90 Polarization from Thomson Scattering Isotropic radiation scatters into unpolarized radiation

91 Polarization from Thomson Scattering Quadrupole anisotropies scatter into linear polarization aligned with cold lobe

92 Isotropization by Scattering Catch-22: polarization generated by Thomson scattering Thomson scattering destroys quadrupole source

93 Polarization Power Spectrum Quadrupole generation on diffusion scale (optically thin regime) Primary peak coincides with beginning of damping tail l~1000 Secondary peak coincides with horizon scale at reionization l< T (µk) < 10% l

94 Electric & Magnetic Polarization (a.k.a. gradient & curl) Alignment of principal vs polarization axes (curvature matrix vs polarization direction) E B Kamionkowski, Kosowsky, Stebbins (1997) Zaldarriaga & Seljak (1997)

95 Inflationary B-Modes Inflationary B-modes appear at intermediate scales and test the energy scale of inflation (Seljak & Zaldarriaga 1997; Kamionkowski, Kosowsky, Stebbins 1997) reionization QE T (mk) 1 EE BB gravitational waves l (multipole) gravitational lensing

96 Secondary Anisotropies

97 Gravitational Secondaries 100 DT (mk) ISW lensing moving halo l un lensed

98 Scattering Secondaries 100 DT (mk) 10 1 Doppler suppression density mod linear ion-mod SZ l

99 Clusters in Power Spectrum? Excess in arcminute scale CMB anisotropy from CBI 100 IAB Sask T (µk) FIRS COBE Viper BAM QMAP SP Ten ARGO IAC BOOM Pyth TOCO BOOM RING CAT MAX MSAM DASI BOOM WD VSA Maxima OVRO CBI ATCA SuZIE BIMA W. Hu 5/ l

100 Sensitivity of SZE Power Amplitude of fluctuations

101 Dark energy Sensitivity of SZE Power

102 Summary Precision (accurate!) cosmology has arrived Sound physics seen (pun intended) Consistent with inflationary initial conditions

103 Summary Precision (accurate!) cosmology has arrived Sound physics seen (pun intended) Consistent with inflationary initial conditions First peak nailed: nearly flat universe Second detected: baryonic dark matter (consistent with Big Bang Nucleosynthesis) Third constrained: cold dark matter required

104 Summary Precision (accurate!) cosmology has arrived Sound physics seen (pun intended) Consistent with inflationary initial conditions First peak nailed: nearly flat universe Second detected: baryonic dark matter (consistent with Big Bang Nucleosynthesis) Third constrained: cold dark matter required Mysteries at two ends of time dark energy: secondary anisotropies gravitational waves: polarization structure formation and dark matter: secondaries

Lecture 3+1: Cosmic Microwave Background

Lecture 3+1: Cosmic Microwave Background Lecture 3+1: Cosmic Microwave Background Structure Formation and the Dark Sector Wayne Hu Trieste, June 2002 Large Angle Anisotropies Actual Temperature Data Really Isotropic! Large Angle Anisotropies

More information

CMB Anisotropies: The Acoustic Peaks. Boom98 CBI Maxima-1 DASI. l (multipole) Astro 280, Spring 2002 Wayne Hu

CMB Anisotropies: The Acoustic Peaks. Boom98 CBI Maxima-1 DASI. l (multipole) Astro 280, Spring 2002 Wayne Hu CMB Anisotropies: The Acoustic Peaks 80 T (µk) 60 40 20 Boom98 CBI Maxima-1 DASI 500 1000 1500 l (multipole) Astro 280, Spring 2002 Wayne Hu Physical Landscape 100 IAB Sask 80 Viper BAM TOCO Sound Waves

More information

Ringing in the New Cosmology

Ringing in the New Cosmology Ringing in the New Cosmology 80 T (µk) 60 40 20 Boom98 CBI Maxima-1 DASI 500 1000 1500 l (multipole) Acoustic Peaks in the CMB Wayne Hu Temperature Maps CMB Isotropy Actual Temperature Data COBE 1992 Dipole

More information

Lecture II. Wayne Hu Tenerife, November Sound Waves. Baryon CAT. Loading. Initial. Conditions. Dissipation. Maxima Radiation BOOM WD COBE

Lecture II. Wayne Hu Tenerife, November Sound Waves. Baryon CAT. Loading. Initial. Conditions. Dissipation. Maxima Radiation BOOM WD COBE Lecture II 100 IAB Sask T (µk) 80 60 40 20 Initial FIRS Conditions COBE Ten Viper BAM QMAP SP BOOM ARGO IAC TOCO Sound Waves MAX MSAM Pyth RING Baryon CAT Loading BOOM WD Maxima Radiation OVRO Driving

