Dispersion for the Schrodinger Equation on discrete trees

Size: px
Start display at page:

Download "Dispersion for the Schrodinger Equation on discrete trees"

Transcription

1 Dispersion for the Schrodinger Equation on discrete trees April

2 Preliminaries Let Γ = (V, E) be a graph, denoting V the set of vertices and E the set of edges, assumed to be segments which are either finite or infinite in one direction only. Each edge α E is parametrized by I α, which is {1, 2,... N α } or {1, 2,... }. Each vertex v V is the initial point for m v edges: αi v (1 i m v ) and (except for the origin) the final point for a single edge, α0 v.

3 u 12 ũ 1 u 3 u 2

4 We indentify the funtions defined on the graph by the families (u α ) α E such that u α : I α C. If the v vertex is: the final point of the α edge and the origin of the α 1,..., α m vertices, then we extend these functions by setting u α (N α + 1) = u α i (0) = uα (N α ) + u α 1 (1) +... u αm (1), 1 i m. m + 1 (1) By chosing an origin (the tree becomes oriented) the formula is without the α term, and divide by m instead.

5

6 The motivation for studying thin structures comes from mesoscopic physics and nanotechnology. Mesoscopic systems are those that have some dimensions which are too small to be treated using classical physics while they are too large to be considered on the quantum level only. The quantum wires are physical systems with two dimensions reduced to a few nanometers. The continuous case has been investigated before by Liviu Ignat and Valeria Banica, while in the discrete setting: L.I. and Diana Stan coupled two discrete equations even allowing different coefficients.

7 We consider the LSE equation on Γ: i t u α (t, j) + u α (t, j) = 0, t 0 u α (0, j) = ϕ α (j), α E, j I α. (2) The functions u α obey the continuity and coupling conditions defined in (1). We define the laplacian by u α j = u α j+1 2u α j + u α j 1.

8 Theorem 1.1 For every ϕ l 2, the system (10) has a unique solution u = (u α ) α E C(R, l 2 ). Additionally, there exists C > 0 for which u(t) l C ϕ l 1 ϕ l 1. (3) 1 + t 3 From this, we get the following consequence: Theorem 1.2 For every ϕ l 2, the solution u satisfies u L q (R,l r ) C q,r ϕ l 2 (4) for the (q, r) pairs for which 1/q 1/3(1/2 r).

9 The spectrum Proposition 1.3 The spectrum of the discrete laplacian on Γ is σ( ) = [ 4, 0]. Consider the resolvent R λ = ( λ) 1 B(l 2 ) for λ C \ [ 4, 0]. Proposition 1.4 For f l 2, the resolvent R λ f = u is given by un α = u0 α r 1 n + S n α,, α = infinite edge, n I α un α = a α r1 n + bα r2 n + S n α,, α = finite edge, n I α. (5) where Sn α is defined by Sj α = 1 [ ] r 1 1 r j k 1 r j+k 1 fk α. (6) r 1 k I α

10 Now, r 1, r 2 are the solutions of the equation r 2 (2 + λ)r + 1 = 0 for λ = x iε: Proposition 1.5 Let x [ 4, 0] and ε > 0. For any f l 2 and any α E: + 1 2i [R x iε R x+iε ] f α n = 1 2i Im[aα r n 1 + b α r n 2 ]+ k I α f α [ k Im 1 ( ) ] r 1 1 r n k 1 r1 n+k, n I α (7) r 1 For any ϕ l 1 and a, b R we have b b lim [R x iε R x+iε ] ϕ n dx = [R x R x+ ] ϕ n dx, n I α ε 0+ a a (8)

11 The last term in the RHS is given by 2i [R x R x+ ] ϕ α n = Im[a α r n +b α r n ]+ k I α ϕ α k Im 1 r 1 r such that r is the solution with Im r 0 of the equation r 2 (2 + x)r + 1 = 0 This shows that R x R x+ is well-defined as an operator in B(l 1, l ). (r n k r n+k) (9)

