Design of Optimal Bayesian Reliability Test Plans for a Series System

Size: px
Start display at page:

Download "Design of Optimal Bayesian Reliability Test Plans for a Series System"

Transcription

1 Volume 109 No , ISSN: (printed version); ISSN: (on-line version) url: ijpameu Design of Optimal Bayesian Reliability Test Plans for a Series System P N Bajeel 1 and M Kumar 2 Department of Mathematics, National Institute of Technology Calicut, India 1 bajeelpn@gmailcom, 2 mahesh@nitcacin Corresponding author July 18, 2016 Abstract Consider a series system with n independent components Assume that lifetime of i th component follows exponential distribution with unknown parameter, 1 i n We assume each, 1 i n, is distinct and the priori information can be modeled by quasi-density function given by g 1 λ k, k 0, u i, where u i is a predefined upper bound A Bayesian estimator for, 1 i n, i based on data obtained through type-i censoring is used to get an estimate of system reliability Optimal reliability test plan is designed, and an optimization problem is formulated satisfying usual probability requirements Several numerical examples are considered to illustrate the Bayesian approach of obtaining optimal reliability test plan for a series system AMS Subject Classification: 62N05 Key Words and Phrases: Exponential distribution, Reliability, Life testing, Type-I censoring, Delta method, Type-I error, Type-II error, Error loss function ijpameu

2 1 Introduction When a manufacturer produces a new product, he should test the reliability of the product for a particular duration of time to make sure that the product will perform to the best as expected by the consumer Fixing of the testing time based on prior information is one of the difficult tasks The incorporation of priori information about the failure rate and its upper bounds, take a significant role for fixing the duration of testing time in the design of reliability test plans Some of the references related to optimal reliability test plans for exponentially distributed lifetimes of components, with constant unknown failure rates are [1, 2, 3, 8, 9, 7, 6] The optimal test times or an optimal number of components to be tested, reported under various situations in these papers are supposed to be used under normal working conditions regardless of the environment in which component testing is to be carried out In [4], the reliability test plan for a series system is constructed by assuming constant failure rate that depends upon the mission performed For a parallel system consisting of n components, [5] designed reliability test plans with the assumption that the components have lifetimes that are exponentially distributed The parameters, 1 i n, of the exponential distributions depend upon k covariates through exponential relationships But, there is no literature available in Bayesian reliability test plans In this paper, we propose a Bayesian reliability test plan for a series system consisting of n components with the assumption that components have lifetimes that are exponentially distributed with non-informative quasi-prior; here, some preliminaries are given and then the problem is formulated as a reliability optimization problem The system is accepted if the reliability estimate ˆR d, where d (0, 1) and the reliability estimate is obtained using the Bayesian estimator of failure rate A system is considered at time t 1 to be satisfactory if R, the probability that the system survives for one unit time is greater than or equal to R 1 and it is considered to be unsatisfactory if R R 0, where R 0 and R 1 are constant such that 0 < R 0 < R 1 < 1 Then the solution procedure of the formulated optimization problem is explained and type-i censoring scheme is employed to obtain the data Finally, the developed optimal test plan is illustrated through examples ijpameu

3 2 Some Preliminaries and Description of the Problem In this paper, we are considering the problem of testing the reliability of a series system with n independent components under type-i censoring, where the i th component has exponential lifetime with unknown parameter, u i i 1, 2,, n, and u i is the predefined upper bound of the failure rate Then the series system reliability for unit time period is given by R n e We consider the quasi-prior g 1, k 0, a simple prior as the λ k i non-informative quasi-prior for We test the i th component in (0, ] As soon as the component fails, it will be replaced by an identical component, so that the testing continue till the fixed time, 1 i n Posterior Distribution Based on Type-I Censoring: Since T ij, the lifetime of j th component of type i, follows Exponential distribution with failure rate, the pdf of T ij is given by f(t ij ) e t ij Then the likelihood function based on type-i censoring is given by L λi e t δj ij e t 1 δj ij λ X i i e, j N where δ i 1 if t ij, δ i 0 if t ij >, X i δ j and j N t ij j N Let f(t ij, ), g( t ij ) and f(t ij ) be the joint density of t ij and, the conditional density of, given t ij, and the conditional density of t ij, given, respectively Under the assumption that the marginal densities m(t ij ) and g of t ij and, respectively, satisfy the conditions required for the existence of conditional densities, we have g( t ij ) f(t ij, ) and f(t ij ) f(t ij, ) m(t ij ) g Thus the posterior distribution of is given by g( t ij ) g()f(t ij ) m(t ij ) λ X i i e 1 λ k i 0 g()f(t ij )d gf(t ij ) 0 g()f(t ij )d L X i k+1 i Γ (X i k + 1) λx i k i e ijpameu

4 Reliability ( Estimate of the System at Unit Period: ( E ˆλ ) ) 2 i ( ˆλ ) 2 i f(λi )d Differentiate on ˆ and equate to zero implies we have, ˆ E Now E from posterior distribution is nothing but the mean of gamma random variable That is, ˆ E X i k + 1 The reliability estimate of the system reliability is obtained using the Bayesian estimator of failure rates ˆR n e ˆ Xi k+1 n e Acceptance Rule Based on Reliability Estimate: Accept the system if the estimate of the system reliability based on Bayesian Xi k+1 estimator of given by ˆR n e is greater than or equal to some number d, where d (0, 1) Then ˆR d Xi k+1 n e d n Xi k + 1 ln d A system is said to be satisfactory for unit time if R, the survival probability, is greater than or equal to R 1, the acceptable reliability level (ARL) and, it is said to be unsatisfactory if R is less than or equal to R 0, the unacceptable reliability level (URL), where R 0 and R 1 are constants such that 0 < R 0 < R 1 < 1 Then we have the following relations: R R 1 n e R 1 n λ 1 ln R 1, R R 0 n e R 0 n λ 1 ln R 0 Mean and Variance of the Test Statistic: Since the lifetime is exponentially distributed, the number of failures follows Poisson distribution with mean and variance Then, Xi k + 1 E Xi k + 1 V ar Li k + 1 V ar E Li k + 1, ( ( X i k + 1 ) X i k + 1 ) ijpameu