More information

Astro 448 Lecture Notes Set 1 Wayne Hu

Astro 448 Lecture Notes Set 1 Wayne Hu Astro 448 Lecture Notes Set 1 Wayne Hu Recombination Equilibrium number density distribution of a non-relativistic species n i = g i ( mi T 2π ) 3/2 e m i/t Apply to the e + p H system: Saha Equation n

More information

Lecture I. Thermal History and Acoustic Kinematics. Wayne Hu Tenerife, November 2007 WMAP

Lecture I. Thermal History and Acoustic Kinematics. Wayne Hu Tenerife, November 2007 WMAP Lecture I WMAP Thermal History and Acoustic Kinematics Wayne Hu Tenerife, November 2007 WMAP 3yr Data WMAP 3yr: Spergel et al. 2006 5000 l(l+1)/2π C l (µk 2 ) 4000 3000 2000 1000 0 200 400 600 800 1000

More information

An Acoustic Primer. Wayne Hu Astro 448. l (multipole) BOOMERanG MAXIMA Previous COBE. W. Hu Dec. 2000

An Acoustic Primer. Wayne Hu Astro 448. l (multipole) BOOMERanG MAXIMA Previous COBE. W. Hu Dec. 2000 An Acoustic Primer 100 BOOMERanG MAXIMA Previous 80 T (µk) 60 40 20 COBE W. Hu Dec. 2000 10 100 l (multipole) Wayne Hu Astro 448 CMB Anisotropies COBE Maxima Hanany, et al. (2000) BOOMERanG de Bernardis,

More information

The Silk Damping Tail of the CMB l. Wayne Hu Oxford, December 2002

The Silk Damping Tail of the CMB l. Wayne Hu Oxford, December 2002 The Silk Damping Tail of the CMB 100 T (µk) 10 10 100 1000 l Wayne Hu Oxford, December 2002 Outline Damping tail of temperature power spectrum and its use as a standard ruler Generation of polarization

More information

CMB Episode II: Theory or Reality? Wayne Hu

CMB Episode II: Theory or Reality? Wayne Hu s p ac 10 1 CMB Episode II: θ (degrees) n n er p ac u ter 10 1 θ (degrees) 100 80 e 100 80 T (µk) 60 T (µk) 60 40 40 20 20 10 100 l (multipole) 10 100 l (multipole) Theory or Reality? Wayne Hu CMB Anisotropies

More information

Astro 448 Lecture Notes Set 1 Wayne Hu

Astro 448 Lecture Notes Set 1 Wayne Hu Astro 448 Lecture Notes Set 1 Wayne Hu Recombination Equilibrium number density distribution of a non-relativistic species n i = g i ( mi T 2π ) 3/2 e m i/t Apply to the e + p H system: Saha Equation n

More information

The Physics of CMB Polarization

The Physics of CMB Polarization The Physics of CMB Polarization Wayne Hu Chicago, March 2004 Chicago s Polarization Orientation Thomson Radiative Transfer (Chandrashekhar 1960 ;-) Reionization (WMAP 2003; Planck?) Gravitational Waves

More information

The AfterMap Wayne Hu EFI, February 2003

The AfterMap Wayne Hu EFI, February 2003 The AfterMap Wayne Hu EFI, February 2003 Connections to the Past Outline What does MAP alone add to the cosmology? What role do other anisotropy experiments still have to play? How do you use the MAP analysis

More information

Secondary CMB Anisotropy

Secondary CMB Anisotropy Secondary CMB Anisotropy III: Dark Energy Wayne Hu Cabo, January 2009 Integrated Sachs-Wolfe Effect Smooth Energy Density & Potential Decay Regardless of the equation of state an energy component that

More information

Priming the BICEP. Wayne Hu Chicago, March BB

Priming the BICEP. Wayne Hu Chicago, March BB Priming the BICEP 0.05 0.04 0.03 0.02 0.01 0 0.01 BB 0 50 100 150 200 250 300 Wayne Hu Chicago, March 2014 A BICEP Primer How do gravitational waves affect the CMB temperature and polarization spectrum?