12 We return to the equation i t u α (t, j) + u α (t, j) = 0, t 0 u α (0, j) = ϕ(j), α E, j I α. (10) Theorem 1.6 For any ϕ l 2, there exists a unique solution u = (u α ) α E C(R, l 2 ) of the system (10) which satisfies u(t) l 2 = ϕ l 2. Moreover, if ϕ l 1 then u can be represented as ( ) u(t) n = e it ϕ = 1 e itλ [R λ R λ+ ] ϕ n dλ. (11) n 2πi I

13 Proof. We use Stone s (or Hille-Yosida) theorem to show that there exists a unique solution u C(R, l 2 ) of equation (10), given by u(t) = e it ϕ, (12) where the operators e it are defined by power series or by functional calculus. They are unitary operators, so µ ϕ,n (a, b) = lim So, we get u(t) n = u(t) l 2 = ϕ l 2. ( ) u(t) n = e it ϕ = e itλ dµ ϕ,n, (13) n lim δ 0+ ε 0+ σ( ) 1 b δ R 2πi (x iε) T R (x+iε) T dx a+δ ( ) e it ϕ = 1 e itλ [R λ R λ+ ] ϕ n dλ. n 2πi I

14 The key lemma Lemma 1.7 For any ϕ l 1 and any t R, n Z the following inequalities are true: e itλ u0, r α n dλ C ϕ l 1 (14) 1 + t I I 3 e itλ a r α n dλ C ϕ l 1 (15) 1 + t I 3 e itλ b r α n dλ C ϕ l 1 (16) 1 + t We will discuss this lemma after the main result. 3

15 Proof of the main result We use (9) and (11) and observe that, in order to get the inequality (3), it suffices to check that for all n and k e itλ Im u0, r α n dλ C ϕ 3 l 1 (17) I 1 + t e itλ Im a r α n dλ C ϕ l 1, 1 + t e itλ Im b r α n dλ C 1 + t I 3 (18) [ e itλ 1 ( Im I r 1 r n k r n+k)] dλ C. (19) 3 r 1 + t Inequality 19 was proved in [3], (4.13), in a more general case by using Van der Corput s lemma. It is sufficient to prove 17 and 18 without the imaginary part Im because, by chosing t instead of t and conjugating both, we get the inequalities with additional Im. So, by using the lemma stated before, the result follows. I 3

16 A particular case u 12 ũ 1 u 3 u 2

17 To prove the inequalities in the lemma for this particular case, we have to determine u0 11, u12 0, u2 0, u3 0, a = a1 and b = b 1 from the system u0 2 u3 0 = 0 u0 2 a b = 0 (r 1)u (r 1)u3 0 + (r 1)a + (r 2 1)b = S 1 1 S 2 1 S 3 1 = K 3 r N+1 a + r N+1 2 b u 11 0 = 0 u 11 0 u12 0 = 0 r N a + r N 2 b + ( r 3 2) u ( r 3 2 ) u 12 0 = ( SN 1 + S S 1 12 ) = K6. (20)

18 We have the following matrix M coresponding to the variables: x = [u0 2, u3 0, a, b, u11 0, u12 0 ] = [x i]: r 1 1 r 1 1 r 1 1 r r1 N+1 r2 N r1 N r2 N r r K = 0 0 K K 6 We see that det M = (r 1 1) N+1 2 r2 [ 9 r 2N 1 (2r 1 1) 2] = (r 1 1) 2 (r 1 +1)h(r 1 ), for a polynomial function g(x) = x N+1 h(x) which does not vanish on T.

19 To determine the elements x i we have to insert the column K in the place of column i in M and to compute this determinant, denoted D i (r 1 ), obtaining x i = D i det M.

20 Lemma 1.8 For every 1 i 6 and every α E there is a polynomial q α,i 1 (x, y), and another polynomial qα,i N α (x, y) when α is finite such that [ ) D i (r 1 ) = (r 1 1) S1 α q α,i 1 (r 1, 1r1 + SN α α q α,i N α (r 1, 1 )]. r 1 α E α finite Proof. We have r 2 = 1 r 1, so when r 1 = 1 also r 2 = 1 follows. We must check that D i (r 1 ) = 0 for r 1 = 1: If K enters in a different column than 3 or 4, then the columns 3 and 4 are equal; If K enters in column 3 or 4, we easily make a linear combination of columns that is 0.

