Galaxy Kinematics and Cosmology from Accurately Modeling the Redshift-Space Galaxy Clustering. Zheng Zheng( 郑政 ) University of Utah

Size: px
Start display at page:

Download "Galaxy Kinematics and Cosmology from Accurately Modeling the Redshift-Space Galaxy Clustering. Zheng Zheng( 郑政 ) University of Utah"

Transcription

1 Galaxy Kinematics and Cosmology from Accurately Modeling the Redshift-Space Galaxy Clustering Zheng Zheng( 郑政 ) University of Utah National Astronomical Observatories, CAS July 12, 2017

2 Ben Bromley Professor Ph.D., Dartmouth College, 1994 Planet formation; formation & evolution of black holes; galactic dynamics; large-scale structure of the universe; computational & statistical method in astrophysics Kyle Dawson Associate Professor Ph.D., Cornell Univ., 2004 Observational cosmology; astronomical instrumentation; supernovae; large-scale structure; spectroscopic surveys Paolo Gondolo Professor Ph.D., UCLA, 1991 Nature of dark matter & dark energy; highenergy cosmic neutrinos Inese Ivans Assistant Professor Ph.D., Univ. of Texas at Austin, 2002 Stellar spectroscopy; origins of chemical elements; stellar populations; formation & evolution of galaxies, including the Milky Way David Kieda Professor Ph.D., Univ. of Pennsylvania, 1989 Experimental high energy astrophysics; energetic phenomena in compact objects; gamma ray astronomy; cosmic ray physics Pearl Sandick Assistant Professor Ph.D., Univ. of Minnesota, 2008 Dark matter; particle astrophysics & cosmology; supersymmetry phenomenology; physics beyond the standard model Anil Seth Assistant Professor Ph.D., Univ. of Washington, 2006 Observations of nearby galaxies; formation of galaxy nuclei & black holes; galaxy histories from resolved stellar populations & star clusters Wayne Springer Associate Professor Ph.D., Univ. of Maryland, 1991 Ultra high energy cosmic ray physics; cosmic ray detectors; astroparticle physics; observational astronomy Daniel Wik Assistant Professor Ph.D., Univ. of Virginia, 2010 X-ray astronomy; galaxy clusters; galaxies; black holes; cosmology Gail Zasowski Assistant Professor Ph.D., Univ. of Virginia, 2012 Galactic archeology; the Milky Way; stellar populations; the interstellar medium Zheng Zheng Associate Professor Ph.D., Ohio State Univ., 2004 Cosmology, large-scale structure, & galaxy clustering; galaxy formation & evolution; high-redshift star forming galaxies; radiative transfer of Lymanalpha photons & application in astrophysics The University of Utah Department of Physics & Astronomy University of Utah Physics & Astronomy Institutional member of SDSS-III, SDSS-IV, AS4 Data center for SDSS-IV Involved in DESI Cosmology Galaxy formation Galactic and stellar astronomy Planet formation X-ray/Gamma-ray astronomy Particle astrophysics Cosmic rays

3 Great Salt Lake Salt Lake City nationalgeographic.com

4 Galaxy Kinematics and Cosmology from Accurately Modeling the Redshift-Space Galaxy Clustering Main Collaborators Hong Guo (SHAO) Jia-Ni Ye (SHAO) Haojie Xu (Utah) Kevin McCarthy (Utah) Xiaoju Xu (Utah) Idit Zehavi (CWRU)

5 Inflation Quantum Fluctuations Reionization First Stars and Galaxies Dark Energy Accelerated Expansion Dark Matter Dark Energy 13.8 billion years

6 Dark Matter Halo Formation image courtesy: V. Springel

7 Galaxy Formation accretion heating cooling star formation star formation feedback supermassive black hole growth supermassive black hole feedback mergers...

8 Observation: Bright Side Theory: Dark Side image courtesy: M. Tegmark Galaxy Formation Gastrophysics gas cooling, gas dynamics, star formation, feedback,... image courtesy: V. Springel Dark Matter Halo Formation Gravity

9 Cosmology Galaxy Formation Physics gas dynamics Galaxy Formation star / AGN feedback star formation known unknowns gas cooling unknown unknowns known knowns Dark Matter Halo Population known unknowns Halo Occupation Distribution (HOD) Galaxy Clustering

10 Two-point Correlation Function (2PCF) of Galaxies Excess probability w.r.t. random distribution of finding galaxy pairs at a given separation galaxies random

11 Two-point Correlation Function (2PCF) of Galaxies Baryon Accoustic Oscillation (BAO), standard ruler Small-scale shape, neutrino mass Broad-band shape, cosmological parameters Small- and intermediate-scale shape and amplitude, galaxy-halo connection Anderson et al. (2012)

12 3D Two-point Correlation Function of Galaxies Zehavi, ZZ, et al. (2011) r π rp Guo, ZZ, et al. (2015a)

13 Galaxy comoving with the expansion Distance Cosmological Redshift Peculiar velocity of the galaxy velocity w.r.t. the comoving frame => Doppler redshift v Observed Redshift: Cosmological Redshift + Doppler Redshift Distance inference: distorted by the Doppler redshift from galaxy peculiar motion

14 Large-Scale Linear Redshift-Space Distortion (Kaiser 1987) v 1 + a r v =0 (continuity) Probe combination of structure growth rate and fluctuation amplitude (gravity, dark energy) Real Space Redshift Space

15 Small-Scale Nonlinear Redshift-Space Distortion (Finger-of-God Effect) v Probe galaxy kinematics inside dark matter halos (galaxy formation and evolution) Real Space Redshift Space

16 Redshift-Space Distortion (Gravitational Distortion) Guo, ZZ, et al. (2015a) Galaxy Formation and evolution: kinematics of galaxies inside halos Cosmology: amplitude and growth rate of matter density fluctuation

17 Projected Two-point Correlation Function of Galaxies redshift-space distortion effect removed essentially the real-space clustering 1-halo term 2-halo term Central Satellite Galaxy Pair Counts HOD (Galaxy-Halo Relation)

18 HOD Modeling of the SDSS Galaxy Clustering Luminosity Dependence z~0.1 bright HOD faint 2PCF Mass-Luminosity Mass/Luminosity Zehavi, ZZ, et al. (2011) 17x faint bright

19 Redshift-Space Galaxy Clustering Small scales: FoG galaxy kinematics inside virtualized structures (halos) Large scales: Kaiser effect structure growth rate The simple model is not accurate.