More information

KIPMU Set 4: Power Spectra. Wayne Hu

KIPMU Set 4: Power Spectra. Wayne Hu KIPMU Set 4: Power Spectra Wayne Hu Planck Power Spectrum B-modes: Auto & Cross Scalar Primary Power Spectrum 10 3 10 2 temperature Power (µk 2 ) 10 1 10 0 reion. τ=0.1 cross 10-1 E-pol. 10-2 10 1 10 2

More information

The Once and Future CMB

The Once and Future CMB The Once and Future CMB DOE, Jan. 2002 Wayne Hu The On(c)e Ring Original Power Spectra of Maps 64º Band Filtered Ringing in the New Cosmology Gravitational Ringing Potential wells = inflationary seeds

More information

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA

Dark Energy in Light of the CMB. (or why H 0 is the Dark Energy) Wayne Hu. February 2006, NRAO, VA Dark Energy in Light of the CMB (or why H 0 is the Dark Energy) Wayne Hu February 2006, NRAO, VA If its not dark, it doesn't matter! Cosmic matter-energy budget: Dark Energy Dark Matter Dark Baryons Visible

More information

Probing the Dark Side. of Structure Formation Wayne Hu

Probing the Dark Side. of Structure Formation Wayne Hu Probing the Dark Side 1 SDSS 100 MAP Planck P(k) 10 3 T 80 60 0.1 LSS Pψ 10 4 10 5 40 20 CMB 10 100 l (multipole) 0.01 k (h Mpc -1 ) 10 6 10 7 10 100 Lensing l (multipole) of Structure Formation Wayne

More information

The Outtakes. Back to Talk. Foregrounds Doppler Peaks? SNIa Complementarity Polarization Primer Gamma Approximation ISW Effect

The Outtakes. Back to Talk. Foregrounds Doppler Peaks? SNIa Complementarity Polarization Primer Gamma Approximation ISW Effect The Outtakes CMB Transfer Function Testing Inflation Weighing Neutrinos Decaying Neutrinos Testing Λ Testing Quintessence Polarization Sensitivity SDSS Complementarity Secondary Anisotropies Doppler Effect

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

20 Lecture 20: Cosmic Microwave Background Radiation continued

20 Lecture 20: Cosmic Microwave Background Radiation continued PHYS 652: Astrophysics 103 20 Lecture 20: Cosmic Microwave Background Radiation continued Innocent light-minded men, who think that astronomy can be learnt by looking at the stars without knowledge of

More information

Really, really, what universe do we live in?

Really, really, what universe do we live in? Really, really, what universe do we live in? Fluctuations in cosmic microwave background Origin Amplitude Spectrum Cosmic variance CMB observations and cosmological parameters COBE, balloons WMAP Parameters

More information

CMB Anisotropies Episode II :

CMB Anisotropies Episode II : CMB Anisotropies Episode II : Attack of the C l ones Approximation Methods & Cosmological Parameter Dependencies By Andy Friedman Astronomy 200, Harvard University, Spring 2003 Outline Elucidating the

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview Part 1: problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Part : Need for

More information

Cosmic Microwave Background Introduction

Cosmic Microwave Background Introduction Cosmic Microwave Background Introduction Matt Chasse chasse@hawaii.edu Department of Physics University of Hawaii at Manoa Honolulu, HI 96816 Matt Chasse, CMB Intro, May 3, 2005 p. 1/2 Outline CMB, what

More information

The cosmic microwave background radiation

The cosmic microwave background radiation The cosmic microwave background radiation László Dobos Dept. of Physics of Complex Systems dobos@complex.elte.hu É 5.60 May 18, 2018. Origin of the cosmic microwave radiation Photons in the plasma are

More information

Set 9: CMB and Large Scale Structure

Set 9: CMB and Large Scale Structure Set 9: CMB and Large Scale Structure CMB Temperature Anisotropy Planck 2015 map of the temperature anisotropy (first discovered by COBE) from recombination: 300 200 100 0 µkcmb 100 200 300 CMB Temperature

More information

Lecture 03. The Cosmic Microwave Background

Lecture 03. The Cosmic Microwave Background The Cosmic Microwave Background 1 Photons and Charge Remember the lectures on particle physics Photons are the bosons that transmit EM force Charged particles interact by exchanging photons But since they

More information

isocurvature modes Since there are two degrees of freedom in

isocurvature modes Since there are two degrees of freedom in isocurvature modes Since there are two degrees of freedom in the matter-radiation perturbation, there must be a second independent perturbation mode to complement the adiabatic solution. This clearly must

More information

Lecture 4. - Cosmological parameter dependence of the temperature power spectrum (continued) - Polarisation