21 We get an expression for x i {u0 2, u3 0, a, b, u11 0, u12 0 }: S1 α qα,i 1 (r 1, 1 r 1 ) (r 1 1)(r 1 + 1)h(r 1 ) + S α N α q α,i N α (r 1, 1 r 1 ) (r 1 1)(r 1 + 1)h(r 1 ). x i = α E α finite (21) We write (6) for these cases, and we will plug (22) and (23) into (21). S α 1 = k I α r k 1 ϕ α k (22) S α N α = r Nα 1 k I α r k 1 r 1 k r 1 r 1 1 ϕ α k, (if α finite). (23)

22 Lemma 1.9 There are constants C such that for every m Z, α E, k I α and t R, the following inequalities are true: i) e itλ r1 m (r 1 1)(r 1 + 1)g(r 1 ) dλ C t iii) ii) e itλ I I r1 k k r1 r 1 r 1 1 e itλ I q α,i 1 (r 1, 1 r 1 ) (r 1 1)(r 1 + 1)h(r 1 ) r 1 m dλ q α,i N α (r 1, 1 r 1 ) (r 1 1)(r 1 + 1)h(r 1 ) r 1 m dλ C t C if α finite edge t

23 Proof of i. The function g is a polynomial which does not vanish on the unit circle so, using Wiener s theorem (18.21 from [4]), 1/g has an absolutely and uniformly convergent Fourier series 1 g(r 1 ) = p 0 a p r p 1, a p < A. p 0 This reduces the proof to e itλ r1 m (r 1 1)(r 1 + 1) dλ I We now write r 1 = e iθ and hence C. 1 + t 3 (m Z). λ = 2(cos θ + 1) and (r 1 1)(r 1 + 1) = i sin θe iθ.

24 By making a change of variable such that we integrate over θ [0, π], the last integral becomes π e 2it(cos θ 1) e imθ dθ C (m Z) t 0 This last estimate was proved at (4.14) in [3], by using Van der Corput s lemma.

25 Proof of Lemma 1.7 For x i {u0 2, u3 0, a, b, u11 0, u12 0 } we have to prove that e itλ x i r1 n dλ C ϕ l 1 (n Z). 1 + t I 3 We plug (22) and (23) in (21) and by using Lemma 1.9, we get e itλ x i r1 n dλ ϕ α k e itλ r1 k qα,i 1 (r 1, 1 r 1 ) I α E k I I (r 1 1)(r 1 + 1)h(r 1 ) r 1 n dλ + α + Nα r r k k 1 r1 ϕ α k 1 q α,i itλ r 1 r e 1 N α (r 1, 1 r 1 ) 1 α finite k I α I (r 1 1)(r 1 + 1)h(r 1 ) r 1 n dλ C ϕ α 3 k + ϕ α k C ϕ 1 + t 3 l 1. α E k I α α finite k I α 1 + t

26 The general case Like in the particular case, we have to determine the coefficients from Lemma 1.7. By denoting the determinant of the system of graph Γ n by D n we get the following recurrence relation: D n = D n 1 r N+1 2 (m +1) (r 1 1) [ 1 where D n is another similar determinant. ( r1 r 2 ) ] N+1 m r 2 D n 1, m + 1 D n 1 (24)

27 Lemma 2 We have D n = (r 1 1) n (r 1 + 1) n 1 h(r 1 ) (25) for h a rational function which does not vanish on T.

28 Lemma 3 We have D i n = (r 1 1) n 1 (r 1 + 1) n 2 q n i (r 1, r 2 ) (26) for q n i (x, y) = α S α 1 q α,i 1 (x, y) + S α N α q α,i N α (x, y) where q α,i 1 si q α,i N α are polynomials. From here on, the solution is identical with the previous particular case, since we have the expansion for 1 h and the factors D n and D i n in x i cancel, which leads us to the same integrals as before.