5 3 Optimal Design of the Problem Let c i denote the cost of testing the i th component per unit time Then the aim is to find the time periods, 1 i n that minimize the total testing cost subjected to type-i and type-ii error constraints That is, the problem is to determine the optimum values of by formulating the following optimization problem: Minimize C n c i such that P (Accept the system System is good) 1 α, (1) P (Accept the system System is bad) β, (2) where 0 < β, 1 α < 1 Here the first constraint is usually referred to as producer s risk while the second is the consumer s risk Using the acceptance rule defined in the previous section, the constraints (1) and (2) can be written as min P ( max P X i k + 1 ln d ( The exact distribution of ) ln R 1 1 α, (3) X i k + 1 ln d ) ln R 0 β (4) X i k + 1 is not easy to obtain, and in order to obtain the tractable problem, we therefore need to X i k + 1 approximate the distribution of Recall that n X i k + 1 has mean n k + 1 and variance Then constraints (3) and (4) become min ln d n k + 1 ln R 1 Z 1 α, (5) ijpameu

6 ln d n k + 1 max ln R 0 Z β (6) Z 1 α and Z β are strictly positive and negative respectively for all values of α, β < 05 Now consider the optimization problem in left hand side of the constraint (5) Clearly, this optimization problem will attain the optimum when n ln R 1, then this optimization problem can be rewritten as 1 ln d + ln R 1 + (k 1) min such that ln R 1 Since the numerator is a positive and independent of, to minimize the objective function, it is enough to maximize the denominator Now, using the priori information on upper bound of failure rate, this optimization problem can be rewritten as max such that ln R 1, u i i 1, 2,, n This is an optimization problem in Define ϑ1 i u i if i j and ϑ1 i ln R 1 i j u i if i j for j 1, 2,, n Then it is clear that by assuming feasibility, the optimum solution to above maximization problem will be at any one of these ϑ1 i s, let it be ϑ1 i Then the constraint (5) can be written as Z 1 α n ϑ1 i (k 1) 1 ln d + ln R 1 (7) Similarly by defining ϑ2 i u i if i j and ϑ2 i ln R 0 i j u i if i j for j 1, 2,, n, and by assuming feasibility, the optimum solution of the maximization problem corresponding to constraint ijpameu

7 (6) will be at any one of these ϑ2 i s, let it be ϑ2 i, and then the constraint (6) can be rewritten as Z β n ϑ2 i (k 1) 1 ln d + ln R 0 (8) Now for d (0, 1), the optimal design is a convex programming problem to minimize C n c i subjected to constraints (7) and (8) It can be solved easily 4 Numerical Results The method presented in the previous section is illustrated below with the help of numerical computation Let the number of components in a series system be 3 and the cost vector c (1, 15, 2) and the upper bound vector of failure rate u (007, 005, 007) Then the following Table gives the optimal test times and total testing cost for different inputs Table 1 Numerical examples for a three component series system α β R 0 R 1 k L 1 L 2 L 3 C ln d The results are generated by running Visual C++ and LINGO11 in tandem The programming is done in Visual C++, within which LINGO11 is called whenever an optimization required 5 Conclusions In this paper, the designing of an optimal reliability test plan for a series system with a failure rate as random variable having quasidensity is discussed in detail The data are obtained through type-i censoring scheme, and the reliability estimator is obtained by estimating a Bayesian estimator of failure rate Some numerical examples are also computed to illustrate the Bayesian approach of ijpameu

8 estimating system reliability and thereby to test the system reliability References [1] IK Altmel, The design of optimum component test plans in the demonstration of a series system reliability, Computational statistics & data analysis, 14 No3 (1992), [2] IK Altinel, The design of optimum component test plans in the demonstration of system reliability, European Journal of Operational Research, 78 No3 (1994), [3] IK Altinel, S zekici, Optimum component test plans for systems with dependent components, European journal of operational research, 111 No1 (1998), [4] IK Altinel, S zekici, O Feyziog, Component testing of a series system in a random mission, Reliability Engineering & System Safety, 78 No1 (2002), [5] P N Bajeel, M Kumar, A component reliability test plan for a parallel system with failure rate as the exponential function of covariates, Mathematics in Engineering, Science & Aerospace, 6 No2 (2015), [6] J Rajgopal, M Mazumdar, Minimum cost component test plans for evaluating reliability of a highly reliable parallel system, Naval Research Logistics, 44 No5 (1997), [7] M Mazumdar, An optimum procedure for component testing in the demonstration of series system reliability, IEEE transactions on reliability, 26 No5 (1997), [8] RG Easterling, M Mazumdar, F W Spencer, K V Diegert, System-based component-test plans and operating characteristics: binomial data, Technometrics, 33 No3 (1991), [9] S Gal, Optimal test design for reliability demonstration, Operations Research, 22 No6 (1974), ijpameu