Lecture 4. - Cosmological parameter dependence of the temperature power spectrum (continued) - Polarisation Lecture 4 - Cosmological parameter dependence of the temperature power spectrum (continued) - Polarisation Planck Collaboration (2016) Let s understand the peak heights Silk+Landau Damping Sachs-Wolfe

More information

Lecture 09. The Cosmic Microwave Background. Part II Features of the Angular Power Spectrum

Lecture 09. The Cosmic Microwave Background. Part II Features of the Angular Power Spectrum The Cosmic Microwave Background Part II Features of the Angular Power Spectrum Angular Power Spectrum Recall the angular power spectrum Peak at l=200 corresponds to 1o structure Exactly the horizon distance

More information

CMB Polarization and Cosmology

CMB Polarization and Cosmology CMB Polarization and Cosmology Wayne Hu KIPAC, May 2004 Outline Reionization and its Applications Dark Energy The Quadrupole Gravitational Waves Acoustic Polarization and Initial Power Gravitational Lensing

More information

Lecture 2. - Power spectrum of gravitational anisotropy - Temperature anisotropy from sound waves

Lecture 2. - Power spectrum of gravitational anisotropy - Temperature anisotropy from sound waves Lecture 2 - Power spectrum of gravitational anisotropy - Temperature anisotropy from sound waves Bennett et al. (1996) COBE 4-year Power Spectrum The SW formula allows us to determine the 3d power spectrum

More information

Polarization from Rayleigh scattering

Polarization from Rayleigh scattering Polarization from Rayleigh scattering Blue sky thinking for future CMB observations Previous work: Takahara et al. 91, Yu, et al. astro-ph/0103149 http://en.wikipedia.org/wiki/rayleigh_scattering Antony

More information

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy Reading: Chapter 8, sections 8.4 and 8.5 11. CMB Anisotropy Gravitational instability and structure formation Today s universe shows structure on scales from individual galaxies to galaxy groups and clusters

More information

The cosmic background radiation II: The WMAP results. Alexander Schmah

The cosmic background radiation II: The WMAP results. Alexander Schmah The cosmic background radiation II: The WMAP results Alexander Schmah 27.01.05 General Aspects - WMAP measures temperatue fluctuations of the CMB around 2.726 K - Reason for the temperature fluctuations

More information

Lecture 3. - Cosmological parameter dependence of the temperature power spectrum. - Polarisation of the CMB

Lecture 3. - Cosmological parameter dependence of the temperature power spectrum. - Polarisation of the CMB Lecture 3 - Cosmological parameter dependence of the temperature power spectrum - Polarisation of the CMB Planck Collaboration (2016) Let s understand the peak heights Silk+Landau Damping Sachs-Wolfe Sound

More information

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum Physics 463, Spring 07 Lecture 3 Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum last time: how fluctuations are generated and how the smooth Universe grows

More information

Licia Verde. Introduction to cosmology. Lecture 4. Inflation

Licia Verde. Introduction to cosmology. Lecture 4. Inflation Licia Verde Introduction to cosmology Lecture 4 Inflation Dividing line We see them like temperature On scales larger than a degree, fluctuations were outside the Hubble horizon at decoupling Potential

More information

Concordance Cosmology and Particle Physics. Richard Easther (Yale University)

Concordance Cosmology and Particle Physics. Richard Easther (Yale University) Concordance Cosmology and Particle Physics Richard Easther (Yale University) Concordance Cosmology The standard model for cosmology Simplest model that fits the data Smallest number of free parameters

More information

What can we Learn from the Cosmic Microwave Background

What can we Learn from the Cosmic Microwave Background What can we Learn from the Cosmic Microwave Background Problem Set #3 will be due in part on April 8 and in full on April 11 Solutions to Problem Set #2 are online... graded versions soon Again I m asking

More information

Rayleigh scattering:

Rayleigh scattering: Rayleigh scattering: blue sky thinking for future CMB observations arxiv:1307.8148; previous work: Takahara et al. 91, Yu, et al. astro-ph/0103149 http://en.wikipedia.org/wiki/rayleigh_scattering Antony

More information

Astronomy 422. Lecture 20: Cosmic Microwave Background

Astronomy 422. Lecture 20: Cosmic Microwave Background Astronomy 422 Lecture 20: Cosmic Microwave Background Key concepts: The CMB Recombination Radiation and matter eras Next time: Astro 422 Peer Review - Make sure to read all 6 proposals and send in rankings