20 High Precision Galaxy Clustering Measurements ~ accuracy of analytic models of real-space 2PCFs (e.g., Tinker+05, van den Bosch+13)

21 Difficulties in Developing Accurate Models of Galaxy Clustering non-linear evolution of matter power spectrum scale dependence of halo bias halo exclusion effect nonsphericity of halos halo alignment (Zheng04, Tinker+05, van den Bosch+13)

22 1 T 1 Difficulties in Developing Accurate Models of Galaxy Clustering P (v r,v t r, M 1,M 2 ) Distribution of halo-halo (radial and transverse) pairwise velocity (e.g., Tinker 2007, Reid & White 2011, Zu & Weinberg 2013) Reid & White (2011) Zu & Weinberg (2013) Figure 3. Joint probability distributions of radial and tangential velocities P (v r,v t ) from the simulation (top panels) and the best fit using our GIKmodel(bottom panels), in four different radial bins marked at the bottom of each panel. The colour scales used by panels in the same column are identical, indicated by the colour bar on top.

23 Model Galaxy Clustering with N-body Simulations Populate halos with galaxies according to HOD/CLF to form mock Measure 2PCFs from the mock as the model prediction Credit: Springel+(2005) e.g., White+(2011), Parejko+(2013) halotools (Hearin+2016)

24 More Efficient Simulation-Based Clustering Modeling n g = i [ N cen (M i ) + N sat (M i ) ] n i, 1+ξ 1h gg (r) = + i ξ 2h gg (r) = + i n i n 2 g i j + i j i j 2 n i n 2 g N cen (M i )N sat (M i ) f cs (r; M i ) N sat (M i )[N sat (M i ) 1] f ss (r; M i ) n i n j n 2 g 2 n i n j n 2 g n i n j n 2 g N cen (M i ) N cen (M j ) ξ hh,cc (r; M i,m j ) N cen (M i ) N sat (M j ) ξ hh,cs (r; M i,m j ) N sat (M i ) N sat (M j ) ξ hh,ss (r; M i,m j )

25 More Efficient Simulation-Based Clustering Modeling n g = i HOD Halo Properties [ N cen (M i ) + N sat (M i ) ] n i, Mass Function 1+ξ 1h gg (r) = + i ξ 2h gg (r) = + i n i n 2 g i j + i j i j 2 n i n 2 g N cen (M i )N sat (M i ) f cs (r; M i ) N sat (M i )[N sat (M i ) 1] f ss (r; M i ) n i n j n 2 g 2 n i n j n 2 g n i n j n 2 g N cen (M i ) N cen (M j ) ξ hh,cc (r; M i,m j ) N cen (M i ) N sat (M j ) ξ hh,cs (r; M i,m j ) N sat (M i ) N sat (M j ) ξ hh,ss (r; M i,m j ) Profile Clustering

26 Accurate and Efficient Halo-Based Galaxy Clustering Modeling with Simulations Accurate - equivalent to populating galaxies into dark matter halos and using the (mean) mock 2PCF measurements as the model prediction - no finite-bin-size effect (same binning and integration scheme as measurements); residual RSD automatically accounted for Efficient - no need for the construction of mocks and the measurement of the 2PCF from the mocks - independent of simulation size - efficient exploration of the parameter space (e.g., MCMC) Extension to subhalos (SCAM), halo variables other than mass, and other clustering statistics (Neostein+2011, Neistein & Khochfar2012, Zheng & Guo 2016, Guo+2015)

27 An Accurate and Efficient Simulation-based Model for Redshift-Space Galaxy Two-Point Correlation Function ZZ & Guo (2016)

28 ZZ & Guo (2016)

29 ZZ & Guo (2016)

30 one-halo total ZZ & Guo (2016)

31 one-halo total ZZ & Guo (2016)

32 one-halo total ZZ & Guo (2016)

33 one-halo total ZZ & Guo (2016)

34 one-halo total two-halo total ZZ & Guo (2016)

35 total one-halo total two-halo total ZZ & Guo (2016)

36 An Accurate and Efficient Simulation-based Model for Redshift-Space Galaxy Two-Point Correlation Function Projected Monopole Quadrupole Hexadecapole ZZ & Guo (2016)

37 Modeling Redshift-Space Galaxy Clustering Choose the reference frame to define galaxy velocity bias - halo core frame - halo bulk velocity frame (more appropriate for large, low-res simulations) Behroozi et al. (2013) Account for galaxy redshift errors (Gaussian-Convolved Laplace Distribution) Guo, ZZ, et al. (2015c)

38 Constraining Galaxy Kinematics inside Halos Velocity bias In the halo frame c = v cen DM s = sat DM Guo, ZZ, et al. (2015a)

39 BOSS (Baryon Oscillation Spectroscopic Survey) z~0.5 massive galaxies

40 Measuring and Modeling the Redshift-Space Galaxy Clustering Guo, ZZ, et al. (2015a) Projected Monopole Quadrupole Hexadecapole

41 Galaxy Kinematics inside Halos satellite velocity bias BOSS Galaxies (( )) central velocity bias Guo, ZZ, et al. (2015a) The central galaxy in a halo is not at rest w.r.t. the halo.

42 Similar Results of Galaxy Motion from Redshift-Space 3-point Correlation Functions r2 r 1 satellite velocity bias central velocity bias Guo, ZZ, et al. (2015b)

43 SDSS Main Galaxy Sample (z~0.1) Projected Monopole Quadrupole Hexadecapole Guo, ZZ, et al. (2015c)

44 Velocity Bias of SDSS Main Galaxies (z~0.1) Guo, ZZ, et al. (2015c) faint samples bright samples In broad agreement with results based on galaxy groups (van den Bosch+2005; Skibba+ 2011)

45 Velocity Bias of SDSS Main Galaxies (z~0.1) faint bright faint bright Guo, ZZ, et al. (2015c)

46 Velocity Bias of SDSS Main Galaxies (z~0.1) pairwise infall velocity cen gal velocity dispersion faint bright In lower mass halos, central galaxies and halos are more mutually relaxed, consistent with an overall earlier formation and thus more time for relaxation.