9 133

Bayesian Analysis of Simple Step-stress Model under Weibull Lifetimes

Bayesian Analysis of Simple Step-stress Model under Weibull Lifetimes Bayesian Analysis of Simple Step-stress Model under Weibull Lifetimes A. Ganguly 1, D. Kundu 2,3, S. Mitra 2 Abstract Step-stress model is becoming quite popular in recent times for analyzing lifetime

More information

Step-Stress Models and Associated Inference

Step-Stress Models and Associated Inference Department of Mathematics & Statistics Indian Institute of Technology Kanpur August 19, 2014 Outline Accelerated Life Test 1 Accelerated Life Test 2 3 4 5 6 7 Outline Accelerated Life Test 1 Accelerated

More information

Statistical Inference Using Progressively Type-II Censored Data with Random Scheme

Statistical Inference Using Progressively Type-II Censored Data with Random Scheme International Mathematical Forum, 3, 28, no. 35, 1713-1725 Statistical Inference Using Progressively Type-II Censored Data with Random Scheme Ammar M. Sarhan 1 and A. Abuammoh Department of Statistics

More information

COMPARISON OF RELATIVE RISK FUNCTIONS OF THE RAYLEIGH DISTRIBUTION UNDER TYPE-II CENSORED SAMPLES: BAYESIAN APPROACH *

COMPARISON OF RELATIVE RISK FUNCTIONS OF THE RAYLEIGH DISTRIBUTION UNDER TYPE-II CENSORED SAMPLES: BAYESIAN APPROACH * Jordan Journal of Mathematics and Statistics JJMS 4,, pp. 6-78 COMPARISON OF RELATIVE RISK FUNCTIONS OF THE RAYLEIGH DISTRIBUTION UNDER TYPE-II CENSORED SAMPLES: BAYESIAN APPROACH * Sanku Dey ABSTRACT:

More information

A Reliability Sampling Plan to ensure Percentiles through Weibull Poisson Distribution

A Reliability Sampling Plan to ensure Percentiles through Weibull Poisson Distribution Volume 117 No. 13 2017, 155-163 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu A Reliability Sampling Plan to ensure Percentiles through Weibull

More information

BAYESIAN ESTIMATION OF THE EXPONENTI- ATED GAMMA PARAMETER AND RELIABILITY FUNCTION UNDER ASYMMETRIC LOSS FUNC- TION

BAYESIAN ESTIMATION OF THE EXPONENTI- ATED GAMMA PARAMETER AND RELIABILITY FUNCTION UNDER ASYMMETRIC LOSS FUNC- TION REVSTAT Statistical Journal Volume 9, Number 3, November 211, 247 26 BAYESIAN ESTIMATION OF THE EXPONENTI- ATED GAMMA PARAMETER AND RELIABILITY FUNCTION UNDER ASYMMETRIC LOSS FUNC- TION Authors: Sanjay

More information

Constant Stress Partially Accelerated Life Test Design for Inverted Weibull Distribution with Type-I Censoring

Constant Stress Partially Accelerated Life Test Design for Inverted Weibull Distribution with Type-I Censoring Algorithms Research 013, (): 43-49 DOI: 10.593/j.algorithms.01300.0 Constant Stress Partially Accelerated Life Test Design for Mustafa Kamal *, Shazia Zarrin, Arif-Ul-Islam Department of Statistics & Operations

More information

Estimation Under Multivariate Inverse Weibull Distribution

Estimation Under Multivariate Inverse Weibull Distribution Global Journal of Pure and Applied Mathematics. ISSN 097-768 Volume, Number 8 (07), pp. 4-4 Research India Publications http://www.ripublication.com Estimation Under Multivariate Inverse Weibull Distribution

More information

TMA 4275 Lifetime Analysis June 2004 Solution

TMA 4275 Lifetime Analysis June 2004 Solution TMA 4275 Lifetime Analysis June 2004 Solution Problem 1 a) Observation of the outcome is censored, if the time of the outcome is not known exactly and only the last time when it was observed being intact,

More information

Chapter 2. Discrete Distributions

Chapter 2. Discrete Distributions Chapter. Discrete Distributions Objectives ˆ Basic Concepts & Epectations ˆ Binomial, Poisson, Geometric, Negative Binomial, and Hypergeometric Distributions ˆ Introduction to the Maimum Likelihood Estimation

More information

Optimum Test Plan for 3-Step, Step-Stress Accelerated Life Tests

Optimum Test Plan for 3-Step, Step-Stress Accelerated Life Tests International Journal of Performability Engineering, Vol., No., January 24, pp.3-4. RAMS Consultants Printed in India Optimum Test Plan for 3-Step, Step-Stress Accelerated Life Tests N. CHANDRA *, MASHROOR

More information

Group Acceptance Sampling Plans using Weighted Binomial on Truncated Life Tests for Inverse Rayleigh and Log Logistic Distributions

Group Acceptance Sampling Plans using Weighted Binomial on Truncated Life Tests for Inverse Rayleigh and Log Logistic Distributions IOSR Journal of Mathematics (IOSRJM) ISSN: 78-578 Volume, Issue 3 (Sep.-Oct. 01), PP 33-38 Group Acceptance Sampling Plans using Weighted Binomial on Truncated Life Tests for Inverse Rayleigh and Log Logistic

More information

Online publication date: 01 March 2010 PLEASE SCROLL DOWN FOR ARTICLE

Online publication date: 01 March 2010 PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [2007-2008-2009 Pohang University of Science and Technology (POSTECH)] On: 2 March 2010 Access details: Access Details: [subscription number 907486221] Publisher Taylor