More information

Probing the Dark Side. of Structure Formation Wayne Hu

Probing the Dark Side. of Structure Formation Wayne Hu Probing the Dark Side 1 SDSS 100 MAP Planck P(k) 10 3 T 80 60 0.1 LSS Pψ 10 4 10 5 40 20 CMB 10 100 l (multipole) 0.01 k (h Mpc -1 ) 10 6 10 7 10 100 Lensing l (multipole) of Structure Formation Wayne

More information

Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic

Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic Inflation Galaxy Formation 1 Chapter 24: #3 Chapter

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Need for an exponential

More information

n=0 l (cos θ) (3) C l a lm 2 (4)

n=0 l (cos θ) (3) C l a lm 2 (4) Cosmic Concordance What does the power spectrum of the CMB tell us about the universe? For that matter, what is a power spectrum? In this lecture we will examine the current data and show that we now have

More information

Overview. Chapter Cosmological Background

Overview. Chapter Cosmological Background 1 Chapter 1 Overview Is the azure of the sky its true color? Or is it that the distance into which we are looking is infinite? The P eng never stops flying higher till everything below looks the same as

More information

Thermal History of the Universe and the Cosmic Microwave Background. II. Structures in the Microwave Background

Thermal History of the Universe and the Cosmic Microwave Background. II. Structures in the Microwave Background Thermal History of the Universe and the Cosmic Microwave Background. II. Structures in the Microwave Background Matthias Bartelmann Max Planck Institut für Astrophysik IMPRS Lecture, March 2003 Part 2:

More information

Modern Cosmology / Scott Dodelson Contents

Modern Cosmology / Scott Dodelson Contents Modern Cosmology / Scott Dodelson Contents The Standard Model and Beyond p. 1 The Expanding Universe p. 1 The Hubble Diagram p. 7 Big Bang Nucleosynthesis p. 9 The Cosmic Microwave Background p. 13 Beyond

More information

Inflation and the origin of structure in the Universe

Inflation and the origin of structure in the Universe Phi in the Sky, Porto 0 th July 004 Inflation and the origin of structure in the Universe David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! motivation! the Primordial

More information

Physical Cosmology 6/6/2016

Physical Cosmology 6/6/2016 Physical Cosmology 6/6/2016 Alessandro Melchiorri alessandro.melchiorri@roma1.infn.it slides can be found here: oberon.roma1.infn.it/alessandro/cosmo2016 CMB anisotropies The temperature fluctuation in

More information

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy

A5682: Introduction to Cosmology Course Notes. 11. CMB Anisotropy Reading: Chapter 9, sections 9.4 and 9.5 11. CMB Anisotropy Gravitational instability and structure formation Today s universe shows structure on scales from individual galaxies to galaxy groups and clusters

More information

Cosmological Structure Formation Dr. Asa Bluck

Cosmological Structure Formation Dr. Asa Bluck Cosmological Structure Formation Dr. Asa Bluck Week 6 Structure Formation in the Linear Regime II CMB as Rosetta Stone for Structure Formation Week 7 Observed Scale of the Universe in Space & Time Week

More information

Key: cosmological perturbations. With the LHC, we hope to be able to go up to temperatures T 100 GeV, age t second

Key: cosmological perturbations. With the LHC, we hope to be able to go up to temperatures T 100 GeV, age t second Lecture 3 With Big Bang nucleosynthesis theory and observations we are confident of the theory of the early Universe at temperatures up to T 1 MeV, age t 1 second With the LHC, we hope to be able to go

More information

Introduction. How did the universe evolve to what it is today?

Introduction. How did the universe evolve to what it is today? Cosmology 8 1 Introduction 8 2 Cosmology: science of the universe as a whole How did the universe evolve to what it is today? Based on four basic facts: The universe expands, is isotropic, and is homogeneous.

More information

We finally come to the determination of the CMB anisotropy power spectrum. This set of lectures will be divided into five parts:

We finally come to the determination of the CMB anisotropy power spectrum. This set of lectures will be divided into five parts: Primary CMB anisotropies We finally come to the determination of the CMB anisotropy power spectrum. This set of lectures will be divided into five parts: CMB power spectrum formalism. Radiative transfer:

More information

Inflationary Cosmology and Alternatives

Inflationary Cosmology and Alternatives Inflationary Cosmology and Alternatives V.A. Rubakov Institute for Nuclear Research of the Russian Academy of Sciences, Moscow and Department of paricle Physics abd Cosmology Physics Faculty Moscow State

More information

AST5220 lecture 2 An introduction to the CMB power spectrum. Hans Kristian Eriksen

AST5220 lecture 2 An introduction to the CMB power spectrum. Hans Kristian Eriksen AST5220 lecture 2 An introduction to the CMB power spectrum Hans Kristian Eriksen Cosmology in ~five slides The basic ideas of Big Bang: 1) The Big Bang model The universe expands today Therefore it must