47 Evolution of Velocity Bias of Luminous Central Galaxies z~0.1 z~0.5 * faint bright No evidence for evolution (from z~0.5 to z~0.1) for velocity dispersion of luminous central galaxies central galaxies and host halos may have been constantly disturbed by galaxy and halo mergers?

48 Velocity Bias in the Illustris Simulation Ye, Guo, ZZ, & Zehavi (2017)

49 Velocity Bias in the Illustris Simulation Ye, Guo, ZZ, & Zehavi (2017) cen v bias more affected by halo accretion/merger sat v bias more affected by dynamics inside halos

50 Small- and intermediate-scale redshift-space distortions help tighten cosmological constraints. + 1 a r v =0 (continuity) Probe structure growth rate Test theories of gravity Constrain dark energy Dawson, et al. (2015)

51 Assembly Effect on Halo Clustering and Kinematics v12 at 6Mpc/h Xu & ZZ (in prep)

52 Tightening Cosmological Constraints from Small- and Intermediate-Scale Redshift-Space Distortions f d ln D d ln a large-scale 3D redshift 2PCF amplitude => b 8 shape => f b } => f 8 insensitive to assembly bias Dawson, et al. (2015)

53 Assembly Effect on fσ8 Constraint from Small Scales w/ assembly bias w/o assembly bias [McEwen & Weinberg (2016) on matter correlation from galaxy correlation function and galaxy lensing] McCarthy, ZZ, & Guo (in prep)

54 Summary accurate and efficient modeling of small- and intermediate-scale redshift-space galaxy clustering by tabulating necessary information of halos in N-body simulations redshift-space clustering modeling of BOSS CMASS and SDSS Main galaxies to constrain galaxy kinematics inside halos (and tighten fσ8 constraints), with inferred velocity bias in broad agreement with predictions of hydro simulations influence of assembly bias on fσ8 constraints and halo assembly on both halo clustering and kinematics

55 Test the Velocity Bias Constraints Combinations of observables Fiber-collision correction HOD parameterization

56 Test the Velocity Bias Constraints (assembly bias) Effect of Spatial Distribution Profile of Satellites

57 Similar Results of Galaxy Motion from Redshift-Space 3-point Correlation Functions r2 r 1 satellite velocity bias BOSS Galaxies (z~0.5) central velocity bias Guo, ZZ, et al. (2015b)

58 An Accurate Method to Correct for the Fiber Collision Effect Guo, Zehavi, & ZZ (2012)

59 Modeling RSD of BOSS CMASS Galaxies

60 Modeling Redshift Error Distribution Gaussian-Convolved Laplace Distribution

61 Modeling Redshift Error Distribution Distribution of Sample Variance of Redshift Errors

arxiv: v1 [astro-ph.co] 5 May 2017

arxiv: v1 [astro-ph.co] 5 May 2017 Draft version May 8, 2017 Preprint typeset using L A TEX style emulateapj v. 01/23/15 PROPERTIES AND ORIGIN OF GALAXY VELOCITY BIAS IN THE ILLUSTRIS SIMULATION Jia-Ni Ye 1,2,Hong Guo 1,Zheng Zheng 3, Idit

More information

The Galaxy Dark Matter Connection. Frank C. van den Bosch (MPIA) Xiaohu Yang & Houjun Mo (UMass)

The Galaxy Dark Matter Connection. Frank C. van den Bosch (MPIA) Xiaohu Yang & Houjun Mo (UMass) The Galaxy Dark Matter Connection Frank C. van den Bosch (MPIA) Xiaohu Yang & Houjun Mo (UMass) Introduction PARADIGM: Galaxies live in extended Cold Dark Matter Haloes. QUESTION: What Galaxy lives in

More information

Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS. Frank van den Bosch.

Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS. Frank van den Bosch. Cosmological Constraints from a Combined Analysis of Clustering & Galaxy-Galaxy Lensing in the SDSS In collaboration with: Marcello Cacciato (Leiden), Surhud More (IPMU), Houjun Mo (UMass), Xiaohu Yang

More information

What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering. Alison Coil UCSD

What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering. Alison Coil UCSD What Can We Learn from Galaxy Clustering 1: Why Galaxy Clustering is Useful for AGN Clustering Alison Coil UCSD Talk Outline 1. Brief review of what we know about galaxy clustering from observations 2.

More information

Testing General Relativity with Redshift Surveys

Testing General Relativity with Redshift Surveys Testing General Relativity with Redshift Surveys Martin White University of California, Berkeley Lawrence Berkeley National Laboratory Information from galaxy z-surveys Non-Gaussianity? BOSS Redshi' Survey

More information

Cosmology on small scales: Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime

Cosmology on small scales: Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime Cosmology on small scales: Emulating galaxy clustering and galaxy-galaxy lensing into the deeply nonlinear regime Ben Wibking Department of Astronomy Ohio State University with Andres Salcedo, David Weinberg,

More information

The Radial Distribution of Galactic Satellites. Jacqueline Chen

The Radial Distribution of Galactic Satellites. Jacqueline Chen The Radial Distribution of Galactic Satellites Jacqueline Chen December 12, 2006 Introduction In the hierarchical assembly of dark matter (DM) halos, progenitor halos merge to form larger systems. Some

More information

What can we learn from galaxy clustering measurements II. Shaun Cole Institute for Computational Cosmology Durham University

What can we learn from galaxy clustering measurements II. Shaun Cole Institute for Computational Cosmology Durham University What can we learn from galaxy clustering measurements II Shaun Cole Institute for Computational Cosmology Durham University Introduction Galaxy clustering has two distinct uses: 1. Large scale tracers