More information

Optimum Hybrid Censoring Scheme using Cost Function Approach

Optimum Hybrid Censoring Scheme using Cost Function Approach Optimum Hybrid Censoring Scheme using Cost Function Approach Ritwik Bhattacharya 1, Biswabrata Pradhan 1, Anup Dewanji 2 1 SQC and OR Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, PIN-

More information

Moments of the Reliability, R = P(Y<X), As a Random Variable

Moments of the Reliability, R = P(Y<X), As a Random Variable International Journal of Computational Engineering Research Vol, 03 Issue, 8 Moments of the Reliability, R = P(Y

More information

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition Preface Preface to the First Edition xi xiii 1 Basic Probability Theory 1 1.1 Introduction 1 1.2 Sample Spaces and Events 3 1.3 The Axioms of Probability 7 1.4 Finite Sample Spaces and Combinatorics 15

More information

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain 0.1. INTRODUCTION 1 0.1 Introduction R. A. Fisher, a pioneer in the development of mathematical statistics, introduced a measure of the amount of information contained in an observaton from f(x θ). Fisher

More information

RELATIVE ERRORS IN RELIABILITY MEASURES. University of Maine and University of New Brunswick

RELATIVE ERRORS IN RELIABILITY MEASURES. University of Maine and University of New Brunswick RELATIVE ERRORS IN RELIABILITY MEASURES BY PUSHPA L. GUPTA AND R.D. GUPTA 1 University of Maine and University of New Brunswick A common assumption, in reliability and lifetesting situations when the components

More information

Parameters Estimation for a Linear Exponential Distribution Based on Grouped Data

Parameters Estimation for a Linear Exponential Distribution Based on Grouped Data International Mathematical Forum, 3, 2008, no. 33, 1643-1654 Parameters Estimation for a Linear Exponential Distribution Based on Grouped Data A. Al-khedhairi Department of Statistics and O.R. Faculty

More information

Comparison of Least Square Estimators with Rank Regression Estimators of Weibull Distribution - A Simulation Study

Comparison of Least Square Estimators with Rank Regression Estimators of Weibull Distribution - A Simulation Study ISSN 168-80 Journal of Statistics Volume 0, 01. pp. 1-10 Comparison of Least Square Estimators with Rank Regression Estimators of Weibull Distribution - A Simulation Study Abstract Chandika Rama Mohan

More information

Bayes Prediction Bounds for Right Ordered Pareto Type - II Data

Bayes Prediction Bounds for Right Ordered Pareto Type - II Data J. Stat. Appl. Pro. 3, No. 3, 335-343 014 335 Journal of Statistics Applications & Probability An International Journal http://dx.doi.org/10.1785/jsap/030304 Bayes Prediction Bounds for Right Ordered Pareto

More information

A New Two Sample Type-II Progressive Censoring Scheme

A New Two Sample Type-II Progressive Censoring Scheme A New Two Sample Type-II Progressive Censoring Scheme arxiv:609.05805v [stat.me] 9 Sep 206 Shuvashree Mondal, Debasis Kundu Abstract Progressive censoring scheme has received considerable attention in

More information

Exercises. (a) Prove that m(t) =

Exercises. (a) Prove that m(t) = Exercises 1. Lack of memory. Verify that the exponential distribution has the lack of memory property, that is, if T is exponentially distributed with parameter λ > then so is T t given that T > t for

More information

Truncated Life Test Sampling Plan Under Odd-Weibull Distribution

Truncated Life Test Sampling Plan Under Odd-Weibull Distribution International Journal of Mathematics Trends and Technology ( IJMTT ) Volume 9 Number 2 - July Truncated Life Test Sampling Plan Under Odd-Weibull Distribution G.Laxshmimageshpraba 1, Dr.S.Muthulakshmi

More information

Evaluating the value of structural heath monitoring with longitudinal performance indicators and hazard functions using Bayesian dynamic predictions

Evaluating the value of structural heath monitoring with longitudinal performance indicators and hazard functions using Bayesian dynamic predictions Evaluating the value of structural heath monitoring with longitudinal performance indicators and hazard functions using Bayesian dynamic predictions C. Xing, R. Caspeele, L. Taerwe Ghent University, Department

More information

Estimation in an Exponentiated Half Logistic Distribution under Progressively Type-II Censoring

Estimation in an Exponentiated Half Logistic Distribution under Progressively Type-II Censoring Communications of the Korean Statistical Society 2011, Vol. 18, No. 5, 657 666 DOI: http://dx.doi.org/10.5351/ckss.2011.18.5.657 Estimation in an Exponentiated Half Logistic Distribution under Progressively

More information

Structural Reliability

Structural Reliability Structural Reliability Thuong Van DANG May 28, 2018 1 / 41 2 / 41 Introduction to Structural Reliability Concept of Limit State and Reliability Review of Probability Theory First Order Second Moment Method

More information

On Weighted Exponential Distribution and its Length Biased Version

On Weighted Exponential Distribution and its Length Biased Version On Weighted Exponential Distribution and its Length Biased Version Suchismita Das 1 and Debasis Kundu 2 Abstract In this paper we consider the weighted exponential distribution proposed by Gupta and Kundu

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 8 1 / 11 The Prior Distribution Definition Suppose that one has a statistical model with parameter

More information

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator Estimation Theory Estimation theory deals with finding numerical values of interesting parameters from given set of data. We start with formulating a family of models that could describe how the data were

More information

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio Estimation of reliability parameters from Experimental data (Parte 2) This lecture Life test (t 1,t 2,...,t n ) Estimate θ of f T t θ For example: λ of f T (t)= λe - λt Classical approach (frequentist