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 11 Nov. 13, 2015 Today Cosmic Microwave Background Big Bang Nucleosynthesis Assignments This week: read Hawley and Holcomb,

More information

Observational Cosmology

Observational Cosmology The Cosmic Microwave Background Part I: CMB Theory Kaustuv Basu Course website: http://www.astro.uni-bonn.de/~kbasu/obscosmo CMB parameter cheat sheet 2 Make your own CMB experiment! Design experiment

More information

COSMIC MICROWAVE BACKGROUND ANISOTROPIES

COSMIC MICROWAVE BACKGROUND ANISOTROPIES COSMIC MICROWAVE BACKGROUND ANISOTROPIES Anthony Challinor Institute of Astronomy & Department of Applied Mathematics and Theoretical Physics University of Cambridge, U.K. a.d.challinor@ast.cam.ac.uk 26

More information

Investigation of CMB Power Spectra Phase Shifts

Investigation of CMB Power Spectra Phase Shifts Investigation of CMB Power Spectra Phase Shifts Brigid Mulroe Fordham University, Bronx, NY, 1458 Lloyd Knox, Zhen Pan University of California, Davis, CA, 95616 ABSTRACT Analytical descriptions of anisotropies

More information

NeoClassical Probes. of the Dark Energy. Wayne Hu COSMO04 Toronto, September 2004

NeoClassical Probes. of the Dark Energy. Wayne Hu COSMO04 Toronto, September 2004 NeoClassical Probes in of the Dark Energy Wayne Hu COSMO04 Toronto, September 2004 Structural Fidelity Dark matter simulations approaching the accuracy of CMB calculations WMAP Kravtsov et al (2003) Equation

More information

Perturbation Evolution

Perturbation Evolution 107 Chapter 5 Perturbation Evolution Although heaven and earth are great, their evolution is uniform. Although the myriad things are numerous, their governance is unitary. Chuang-tzu, 12 Superhorizon and

More information

COSMIC MICROWAVE BACKGROUND Lecture I

COSMIC MICROWAVE BACKGROUND Lecture I COSMIC MICROWAVE BACKGROUND Lecture I Isabella Masina Univ. & INFN Ferrara, Italy CP3-Origins SDU, Denmark 18/10/2010 CP3-Origins SUGGESTED BIBLIOGRAPHY 1. W. Hu Lectures and animations http://background.uchicago.edu/~whu/physics/physics.html

More information

Cosmology. Jörn Wilms Department of Physics University of Warwick.

Cosmology. Jörn Wilms Department of Physics University of Warwick. Cosmology Jörn Wilms Department of Physics University of Warwick http://astro.uni-tuebingen.de/~wilms/teach/cosmo Contents 2 Old Cosmology Space and Time Friedmann Equations World Models Modern Cosmology

More information

AST5220 lecture 2 An introduction to the CMB power spectrum. Hans Kristian Eriksen

AST5220 lecture 2 An introduction to the CMB power spectrum. Hans Kristian Eriksen AST5220 lecture 2 An introduction to the CMB power spectrum Hans Kristian Eriksen Cosmology in ~five slides The basic ideas of Big Bang: 1) The Big Bang model The universe expands today Therefore it must

More information

Power spectrum exercise

Power spectrum exercise Power spectrum exercise In this exercise, we will consider different power spectra and how they relate to observations. The intention is to give you some intuition so that when you look at a microwave

More information

IoP. An Introduction to the Science of Cosmology. Derek Raine. Ted Thomas. Series in Astronomy and Astrophysics

IoP. An Introduction to the Science of Cosmology. Derek Raine. Ted Thomas. Series in Astronomy and Astrophysics Series in Astronomy and Astrophysics An Introduction to the Science of Cosmology Derek Raine Department of Physics and Astronomy University of Leicester, UK Ted Thomas Department of Physics and Astronomy

More information

Useful Quantities and Relations

Useful Quantities and Relations 189 APPENDIX B. USEFUL QUANTITIES AND RELATIONS 190 Appendix B Useful Quantities and Relations B.1 FRW Parameters The expansion rate is given by the Hubble parameter ( ) 1 H 2 da 2 (ȧ ) a 2 0 = a dt a

More information

Cosmology: An Introduction. Eung Jin Chun

Cosmology: An Introduction. Eung Jin Chun Cosmology: An Introduction Eung Jin Chun Cosmology Hot Big Bang + Inflation. Theory of the evolution of the Universe described by General relativity (spacetime) Thermodynamics, Particle/nuclear physics