More information

ASTR 610 Theory of Galaxy Formation

ASTR 610 Theory of Galaxy Formation ASTR 610 Theory of Galaxy Formation Lecture 13: The Halo Model & Halo Occupation Statistics Frank van den Bosch Yale University, Fall 2018 The Halo Model & Occupation Statistics In this lecture we discuss

More information

Probing Dark Matter Halos with Satellite Kinematics & Weak Lensing

Probing Dark Matter Halos with Satellite Kinematics & Weak Lensing Probing Dark Matter Halos with & Weak Lensing Frank C. van den Bosch (MPIA) Collaborators: Surhud More, Marcello Cacciato UMass, August 2008 Probing Dark Matter Halos - p. 1/35 Galaxy Formation in a Nutshell

More information

From quasars to dark energy Adventures with the clustering of luminous red galaxies

From quasars to dark energy Adventures with the clustering of luminous red galaxies From quasars to dark energy Adventures with the clustering of luminous red galaxies Nikhil Padmanabhan 1 1 Lawrence Berkeley Labs 04-15-2008 / OSU CCAPP seminar N. Padmanabhan (LBL) Cosmology with LRGs

More information

The Galaxy-Dark Matter Connection

The Galaxy-Dark Matter Connection The Galaxy-Dark Matter Connection Constraining Cosmology & Galaxy Formation Frank van den Bosch (MPIA) in collaboration with Houjun Mo (UMass), Xiaohu Yang (SHAO), Simone Weinmann (Zurich) Surhud More

More information

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo Chapter 19 Galaxies Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past halo disk bulge Barred Spiral Galaxy: Has a bar of stars across the bulge Spiral Galaxy 1

More information

The Dark Matter - Galaxy Connection: HOD Estimation from Large Volume Hydrodynamical Simulations

The Dark Matter - Galaxy Connection: HOD Estimation from Large Volume Hydrodynamical Simulations The Dark Matter - Galaxy Connection: HOD Estimation from Large Volume Hydrodynamical Simulations J. CASADO GÓMEZ (UAM) R. DOMÍNGUEZ-TENREIRO J. OÑORBE (UCA/Irvine) F. MARTINEZ - SERRANO (UMH) A. KNEBE

More information

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS GALAXY FORMATION - Durham -18 July 2011 THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS JOEL PRIMACK, UCSC ΛCDM Cosmological Parameters for Bolshoi and BigBolshoi Halo Mass Function is 10x

More information

LARGE QUASAR GROUPS. Kevin Rahill Astrophysics

LARGE QUASAR GROUPS. Kevin Rahill Astrophysics LARGE QUASAR GROUPS Kevin Rahill Astrophysics QUASARS Quasi-stellar Radio Sources Subset of Active Galactic Nuclei AGNs are compact and extremely luminous regions at the center of galaxies Identified as

More information

Fundamental cosmology from the galaxy distribution. John Peacock Hiroshima 1 Dec 2016

Fundamental cosmology from the galaxy distribution. John Peacock Hiroshima 1 Dec 2016 Fundamental cosmology from the galaxy distribution John Peacock Subaru @ Hiroshima 1 Dec 2016 What we learn from LSS Fundamental: Astrophysical: Matter content (CDM, baryons, neutrino mass) Properties

More information

halo formation in peaks halo bias if halos are formed without regard to the underlying density, then δn h n h halo bias in simulations

halo formation in peaks halo bias if halos are formed without regard to the underlying density, then δn h n h halo bias in simulations Physics 463, Spring 07 Bias, the Halo Model & Halo Occupation Statistics Lecture 8 Halo Bias the matter distribution is highly clustered. halos form at the peaks of this distribution 3 2 1 0 halo formation

More information

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena

The Power. of the Galaxy Power Spectrum. Eric Linder 13 February 2012 WFIRST Meeting, Pasadena The Power of the Galaxy Power Spectrum Eric Linder 13 February 2012 WFIRST Meeting, Pasadena UC Berkeley & Berkeley Lab Institute for the Early Universe, Korea 11 Baryon Acoustic Oscillations In the beginning...

More information

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017

BAO & RSD. Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 BAO & RSD Nikhil Padmanabhan Essential Cosmology for the Next Generation VII December 2017 Overview Introduction Standard rulers, a spherical collapse picture of BAO, the Kaiser formula, measuring distance

More information

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics The Millennium Simulation: cosmic evolution in a supercomputer Simon White Max Planck Institute for Astrophysics The COBE satellite (1989-1993) Two instruments made maps of the whole sky in microwaves

More information

Part two of a year-long introduction to astrophysics:

Part two of a year-long introduction to astrophysics: ASTR 3830 Astrophysics 2 - Galactic and Extragalactic Phil Armitage office: JILA tower A909 email: pja@jilau1.colorado.edu Spitzer Space telescope image of M81 Part two of a year-long introduction to astrophysics:

More information

Physics of the Large Scale Structure. Pengjie Zhang. Department of Astronomy Shanghai Jiao Tong University

Physics of the Large Scale Structure. Pengjie Zhang. Department of Astronomy Shanghai Jiao Tong University 1 Physics of the Large Scale Structure Pengjie Zhang Department of Astronomy Shanghai Jiao Tong University The observed galaxy distribution of the nearby universe Observer 0.7 billion lys The observed

More information

Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias. Hao-Yi Wu University of Michigan

Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias. Hao-Yi Wu University of Michigan Probing growth of cosmic structure using galaxy dynamics: a converging picture of velocity bias Hao-Yi Wu University of Michigan Galaxies are not necessarily test particles Probing dark energy with growth

More information

The rise of galaxy surveys and mocks (DESI progress and challenges) Shaun Cole Institute for Computational Cosmology, Durham University, UK

The rise of galaxy surveys and mocks (DESI progress and challenges) Shaun Cole Institute for Computational Cosmology, Durham University, UK The rise of galaxy surveys and mocks (DESI progress and challenges) Shaun Cole Institute for Computational Cosmology, Durham University, UK Mock Santiago Welcome to Mock Santiago The goal of this workshop

More information

Cosmological Constraints from Redshift Dependence of Galaxy Clustering Anisotropy