More information

SPRING 2007 EXAM C SOLUTIONS

SPRING 2007 EXAM C SOLUTIONS SPRING 007 EXAM C SOLUTIONS Question #1 The data are already shifted (have had the policy limit and the deductible of 50 applied). The two 350 payments are censored. Thus the likelihood function is L =

More information

On the Comparison of Fisher Information of the Weibull and GE Distributions

On the Comparison of Fisher Information of the Weibull and GE Distributions On the Comparison of Fisher Information of the Weibull and GE Distributions Rameshwar D. Gupta Debasis Kundu Abstract In this paper we consider the Fisher information matrices of the generalized exponential

More information

Hybrid Censoring; An Introduction 2

Hybrid Censoring; An Introduction 2 Hybrid Censoring; An Introduction 2 Debasis Kundu Department of Mathematics & Statistics Indian Institute of Technology Kanpur 23-rd November, 2010 2 This is a joint work with N. Balakrishnan Debasis Kundu

More information

Lecture 3. G. Cowan. Lecture 3 page 1. Lectures on Statistical Data Analysis

Lecture 3. G. Cowan. Lecture 3 page 1. Lectures on Statistical Data Analysis Lecture 3 1 Probability (90 min.) Definition, Bayes theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics,

More information

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data

Part III. Hypothesis Testing. III.1. Log-rank Test for Right-censored Failure Time Data 1 Part III. Hypothesis Testing III.1. Log-rank Test for Right-censored Failure Time Data Consider a survival study consisting of n independent subjects from p different populations with survival functions

More information

Pattern Recognition. Parameter Estimation of Probability Density Functions

Pattern Recognition. Parameter Estimation of Probability Density Functions Pattern Recognition Parameter Estimation of Probability Density Functions Classification Problem (Review) The classification problem is to assign an arbitrary feature vector x F to one of c classes. The

More information

Failure rate in the continuous sense. Figure. Exponential failure density functions [f(t)] 1

Failure rate in the continuous sense. Figure. Exponential failure density functions [f(t)] 1 Failure rate (Updated and Adapted from Notes by Dr. A.K. Nema) Part 1: Failure rate is the frequency with which an engineered system or component fails, expressed for example in failures per hour. It is

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 January 18, 2018 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 18, 2018 1 / 9 Sampling from a Bernoulli Distribution Theorem (Beta-Bernoulli

More information

A Control Chart for Time Truncated Life Tests Using Exponentiated Half Logistic Distribution

A Control Chart for Time Truncated Life Tests Using Exponentiated Half Logistic Distribution Appl. Math. Inf. Sci. 12, No. 1, 125-131 (2018 125 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.18576/amis/120111 A Control Chart for Time Truncated Life Tests

More information

5. Discriminant analysis

5. Discriminant analysis 5. Discriminant analysis We continue from Bayes s rule presented in Section 3 on p. 85 (5.1) where c i is a class, x isap-dimensional vector (data case) and we use class conditional probability (density

More information

International Journal of Mathematical Archive-3(11), 2012, Available online through ISSN

International Journal of Mathematical Archive-3(11), 2012, Available online through  ISSN International Journal of Mathematical Archive-3(11), 2012, 3982-3989 Available online through www.ijma.info ISSN 2229 5046 DESINGNING GROUP ACCEPTANCE SAMPLING PLANS FOR THE GENERALISED RAYLEIGH DISTRIBUTION

More information

Parameter Estimation

Parameter Estimation Parameter Estimation Chapters 13-15 Stat 477 - Loss Models Chapters 13-15 (Stat 477) Parameter Estimation Brian Hartman - BYU 1 / 23 Methods for parameter estimation Methods for parameter estimation Methods

More information

Exact Inference for the Two-Parameter Exponential Distribution Under Type-II Hybrid Censoring

Exact Inference for the Two-Parameter Exponential Distribution Under Type-II Hybrid Censoring Exact Inference for the Two-Parameter Exponential Distribution Under Type-II Hybrid Censoring A. Ganguly, S. Mitra, D. Samanta, D. Kundu,2 Abstract Epstein [9] introduced the Type-I hybrid censoring scheme

More information

STATISTICAL INFERENCE IN ACCELERATED LIFE TESTING WITH GEOMETRIC PROCESS MODEL. A Thesis. Presented to the. Faculty of. San Diego State University

STATISTICAL INFERENCE IN ACCELERATED LIFE TESTING WITH GEOMETRIC PROCESS MODEL. A Thesis. Presented to the. Faculty of. San Diego State University STATISTICAL INFERENCE IN ACCELERATED LIFE TESTING WITH GEOMETRIC PROCESS MODEL A Thesis Presented to the Faculty of San Diego State University In Partial Fulfillment of the Requirements for the Degree

More information

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I SYDE 372 Introduction to Pattern Recognition Probability Measures for Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 Why use probability

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

RELIABILITY TEST PLANS BASED ON BURR DISTRIBUTION FROM TRUNCATED LIFE TESTS

RELIABILITY TEST PLANS BASED ON BURR DISTRIBUTION FROM TRUNCATED LIFE TESTS International Journal of Mathematics and Computer Applications Research (IJMCAR) Vol.1, Issue 2 (2011) 28-40 TJPRC Pvt. Ltd., RELIABILITY TEST PLANS BASED ON BURR DISTRIBUTION FROM TRUNCATED LIFE TESTS

More information

A Quasi Gamma Distribution

A Quasi Gamma Distribution 08; 3(4): 08-7 ISSN: 456-45 Maths 08; 3(4): 08-7 08 Stats & Maths www.mathsjournal.com Received: 05-03-08 Accepted: 06-04-08 Rama Shanker Department of Statistics, College of Science, Eritrea Institute