More information

The Physics Behind the Cosmic Microwave Background

The Physics Behind the Cosmic Microwave Background The Physics Behind the Cosmic Microwave Background Without question, the source of the most precise information about the universe as a whole and about its early state is the cosmic microwave background

More information

Theory of galaxy formation

Theory of galaxy formation Theory of galaxy formation Bibliography: Galaxy Formation and Evolution (Mo, van den Bosch, White 2011) Lectures given by Frank van den Bosch in Yale http://www.astro.yale.edu/vdbosch/teaching.html Theory

More information

Cosmology II: The thermal history of the Universe

Cosmology II: The thermal history of the Universe .. Cosmology II: The thermal history of the Universe Ruth Durrer Département de Physique Théorique et CAP Université de Genève Suisse August 6, 2014 Ruth Durrer (Université de Genève) Cosmology II August

More information

Cosmology with CMB & LSS:

Cosmology with CMB & LSS: Cosmology with CMB & LSS: the Early universe VSP08 lecture 4 (May 12-16, 2008) Tarun Souradeep I.U.C.A.A, Pune, India Ω +Ω +Ω +Ω + Ω +... = 1 0 0 0 0... 1 m DE K r r The Cosmic Triangle (Ostriker & Steinhardt)

More information

Cosmology & CMB. Set6: Polarisation & Secondary Anisotropies. Davide Maino

Cosmology & CMB. Set6: Polarisation & Secondary Anisotropies. Davide Maino Cosmology & CMB Set6: Polarisation & Secondary Anisotropies Davide Maino Polarisation How? Polarisation is generated via Compton/Thomson scattering (angular dependence of the scattering term M) Who? Only

More information

The early and late time acceleration of the Universe

The early and late time acceleration of the Universe The early and late time acceleration of the Universe Tomo Takahashi (Saga University) March 7, 2016 New Generation Quantum Theory -Particle Physics, Cosmology, and Chemistry- @Kyoto University The early

More information

Toward Higher Accuracy: A CDM Example

Toward Higher Accuracy: A CDM Example 197 Appendix A Toward Higher Accuracy: A CDM Example The scale invariant cold dark matter (CDM) model with Ω 0 = 1.0 andω b h 2 near the nucleosynthesis value Ω b h 2 0.01 0.02 is elegantly simple and

More information

arxiv: v1 [astro-ph] 25 Feb 2008

arxiv: v1 [astro-ph] 25 Feb 2008 Lecture Notes on CMB Theory: From Nucleosynthesis to Recombination by Wayne Hu arxiv:0802.3688v1 [astro-ph] 25 Feb 2008 Contents CMB Theory from Nucleosynthesis to Recombination page 1 1 Introduction 1

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 10 Nov. 11, 2015 Today Hot Big Bang I: Cosmic Microwave Background Assignments This week: read Hawley and Holcomb, Chapter

More information

Second Order CMB Perturbations

Second Order CMB Perturbations Second Order CMB Perturbations Looking At Times Before Recombination September 2012 Evolution of the Universe Second Order CMB Perturbations 1/ 23 Observations before recombination Use weakly coupled particles

More information

4 Evolution of density perturbations

4 Evolution of density perturbations Spring term 2014: Dark Matter lecture 3/9 Torsten Bringmann (torsten.bringmann@fys.uio.no) reading: Weinberg, chapters 5-8 4 Evolution of density perturbations 4.1 Statistical description The cosmological

More information

CMB beyond a single power spectrum: Non-Gaussianity and frequency dependence. Antony Lewis

CMB beyond a single power spectrum: Non-Gaussianity and frequency dependence. Antony Lewis CMB beyond a single power spectrum: Non-Gaussianity and frequency dependence Antony Lewis http://cosmologist.info/ Evolution of the universe Opaque Transparent Hu & White, Sci. Am., 290 44 (2004) CMB temperature

More information

Caldwell, MK, Wadley (open) (flat) CMB determination of the geometry (MK, Spergel, and Sugiyama, 1994) Where did large scale structure (e.g., galaxies, clusters, larger-scale explosions clustering)

More information

Week 10: Theoretical predictions for the CMB temperature power spectrum

Week 10: Theoretical predictions for the CMB temperature power spectrum Week 10: Theoretical predictions for the CMB temperature power spectrum April 5, 2012 1 Introduction Last week we defined various observable quantities to describe the statistics of CMB temperature fluctuations,

More information

Structure in the CMB

Structure in the CMB Cosmic Microwave Background Anisotropies = structure in the CMB Structure in the CMB Boomerang balloon flight. Mapped Cosmic Background Radiation with far higher angular resolution than previously available.