Cosmological Constraints from Redshift Dependence of Galaxy Clustering Anisotropy Cosmological Constraints from Redshift Dependence of Galaxy Clustering Anisotropy Changbom Park (Korea Institute for Advanced Study) with Xiao-Dong Li, Juhan Kim (KIAS), Sungwook Hong, Cris Sabiu, Hyunbae

More information

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics Tesla Jeltema Assistant Professor, Department of Physics Observational Cosmology and Astroparticle Physics Research Program Research theme: using the evolution of large-scale structure to reveal the fundamental

More information

The Galaxy Dark Matter Connection

The Galaxy Dark Matter Connection The Galaxy Dark Matter Connection constraining cosmology & galaxy formation Frank C. van den Bosch (MPIA) Collaborators: Houjun Mo (UMass), Xiaohu Yang (SHAO) Marcello Cacciato, Surhud More (MPIA) Kunming,

More information

Introduction to SDSS-IV and DESI

Introduction to SDSS-IV and DESI Introduction to SDSS-IV and DESI Ho Seong HWANG (KIAS) 2015 January 27 The 4th Survey Science Group Workshops SDSS-I: 2000-2005 SDSS-II: 2005-2008 SDSS-III: 2008-2014 SDSS-IV: 2014-2020 SDSS-IV: Project

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

Cosmology with high (z>1) redshift galaxy surveys

Cosmology with high (z>1) redshift galaxy surveys Cosmology with high (z>1) redshift galaxy surveys Donghui Jeong Texas Cosmology Center and Astronomy Department University of Texas at Austin Ph. D. thesis defense talk, 17 May 2010 Cosmology with HETDEX

More information

On the Assembly of Galaxies in Dark Matter Halos

On the Assembly of Galaxies in Dark Matter Halos On the Assembly of Galaxies in Dark Matter Halos...new insights from halo occupation modeling... collaborators: Zhankhui Lu, Houjun Mo, Neal Katz, Martin Weinberg (UMass), Xiaohu Yang, Youcai Zhang, Jiaxin

More information

Modelling the galaxy population

Modelling the galaxy population Modelling the galaxy population Simon White Max Planck Institut für Astrophysik IAU 277 Ouagadougou 1 The standard model reproduces -- the linear initial conditions -- IGM structure during galaxy formation

More information

SDSS-IV and eboss Science. Hyunmi Song (KIAS)

SDSS-IV and eboss Science. Hyunmi Song (KIAS) SDSS-IV and eboss Science Hyunmi Song (KIAS) 3rd Korea-Japan Workshop on Dark Energy April 4, 2016 at KASI Sloan Digital Sky Survey 2.5m telescopes at Apache Point Observatory (US) and Las Campanas Observatory

More information

The Formation and Evolution of Galaxy Clusters

The Formation and Evolution of Galaxy Clusters IAU Joint Discussion # 10 Sydney, July, 2003 The Formation and Evolution of Galaxy Clusters Simon D.M. White Max Planck Institute for Astrophysics The WMAP of the whole CMB sky Bennett et al 2003 > 105

More information

The Galaxy Dark Matter Connection

The Galaxy Dark Matter Connection The Galaxy Dark Matter Connection constraining cosmology & galaxy formation Frank C. van den Bosch (MPIA) Collaborators: Houjun Mo (UMass), Xiaohu Yang (SHAO) Marcello Cacciato, Surhud More, Simone Weinmann

More information

Large-scale structure as a probe of dark energy. David Parkinson University of Sussex, UK

Large-scale structure as a probe of dark energy. David Parkinson University of Sussex, UK Large-scale structure as a probe of dark energy David Parkinson University of Sussex, UK Question Who was the greatest actor to portray James Bond in the 007 movies? a) Sean Connery b) George Lasenby c)

More information

Active Galaxies and Galactic Structure Lecture 22 April 18th

Active Galaxies and Galactic Structure Lecture 22 April 18th Active Galaxies and Galactic Structure Lecture 22 April 18th FINAL Wednesday 5/9/2018 6-8 pm 100 questions, with ~20-30% based on material covered since test 3. Do not miss the final! Extra Credit: Thursday

More information

Simulations and the Galaxy Halo Connection

Simulations and the Galaxy Halo Connection Simulations and the Galaxy Halo Connection Yao-Yuan Mao (Stanford/SLAC PITT PACC) @yaoyuanmao yymao.github.io SCMA6 @ CMU 6/10/16 My collaborators at Stanford/SLAC Joe DeRose Ben Lehmann ( UCSC) Vincent

More information

Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey

Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey Beyond BAO: Redshift-Space Anisotropy in the WFIRST Galaxy Redshift Survey David Weinberg, Ohio State University Dept. of Astronomy and CCAPP Based partly on Observational Probes of Cosmic Acceleration

More information

Non-Standard Cosmological Simulations

Non-Standard Cosmological Simulations 7 th SSG:17/01/2018 Non-Standard Cosmological Simulations Juhan Kim, Changbom Park, & Benjamin L Huillier, Sungwook E. Hong KIAS & KASI Cosmology in Problem The Concordance LCDM: The Dark Age of Cosmology!

More information

The Galaxy Dark Matter Connection

The Galaxy Dark Matter Connection The Galaxy Dark Matter Connection constraining cosmology & galaxy formation Frank C. van den Bosch (MPIA) Collaborators: Houjun Mo (UMass), Xiaohu Yang (SHAO) Marcello Cacciato, Surhud More, Simone Weinmann

More information

arxiv: v3 [astro-ph.co] 18 Nov 2018

arxiv: v3 [astro-ph.co] 18 Nov 2018 DRAFT VERSION NOVEMBER 20, 2018 Typeset using L A TEX twocolumn style in AASTeX61 HOW ARE GALAXIES ASSIGNED TO HALOS? SEARCHING FOR ASSEMBLY BIAS IN THE SDSS GALAXY CLUSTERING MOHAMMADJAVAD VAKILI 1, 2

More information

A100H Exploring the Universe: Quasars, Dark Matter, Dark Energy. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: Quasars, Dark Matter, Dark Energy. Martin D. Weinberg UMass Astronomy A100H Exploring the :, Dark Matter, Dark Energy Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu April 19, 2016 Read: Chaps 20, 21 04/19/16 slide 1 BH in Final Exam: Friday 29 Apr at