More information

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition Memorial University of Newfoundland Pattern Recognition Lecture 6 May 18, 2006 http://www.engr.mun.ca/~charlesr Office Hours: Tuesdays & Thursdays 8:30-9:30 PM EN-3026 Review Distance-based Classification

More information

Double Acceptance Sampling Based on Truncated Life Tests in Marshall Olkin Extended Lomax Distribution

Double Acceptance Sampling Based on Truncated Life Tests in Marshall Olkin Extended Lomax Distribution Global Journal of Mathematical Sciences: Theory and Practical. ISSN 0974-3200 Volume 4, Number 3 (2012), pp. 203-210 International Research Publication House http://www.irphouse.com Double Acceptance Sampling

More information

Modeling and Interpolation of Non-Gaussian Spatial Data: A Comparative Study

Modeling and Interpolation of Non-Gaussian Spatial Data: A Comparative Study Modeling and Interpolation of Non-Gaussian Spatial Data: A Comparative Study Gunter Spöck, Hannes Kazianka, Jürgen Pilz Department of Statistics, University of Klagenfurt, Austria hannes.kazianka@uni-klu.ac.at

More information

ESTIMATOR IN BURR XII DISTRIBUTION

ESTIMATOR IN BURR XII DISTRIBUTION Journal of Reliability and Statistical Studies; ISSN (Print): 0974-804, (Online): 9-5666 Vol. 0, Issue (07): 7-6 ON THE VARIANCE OF P ( Y < X) ESTIMATOR IN BURR XII DISTRIBUTION M. Khorashadizadeh*, S.

More information

A TWO-STAGE GROUP SAMPLING PLAN BASED ON TRUNCATED LIFE TESTS FOR A EXPONENTIATED FRÉCHET DISTRIBUTION

A TWO-STAGE GROUP SAMPLING PLAN BASED ON TRUNCATED LIFE TESTS FOR A EXPONENTIATED FRÉCHET DISTRIBUTION A TWO-STAGE GROUP SAMPLING PLAN BASED ON TRUNCATED LIFE TESTS FOR A EXPONENTIATED FRÉCHET DISTRIBUTION G. Srinivasa Rao Department of Statistics, The University of Dodoma, Dodoma, Tanzania K. Rosaiah M.

More information

Chapter 4: CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Chapter 4: CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Chapter 4: CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 4: Gamma Distribution Weibull Distribution Lognormal Distribution Sections 4-9 through 4-11 Another exponential distribution example

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm 1/29 EM & Latent Variable Models Gaussian Mixture Models EM Theory The Expectation-Maximization Algorithm Mihaela van der Schaar Department of Engineering Science University of Oxford MLE for Latent Variable

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Sampling Distributions

Sampling Distributions Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of

More information

A Time Truncated Two Stage Group Acceptance Sampling Plan For Compound Rayleigh Distribution

A Time Truncated Two Stage Group Acceptance Sampling Plan For Compound Rayleigh Distribution International Journal of Mathematics And its Applications Volume 4, Issue 3 A (2016), 73 80. ISSN: 2347-1557 Available Online: http://ijmaa.in/ International Journal 2347-1557 of Mathematics Applications

More information

STAT 6350 Analysis of Lifetime Data. Failure-time Regression Analysis

STAT 6350 Analysis of Lifetime Data. Failure-time Regression Analysis STAT 6350 Analysis of Lifetime Data Failure-time Regression Analysis Explanatory Variables for Failure Times Usually explanatory variables explain/predict why some units fail quickly and some units survive

More information

ECE 510 Lecture 7 Goodness of Fit, Maximum Likelihood. Scott Johnson Glenn Shirley

ECE 510 Lecture 7 Goodness of Fit, Maximum Likelihood. Scott Johnson Glenn Shirley ECE 510 Lecture 7 Goodness of Fit, Maximum Likelihood Scott Johnson Glenn Shirley Confidence Limits 30 Jan 2013 ECE 510 S.C.Johnson, C.G.Shirley 2 Binomial Confidence Limits (Solution 6.2) UCL: Prob of

More information

Bayesian Predictions for Exponentially Distributed Failure Times With One Change-Point

Bayesian Predictions for Exponentially Distributed Failure Times With One Change-Point c Heldermann Verlag Economic Quality Control ISSN 0940-5151 Vol 18 2003, No. 2, 195 207 Bayesian Predictions for Exponentially Distributed Failure Times With One Change-Point Y. Abdel-Aty, J. Franz, M.A.W.

More information

STAT 6385 Survey of Nonparametric Statistics. Order Statistics, EDF and Censoring

STAT 6385 Survey of Nonparametric Statistics. Order Statistics, EDF and Censoring STAT 6385 Survey of Nonparametric Statistics Order Statistics, EDF and Censoring Quantile Function A quantile (or a percentile) of a distribution is that value of X such that a specific percentage of the

More information

On Sarhan-Balakrishnan Bivariate Distribution

On Sarhan-Balakrishnan Bivariate Distribution J. Stat. Appl. Pro. 1, No. 3, 163-17 (212) 163 Journal of Statistics Applications & Probability An International Journal c 212 NSP On Sarhan-Balakrishnan Bivariate Distribution D. Kundu 1, A. Sarhan 2

More information

Beta statistics. Keywords. Bayes theorem. Bayes rule

Beta statistics. Keywords. Bayes theorem. Bayes rule Keywords Beta statistics Tommy Norberg tommy@chalmers.se Mathematical Sciences Chalmers University of Technology Gothenburg, SWEDEN Bayes s formula Prior density Likelihood Posterior density Conjugate