More information

Gravitational Lensing of the CMB

Gravitational Lensing of the CMB Gravitational Lensing of the CMB SNAP Planck 1 Ω DE 1 w a.5-2 -1.5 w -1 -.5 Wayne Hu Leiden, August 26-1 Outline Gravitational Lensing of Temperature and Polarization Fields Cosmological Observables from

More information

Cosmological Signatures of a Mirror Twin Higgs

Cosmological Signatures of a Mirror Twin Higgs Cosmological Signatures of a Mirror Twin Higgs Zackaria Chacko University of Maryland, College Park Curtin, Geller & Tsai Introduction The Twin Higgs framework is a promising approach to the naturalness

More information

Details create the big picture the physics behind the famous image of the cosmic microwave background. Marieke Postma

Details create the big picture the physics behind the famous image of the cosmic microwave background. Marieke Postma Details create the big picture the physics behind the famous image of the cosmic microwave background Marieke Postma last week Inflation period of accelerated expansion a(t) eht - creates homogeneous and

More information

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 El Universo en Expansion Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 5 billion years (you are here) Space is Homogeneous and Isotropic General Relativity An Expanding Universe

More information

Secondary Polarization

Secondary Polarization Secondary Polarization z i =25 0.4 Transfer function 0.2 0 z=1 z i =8 10 100 l Reionization and Gravitational Lensing Wayne Hu Minnesota, March 2003 Outline Reionization Bump Model independent treatment

More information

3 Observational Cosmology Evolution from the Big Bang Lecture 2

3 Observational Cosmology Evolution from the Big Bang Lecture 2 3 Observational Cosmology Evolution from the Big Bang Lecture 2 http://www.sr.bham.ac.uk/~smcgee/obscosmo/ Sean McGee smcgee@star.sr.bham.ac.uk http://www.star.sr.bham.ac.uk/~smcgee/obscosmo Nucleosynthesis

More information

MODERN COSMOLOGY LECTURE FYTN08

MODERN COSMOLOGY LECTURE FYTN08 1/43 MODERN COSMOLOGY LECTURE Lund University bijnens@thep.lu.se http://www.thep.lu.se/ bijnens Lecture Updated 2015 2/43 3/43 1 2 Some problems with a simple expanding universe 3 4 5 6 7 8 9 Credit many

More information

CMB studies with Planck

CMB studies with Planck CMB studies with Planck Antony Lewis Institute of Astronomy & Kavli Institute for Cosmology, Cambridge http://cosmologist.info/ Thanks to Anthony Challinor & Anthony Lasenby for a few slides (almost) uniform

More information

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 BAO & RSD Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 Overview Introduction Standard rulers, a spherical collapse picture of BAO, the Kaiser formula, measuring distance

More information

BAO AS COSMOLOGICAL PROBE- I

BAO AS COSMOLOGICAL PROBE- I BAO AS COSMOLOGICAL PROBE- I Introduction Enrique Gaztañaga, ICE (IEEC/CSIC) Barcelona PhD Studenships (on simulations & galaxy surveys) Postdoctoral oportunities: www.ice.cat (or AAS Job: #26205/26206)

More information

Cosmic sound: near and far

Cosmic sound: near and far Cosmic sound: near and far Martin White UCB/LBNL for the Planck & BOSS teams Planck BOSS 1 Outline! The standard cosmological model and the CMB. Acoustic oscillations in the infant Universe.! Planck: mission.!

More information

H 0 is Undervalued BAO CMB. Wayne Hu STSCI, April 2014 BICEP2? Maser Lensing Cepheids. SNIa TRGB SBF. dark energy. curvature. neutrinos. inflation?

H 0 is Undervalued BAO CMB. Wayne Hu STSCI, April 2014 BICEP2? Maser Lensing Cepheids. SNIa TRGB SBF. dark energy. curvature. neutrinos. inflation? H 0 is Undervalued BICEP2? 74 Maser Lensing Cepheids Eclipsing Binaries TRGB SBF SNIa dark energy curvature CMB BAO neutrinos inflation? Wayne Hu STSCI, April 2014 67 The 1% H 0 =New Physics H 0 : an end

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology True progress in cosmology began in the 20th century: General Relativity Powerful tools of observational astronomy Two critical observations: 1. Hubble's Law (1929): Measure both

More information