More information

Results from the Baryon Oscillation Spectroscopic Survey (BOSS)

Results from the Baryon Oscillation Spectroscopic Survey (BOSS) Results from the Baryon Oscillation Spectroscopic Survey (BOSS) Beth Reid for SDSS-III/BOSS collaboration Hubble Fellow Lawrence Berkeley National Lab Outline No Ly-α forest here, but very exciting!! (Slosar

More information

Gravitational Lensing: Strong, Weak and Micro

Gravitational Lensing: Strong, Weak and Micro P. Schneider C. Kochanek J. Wambsganss Gravitational Lensing: Strong, Weak and Micro Saas-Fee Advanced Course 33 Swiss Society for Astrophysics and Astronomy Edited by G. Meylan, P. Jetzer and P. North

More information

Jorge Cervantes-Cota, ININ. on behalf of the DESI Collaboration

Jorge Cervantes-Cota, ININ. on behalf of the DESI Collaboration Jorge Cervantes-Cota, ININ on behalf of the DESI Collaboration PPC 2014 DESI Overview DESI is the Dark Energy Spectroscopic Instrument Pioneering Stage-IV Experiment recommended by Community DE report

More information

Active Galaxies & Quasars

Active Galaxies & Quasars Active Galaxies & Quasars Normal Galaxy Active Galaxy Galactic Nuclei Bright Active Galaxy NGC 5548 Galaxy Nucleus: Exact center of a galaxy and its immediate surroundings. If a spiral galaxy, it is the

More information

Where do Luminous Red Galaxies form?

Where do Luminous Red Galaxies form? Where do Luminous Red Galaxies form? The clustering of galaxies 2dF Galaxy Redshift Survey Redshift Distance (billions of light yrs) You are here The clustering of galaxies... encodes cosmological / astrophysical

More information

arxiv: v2 [astro-ph.ga] 8 May 2018

arxiv: v2 [astro-ph.ga] 8 May 2018 Draft version May 9, 2018 Preprint typeset using L A TEX style emulateapj v. 8/13/10 THE INCOMPLETE CONDITIONAL STELLAR MASS FUNCTION: UNVEILING THE STELLAR MASS FUNCTIONS OF GALAXIES AT 0.1 < Z < 0.8

More information

Clustering studies of ROSAT/SDSS AGN through cross-correlation functions with SDSS Galaxies

Clustering studies of ROSAT/SDSS AGN through cross-correlation functions with SDSS Galaxies Clustering studies of ROSAT/SDSS AGN through cross-correlation functions with SDSS Galaxies Mirko Krumpe (ESO, UCSD) mkrumpe@eso.org Collaborators: Takamitsu Miyaji (UNAM-E, UCSD), Alison L. Coil (UCSD),

More information

Redshift Space Distortion Introduction

Redshift Space Distortion Introduction Redshift Space Distortion Introduction Yi ZHENG ( 郑逸 ) Korea Institute of Advanced Study (KIAS) Cosmology School in the Canary Islands - Fuerteventura, Sep.18-22, 2017 Outline What s RSD? Anisotropic properties

More information

The State of Tension Between the CMB and LSS

The State of Tension Between the CMB and LSS The State of Tension Between the CMB and LSS Tom Charnock 1 in collaboration with Adam Moss 1 and Richard Battye 2 Phys.Rev. D91 (2015) 10, 103508 1 Particle Theory Group University of Nottingham 2 Jodrell

More information

arxiv: v2 [astro-ph.co] 21 Feb 2015

arxiv: v2 [astro-ph.co] 21 Feb 2015 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed February 24, 2015 (MN LATEX style file v2.2) Modelling The Redshift-Space Three-Point Correlation Function in SDSS-III arxiv:1409.7389v2 [astro-ph.co]

More information

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure

Cosmology. Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology Introduction Geometry and expansion history (Cosmic Background Radiation) Growth Secondary anisotropies Large Scale Structure Cosmology from Large Scale Structure Sky Surveys Supernovae Ia CMB

More information

Galaxy clusters. Dept. of Physics of Complex Systems April 6, 2018

Galaxy clusters. Dept. of Physics of Complex Systems April 6, 2018 Galaxy clusters László Dobos Dept. of Physics of Complex Systems dobos@complex.elte.hu É 5.60 April 6, 2018 Satellite galaxies Large galaxies are surrounded by orbiting dwarfs approx. 14-16 satellites

More information

arxiv: v1 [astro-ph.co] 11 Sep 2013

arxiv: v1 [astro-ph.co] 11 Sep 2013 To be submitted to the Astrophysical Journal Preprint typeset using L A TEX style emulateapj v. 5/2/11 COSMOLOGICAL DEPENDENCE OF THE MEASUREMENTS OF LUMINOSITY FUNCTION, PROJECTED CLUSTERING AND GALAXY-GALAXY

More information

LISA: Probing the Universe with Gravitational Waves. Tom Prince Caltech/JPL. Laser Interferometer Space Antenna LISA

LISA: Probing the Universe with Gravitational Waves. Tom Prince Caltech/JPL.  Laser Interferometer Space Antenna LISA : Probing the Universe with Gravitational Waves Tom Caltech/JPL Laser Interferometer Space Antenna http://lisa.nasa.gov Gravitational Wave Astronomy is Being Born LIGO, VIRGO, GEO, TAMA 4000m, 3000m, 2000m,

More information

Dwarf Galaxies as Cosmological Probes

Dwarf Galaxies as Cosmological Probes Dwarf Galaxies as Cosmological Probes Julio F. Navarro The Ursa Minor dwarf spheroidal First Light First Light The Planck Satellite The Cosmological Paradigm The Clustering of Dark Matter The Millennium

More information

Major Option C1 Astrophysics. C1 Astrophysics

Major Option C1 Astrophysics. C1 Astrophysics C1 Astrophysics Course co-ordinator: Julien Devriendt jeg@astro.ox.ac.uk C1 offers a total of ~40 lectures on five themes covering a broad range of topics in contemporary astrophysics. Each theme takes