More information

Statistical Inference on Constant Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions

Statistical Inference on Constant Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS040) p.4828 Statistical Inference on Constant Stress Accelerated Life Tests Under Generalized Gamma Lifetime Distributions

More information

Statistical Process Control for Multivariate Categorical Processes

Statistical Process Control for Multivariate Categorical Processes Statistical Process Control for Multivariate Categorical Processes Fugee Tsung The Hong Kong University of Science and Technology Fugee Tsung 1/27 Introduction Typical Control Charts Univariate continuous

More information

LOGISTIC REGRESSION Joseph M. Hilbe

LOGISTIC REGRESSION Joseph M. Hilbe LOGISTIC REGRESSION Joseph M. Hilbe Arizona State University Logistic regression is the most common method used to model binary response data. When the response is binary, it typically takes the form of

More information

I I FINAL, 01 Jun 8.4 to 31 May TITLE AND SUBTITLE 5 * _- N, '. ', -;

I I FINAL, 01 Jun 8.4 to 31 May TITLE AND SUBTITLE 5 * _- N, '. ', -; R AD-A237 850 E........ I N 11111IIIII U 1 1I!til II II... 1. AGENCY USE ONLY Leave 'VanK) I2. REPORT DATE 3 REPORT TYPE AND " - - I I FINAL, 01 Jun 8.4 to 31 May 88 4. TITLE AND SUBTITLE 5 * _- N, '.

More information

Bayesian Gaussian / Linear Models. Read Sections and 3.3 in the text by Bishop

Bayesian Gaussian / Linear Models. Read Sections and 3.3 in the text by Bishop Bayesian Gaussian / Linear Models Read Sections 2.3.3 and 3.3 in the text by Bishop Multivariate Gaussian Model with Multivariate Gaussian Prior Suppose we model the observed vector b as having a multivariate

More information

Analysis of Progressive Type-II Censoring. in the Weibull Model for Competing Risks Data. with Binomial Removals

Analysis of Progressive Type-II Censoring. in the Weibull Model for Competing Risks Data. with Binomial Removals Applied Mathematical Sciences, Vol. 5, 2011, no. 22, 1073-1087 Analysis of Progressive Type-II Censoring in the Weibull Model for Competing Risks Data with Binomial Removals Reza Hashemi and Leila Amiri

More information

10 Introduction to Reliability

10 Introduction to Reliability 0 Introduction to Reliability 10 Introduction to Reliability The following notes are based on Volume 6: How to Analyze Reliability Data, by Wayne Nelson (1993), ASQC Press. When considering the reliability

More information

Parametric Techniques

Parametric Techniques Parametric Techniques Jason J. Corso SUNY at Buffalo J. Corso (SUNY at Buffalo) Parametric Techniques 1 / 39 Introduction When covering Bayesian Decision Theory, we assumed the full probabilistic structure

More information

An Introduction to Bayesian Linear Regression

An Introduction to Bayesian Linear Regression An Introduction to Bayesian Linear Regression APPM 5720: Bayesian Computation Fall 2018 A SIMPLE LINEAR MODEL Suppose that we observe explanatory variables x 1, x 2,..., x n and dependent variables y 1,

More information

An optimization model for designing acceptance sampling plan based on cumulative count of conforming run length using minimum angle method

An optimization model for designing acceptance sampling plan based on cumulative count of conforming run length using minimum angle method Hacettepe Journal of Mathematics and Statistics Volume 44 (5) (2015), 1271 1281 An optimization model for designing acceptance sampling plan based on cumulative count of conforming run length using minimum

More information

Delta Method. Example : Method of Moments for Exponential Distribution. f(x; λ) = λe λx I(x > 0)

Delta Method. Example : Method of Moments for Exponential Distribution. f(x; λ) = λe λx I(x > 0) Delta Method Often estimators are functions of other random variables, for example in the method of moments. These functions of random variables can sometimes inherit a normal approximation from the underlying

More information

Sampling Distributions

Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of random sample. For example,

More information

INVERTED KUMARASWAMY DISTRIBUTION: PROPERTIES AND ESTIMATION

INVERTED KUMARASWAMY DISTRIBUTION: PROPERTIES AND ESTIMATION Pak. J. Statist. 2017 Vol. 33(1), 37-61 INVERTED KUMARASWAMY DISTRIBUTION: PROPERTIES AND ESTIMATION A. M. Abd AL-Fattah, A.A. EL-Helbawy G.R. AL-Dayian Statistics Department, Faculty of Commerce, AL-Azhar

More information

Parametric and Topological Inference for Masked System Lifetime Data

Parametric and Topological Inference for Masked System Lifetime Data Parametric and for Masked System Lifetime Data Rang Louis J M Aslett and Simon P Wilson Trinity College Dublin 9 th July 2013 Structural Reliability Theory Interest lies in the reliability of systems composed

More information

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester Physics 403 Parameter Estimation, Correlations, and Error Bars Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Best Estimates and Reliability

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Bayesian Inference. Chapter 9. Linear models and regression

Bayesian Inference. Chapter 9. Linear models and regression Bayesian Inference Chapter 9. Linear models and regression M. Concepcion Ausin Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master in Mathematical Engineering

More information

Estimation of Quantiles

Estimation of Quantiles 9 Estimation of Quantiles The notion of quantiles was introduced in Section 3.2: recall that a quantile x α for an r.v. X is a constant such that P(X x α )=1 α. (9.1) In this chapter we examine quantiles

More information

1 Degree distributions and data

1 Degree distributions and data 1 Degree distributions and data A great deal of effort is often spent trying to identify what functional form best describes the degree distribution of a network, particularly the upper tail of that distribution.