More information

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab Dark Matter ASTR 2120 Sarazin Bullet Cluster of Galaxies - Dark Matter Lab Mergers: Test of Dark Matter vs. Modified Gravity Gas behind DM Galaxies DM = location of gravity Gas = location of most baryons

More information

Galaxy Formation and Evolution

Galaxy Formation and Evolution Galaxy Formation and Evolution Houjun Mo Department of Astronomy, University of Massachusetts 710 North Pleasant Str., Amherst, MA 01003-9305, USA Frank van den Bosch Department of Physics & Astronomy,

More information

The Galaxy Content of Groups and Clusters

The Galaxy Content of Groups and Clusters The Galaxy Content of Groups and Clusters results from the SDSS Frank van den Bosch (MPIA) in collaboration with Xiaohu Yang (SHAO), Houjun Mo (UMass), Simone Weinmann (Zurich) Surhud More (MPIA), Marcello

More information

Relativistic effects in large-scale structure

Relativistic effects in large-scale structure Relativistic effects in large-scale structure Camille Bonvin University of Geneva, Switzerland COSMO August 2017 Galaxy survey The distribution of galaxies is sensitive to: Credit: M. Blanton, SDSS the

More information

Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing

Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing Investigating Cluster Astrophysics and Cosmology with Cross-Correlation of Thermal Sunyaev-Zel dovich Effect and Weak Lensing 2017/7/14 13th Rencontres du Vietnam: Cosmology Ken Osato Dept. of Physics,

More information

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies Other Galaxy Types Active Galaxies Active Galaxies Seyfert galaxies Radio galaxies Quasars Origin??? Different in appearance Produce huge amount of energy Similar mechanism a Galactic mass black hole at

More information

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015 BROCK UNIVERSITY Page 1 of 9 Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015 Number of hours: 50 min Time of Examination: 18:00 18:50

More information

LSS: Achievements & Goals. John Peacock Munich 20 July 2015

LSS: Achievements & Goals. John Peacock Munich 20 July 2015 LSS: Achievements & Goals John Peacock LSS @ Munich 20 July 2015 Outline (pre-)history and empirical foundations The ΛCDM toolkit Open issues and outlook Fundamentalist Astrophysical A century of galaxy

More information

Next Generation (Semi-)Empirical galaxy formation models - Matching individual galaxies

Next Generation (Semi-)Empirical galaxy formation models - Matching individual galaxies Next Generation (Semi-)Empirical galaxy formation models - Matching individual galaxies Benjamin Moster (IoA/KICC)! Simon White, Thorsten Naab (MPA), Rachel Somerville (Rutgers), Frank van den Bosch (Yale),

More information

arxiv: v2 [astro-ph.co] 7 May 2014

arxiv: v2 [astro-ph.co] 7 May 2014 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed July 20, 2018 (MN LATEX style file v2.2) arxiv:1401.3009v2 [astro-ph.co] 7 May 2014 The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic

More information

GALAXY CLUSTERING. Emmanuel Schaan AST 542 April 10th 2013

GALAXY CLUSTERING. Emmanuel Schaan AST 542 April 10th 2013 GALAXY CLUSTERING Emmanuel Schaan AST 542 April 10th 2013 INTRODUCTION: SCALES GALAXIES: 10kpc Milky Way: 10kpc, 10 12 Mo GALAXY GROUPS: 100kpc or «poor clusters» Local Group: ~50gal, 3Mpc, 10 13 Mo GALAXY

More information

Formation and growth of galaxies in the young Universe: progress & challenges

Formation and growth of galaxies in the young Universe: progress & challenges Obergurgl. April 2014 Formation and growth of galaxies in the young Universe: progress & challenges Simon White Max Planck Institute for Astrophysics Ly α forest spectra and small-scale initial structure

More information

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background Masato Shirasaki (Univ. of Tokyo) with Shunsaku Horiuchi (UCI), Naoki Yoshida (Univ. of Tokyo, IPMU) Extragalactic Gamma-Ray Background

More information

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident Big Bang Moment of beginning of space-time about 13.7 billion years ago The time at which all the material and energy in the expanding Universe was coincident Only moment in the history of the Universe

More information

AST Cosmology and extragalactic astronomy. Lecture 20. Black Holes Part II

AST Cosmology and extragalactic astronomy. Lecture 20. Black Holes Part II AST4320 - Cosmology and extragalactic astronomy Lecture 20 Black Holes Part II 1 AST4320 - Cosmology and extragalactic astronomy Outline: Black Holes Part II Gas accretion disks around black holes, and

More information

Galaxies and Cosmology

Galaxies and Cosmology F. Combes P. Boisse A. Mazure A. Blanchard Galaxies and Cosmology Translated by M. Seymour With 192 Figures Springer Contents General Introduction 1 1 The Classification and Morphology of Galaxies 5 1.1

More information

Galaxy formation in cold dark matter

Galaxy formation in cold dark matter Galaxy formation in cold dark matter Cheng Zhao Tsinghua Center for Astrophysics Oct 27, 2017 Main references: Press & Schechter, 1974 White & Rees, 1978 Galaxy formation mechanism Cosmological initial

More information

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night LECTURE 1: Introduction to Galaxies The Milky Way on a clear night VISIBLE COMPONENTS OF THE MILKY WAY Our Sun is located 28,000 light years (8.58 kiloparsecs from the center of our Galaxy) in the Orion

More information

the galaxy-halo connection from abundance matching: simplicity and complications

the galaxy-halo connection from abundance matching: simplicity and complications the galaxy-halo connection from abundance matching: simplicity and complications R isa Wechsler with Peter Behroozi, Michael Busha, Rachel Reddick (KIPAC/Stanford) & Charlie Conroy (Harvard/CfA) subhalo

More information

Galaxy Cluster Mergers

Galaxy Cluster Mergers Galaxy Cluster Mergers Alexia Schulz Institute for Advanced Study Andrew Wetzel Daniel Holz Mike Warren Talk Overview! Introduction " Why are cluster mergers of interest? " Where will mergers complicate

More information

Observational Cosmology

Observational Cosmology (C. Porciani / K. Basu) Lecture 7 Cosmology with galaxy clusters (Mass function, clusters surveys) Course website: http://www.astro.uni-bonn.de/~kbasu/astro845.html Outline of the two lecture Galaxy clusters

More information

f GR (z) dlng GR dlna

f GR (z) dlng GR dlna Precision Cosmology With Large Scale Structure, Ohio State University ICTP Cosmology Summer School 2015 Lecture 2: Theoretical Approaches Dark Matter Clustering If collisionless dark matter were the only

More information

Galaxy formation and evolution I. (Some) observational facts

Galaxy formation and evolution I. (Some) observational facts Galaxy formation and evolution I. (Some) observational facts Gabriella De Lucia Astronomical Observatory of Trieste Outline: ü Observational properties of galaxies ü Galaxies and Cosmology ü Gas accretion

More information

Quasars and Active Galactic Nuclei (AGN)

Quasars and Active Galactic Nuclei (AGN) Quasars and Active Galactic Nuclei (AGN) Astronomy Summer School in Mongolia National University of Mongolia, Ulaanbaatar July 21-26, 2008 Kaz Sekiguchi Hubble Classification M94-Sa M81-Sb M101-Sc M87-E0

More information

Princeton December 2009 The fine-scale structure of dark matter halos

Princeton December 2009 The fine-scale structure of dark matter halos Princeton December 2009 The fine-scale structure of dark matter halos Simon White Max Planck Institute for Astrophysics The dark matter structure of CDM halos A rich galaxy cluster halo Springel et al

More information

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures April 2006 The Iguaçu Lectures Nonlinear Structure Formation: The growth of galaxies and larger scale structures Simon White Max Planck Institute for Astrophysics z = 0 Dark Matter ROT EVOL Cluster structure

More information

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES)

Dark Energy. Cluster counts, weak lensing & Supernovae Ia all in one survey. Survey (DES) Dark Energy Cluster counts, weak lensing & Supernovae Ia all in one survey Survey (DES) What is it? The DES Collaboration will build and use a wide field optical imager (DECam) to perform a wide area,

More information

BARYON ACOUSTIC OSCILLATIONS. Cosmological Parameters and You

BARYON ACOUSTIC OSCILLATIONS. Cosmological Parameters and You BARYON ACOUSTIC OSCILLATIONS Cosmological Parameters and You OUTLINE OF TOPICS Definitions of Terms Big Picture (Cosmology) What is going on (History) An Acoustic Ruler(CMB) Measurements in Time and Space

More information

Feedback, AGN and galaxy formation. Debora Sijacki

Feedback, AGN and galaxy formation. Debora Sijacki Feedback, AGN and galaxy formation Debora Sijacki Formation of black hole seeds: the big picture Planck data, 2013 (new results 2015) Formation of black hole seeds: the big picture CMB black body spectrum

More information

Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name

Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name Astronomy 132 - Stars, Galaxies and Cosmology Exam 3 Please PRINT full name Also, please sign the honor code: I have neither given nor have I received help on this exam The following exam is intended to

More information

Star systems like our Milky Way. Galaxies

Star systems like our Milky Way. Galaxies Galaxies Star systems like our Milky Way Galaxies Contain a few thousand to tens of billions of stars,as well as varying amounts of gas and dust Large variety of shapes and sizes Gas and Dust in

More information

Journal Club 2017/10/16

Journal Club 2017/10/16 Journal Club 2017/10/16 [1]:Dynamics of merging: Post-merger mixing and relaxation of an Illustris galaxy [arxiv:1709.0001] Anthony M. Young, Liliya L. R. Williams, Jens Hjorth [2]:The impact of galaxy

More information

Energy Source for Active Galactic Nuclei

Energy Source for Active Galactic Nuclei Quasars Quasars are small, extremely luminous, extremely distant galactic nuclei Bright radio sources Name comes from Quasi-Stellar Radio Source, as they appeared to be stars! Can have clouds of gas near

More information

AGN in hierarchical galaxy formation models

AGN in hierarchical galaxy formation models AGN in hierarchical galaxy formation models Nikos Fanidakis and C.M. Baugh, R.G. Bower, S. Cole, C. Done, C. S. Frenk Physics of Galactic Nuclei, Ringberg Castle, June 18, 2009 Outline Brief introduction

More information

Theoretical models of the halo occupation distribution: Separating central and satellite galaxies

Theoretical models of the halo occupation distribution: Separating central and satellite galaxies University of Massachusetts Amherst ScholarWorks@UMass Amherst Astronomy Department Faculty Publication Series Astronomy 2005 Theoretical models of the halo occupation distribution: Separating central

More information

HI Galaxy Science with SKA1. Erwin de Blok (ASTRON, NL) on behalf of The HI Science Working Group

HI Galaxy Science with SKA1. Erwin de Blok (ASTRON, NL) on behalf of The HI Science Working Group HI Galaxy Science with SKA1 Erwin de Blok (ASTRON, NL) on behalf of The HI Science Working Group SKA1 HI Science Priorities Resolved HI kinematics and morphology of ~10 10 M mass galaxies out to z~0.8

More information

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Lecture 20 High-Energy Astronomy HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Tut 5 remarks Generally much better. However: Beam area. T inst

More information

eboss Lyman-α Forest Cosmology

eboss Lyman-α Forest Cosmology Moriond Cosmology Conference, La Thuile, 18th March 2018 eboss Lyman-α Forest Cosmology Matthew Pieri and BOSS & eboss Lyα Working Groups Quasar Spectra and Lyman α Forest Quasar Intergalactic medium Line-of-sight

More information

Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya

Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya Galaxies, AGN and Quasars Physics 113 Goderya Chapter(s): 16 and 17 Learning Outcomes: Galaxies Star systems like our Milky Way Contain a few thousand to tens of billions of stars. Large variety of shapes

More information

Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect

Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect Constraining Dark Energy and Modified Gravity with the Kinetic SZ effect Eva-Maria Mueller Work in collaboration with Rachel Bean, Francesco De Bernardis, Michael Niemack (arxiv 1408.XXXX, coming out tonight)

More information