More information

Frequentist-Bayesian Model Comparisons: A Simple Example

Frequentist-Bayesian Model Comparisons: A Simple Example Frequentist-Bayesian Model Comparisons: A Simple Example Consider data that consist of a signal y with additive noise: Data vector (N elements): D = y + n The additive noise n has zero mean and diagonal

More information

Confidence Estimation Methods for Neural Networks: A Practical Comparison

Confidence Estimation Methods for Neural Networks: A Practical Comparison , 6-8 000, Confidence Estimation Methods for : A Practical Comparison G. Papadopoulos, P.J. Edwards, A.F. Murray Department of Electronics and Electrical Engineering, University of Edinburgh Abstract.

More information

Bounds for reliability of IFRA coherent systems using signatures

Bounds for reliability of IFRA coherent systems using signatures isid/ms/2011/17 September 12, 2011 http://www.isid.ac.in/ statmath/eprints Bounds for reliability of IFRA coherent systems using signatures Jayant V. Deshpande Isha Dewan Indian Statistical Institute,

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 00 MODULE : Statistical Inference Time Allowed: Three Hours Candidates should answer FIVE questions. All questions carry equal marks. The

More information

Time-varying failure rate for system reliability analysis in large-scale railway risk assessment simulation

Time-varying failure rate for system reliability analysis in large-scale railway risk assessment simulation Time-varying failure rate for system reliability analysis in large-scale railway risk assessment simulation H. Zhang, E. Cutright & T. Giras Center of Rail Safety-Critical Excellence, University of Virginia,

More information

Designing of Special Type of Double Sampling Plan for Compliance Testing through Generalized Poisson Distribution

Designing of Special Type of Double Sampling Plan for Compliance Testing through Generalized Poisson Distribution Volume 117 No. 12 2017, 7-17 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Designing of Special Type of Double Sampling Plan for Compliance Testing

More information

Math 50: Final. 1. [13 points] It was found that 35 out of 300 famous people have the star sign Sagittarius.

Math 50: Final. 1. [13 points] It was found that 35 out of 300 famous people have the star sign Sagittarius. Math 50: Final 180 minutes, 140 points. No algebra-capable calculators. Try to use your calculator only at the end of your calculation, and show working/reasoning. Please do look up z, t, χ 2 values for

More information

Pump failure data. Pump Failures Time

Pump failure data. Pump Failures Time Outline 1. Poisson distribution 2. Tests of hypothesis for a single Poisson mean 3. Comparing multiple Poisson means 4. Likelihood equivalence with exponential model Pump failure data Pump 1 2 3 4 5 Failures

More information

Minimum Message Length Inference and Mixture Modelling of Inverse Gaussian Distributions

Minimum Message Length Inference and Mixture Modelling of Inverse Gaussian Distributions Minimum Message Length Inference and Mixture Modelling of Inverse Gaussian Distributions Daniel F. Schmidt Enes Makalic Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School

More information

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators.

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. IE 230 Seat # Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. Score Exam #3a, Spring 2002 Schmeiser Closed book and notes. 60 minutes. 1. True or false. (for each,

More information

BAYESIAN PREDICTION OF WEIBULL DISTRIBUTION BASED ON FIXED AND RANDOM SAMPLE SIZE. A. H. Abd Ellah

BAYESIAN PREDICTION OF WEIBULL DISTRIBUTION BASED ON FIXED AND RANDOM SAMPLE SIZE. A. H. Abd Ellah Serdica Math. J. 35 (2009, 29 46 BAYESIAN PREDICTION OF WEIBULL DISTRIBUTION BASED ON FIXED AND RANDOM SAMPLE SIZE A. H. Abd Ellah Communicated by S. T. Rachev Abstract. We consider the problem of predictive

More information

Statistics Masters Comprehensive Exam March 21, 2003

Statistics Masters Comprehensive Exam March 21, 2003 Statistics Masters Comprehensive Exam March 21, 2003 Student Name: 1. Answer 8 out of 12 problems. Mark the problems you selected in the following table. 1 2 3 4 5 6 7 8 9 10 11 12 2. Write your answer

More information

Statistics for Engineers Lecture 4 Reliability and Lifetime Distributions

Statistics for Engineers Lecture 4 Reliability and Lifetime Distributions Statistics for Engineers Lecture 4 Reliability and Lifetime Distributions Chong Ma Department of Statistics University of South Carolina chongm@email.sc.edu February 15, 2017 Chong Ma (Statistics, USC)

More information

\ fwf The Institute for Integrating Statistics in Decision Sciences

\ fwf The Institute for Integrating Statistics in Decision Sciences # \ fwf The Institute for Integrating Statistics in Decision Sciences Technical Report TR-2007-8 May 22, 2007 Advances in Bayesian Software Reliability Modelling Fabrizio Ruggeri CNR IMATI Milano, Italy

More information

Bayesian Inference. Chapter 4: Regression and Hierarchical Models

Bayesian Inference. Chapter 4: Regression and Hierarchical Models Bayesian Inference Chapter 4: Regression and Hierarchical Models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative

More information

The Jeffreys Prior. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) The Jeffreys Prior MATH / 13

The Jeffreys Prior. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) The Jeffreys Prior MATH / 13 The Jeffreys Prior Yingbo Li Clemson University MATH 9810 Yingbo Li (Clemson) The Jeffreys Prior MATH 9810 1 / 13 Sir Harold Jeffreys English mathematician, statistician, geophysicist, and astronomer His

More information