29 THANKS for your attention!!!

30 References 1 W. Rudin, Functional analysis, McGraw-Hill Science, N. Dunford and J.T. Schwartz, Linear Operators II: Spectral Theory, Interscience, L.I. Ignat, D. Stan, Dispersive properties for discrete Schrodinger equations, J. Fourier Analysis and Applications 4 W. Rudin, Real and complex analysis

Dispersion property for discrete Schrödinger equations on networks

Dispersion property for discrete Schrödinger equations on networks SCOALA NORMALA SUPEROARA BUCUREST Master s thesis Dispersion property for discrete Schrödinger equations on networks Author: Cristian Gavrus Supervisor: Liviu gnat June 4, 202 Summary This thesis treats

More information

1 Math 241A-B Homework Problem List for F2015 and W2016

1 Math 241A-B Homework Problem List for F2015 and W2016 1 Math 241A-B Homework Problem List for F2015 W2016 1.1 Homework 1. Due Wednesday, October 7, 2015 Notation 1.1 Let U be any set, g be a positive function on U, Y be a normed space. For any f : U Y let

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r 2. A harmonic conjugate always exists locally: if u is a harmonic function in an open set U, then for any disk D(z 0, r) U, there is f, which is analytic in D(z 0, r) and satisfies that Re f u. Since such

More information

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft Complex Variables........Review Problems Residue Calculus Comments)........Fall 22 Initial Draft ) Show that the singular point of fz) is a pole; determine its order m and its residue B: a) e 2z )/z 4,

More information

1 Sectorial operators

1 Sectorial operators 1 1 Sectorial operators Definition 1.1 Let X and A : D(A) X X be a Banach space and a linear closed operator, respectively. If the relationships i) ρ(a) Σ φ = {λ C : arg λ < φ}, where φ (π/2, π); ii) R(λ,

More information

Synopsis of Complex Analysis. Ryan D. Reece

Synopsis of Complex Analysis. Ryan D. Reece Synopsis of Complex Analysis Ryan D. Reece December 7, 2006 Chapter Complex Numbers. The Parts of a Complex Number A complex number, z, is an ordered pair of real numbers similar to the points in the real

More information

THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES

THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES PHILIP GADDY Abstract. Throughout the course of this paper, we will first prove the Stone- Weierstrass Theroem, after providing some initial

More information

Properties of Entire Functions

Properties of Entire Functions Properties of Entire Functions Generalizing Results to Entire Functions Our main goal is still to show that every entire function can be represented as an everywhere convergent power series in z. So far

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

Rambo s Math GRE Practice Test. Charles Rambo

Rambo s Math GRE Practice Test. Charles Rambo Rambo s Math GRE Practice Test Charles Rambo Preface Thank you for checking out my practice exam! This was heavily influenced by the GR1268, GR0568, and GR8767 exams. I also used Rudin s Principles of

More information

Qualitative Properties of Numerical Approximations of the Heat Equation

Qualitative Properties of Numerical Approximations of the Heat Equation Qualitative Properties of Numerical Approximations of the Heat Equation Liviu Ignat Universidad Autónoma de Madrid, Spain Santiago de Compostela, 21 July 2005 The Heat Equation { ut u = 0 x R, t > 0, u(0,

More information

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE MATH 3: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE Recall the Residue Theorem: Let be a simple closed loop, traversed counterclockwise. Let f be a function that is analytic on and meromorphic inside. Then

More information

carries the circle w 1 onto the circle z R and sends w = 0 to z = a. The function u(s(w)) is harmonic in the unit circle w 1 and we obtain

carries the circle w 1 onto the circle z R and sends w = 0 to z = a. The function u(s(w)) is harmonic in the unit circle w 1 and we obtain 4. Poisson formula In fact we can write down a formula for the values of u in the interior using only the values on the boundary, in the case when E is a closed disk. First note that (3.5) determines the

More information

MOMENTS OF HYPERGEOMETRIC HURWITZ ZETA FUNCTIONS

MOMENTS OF HYPERGEOMETRIC HURWITZ ZETA FUNCTIONS MOMENTS OF HYPERGEOMETRIC HURWITZ ZETA FUNCTIONS ABDUL HASSEN AND HIEU D. NGUYEN Abstract. This paper investigates a generalization the classical Hurwitz zeta function. It is shown that many of the properties

More information

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5 MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5.. The Arzela-Ascoli Theorem.. The Riemann mapping theorem Let X be a metric space, and let F be a family of continuous complex-valued functions on X. We have

More information

ANALYTIC SEMIGROUPS AND APPLICATIONS. 1. Introduction

ANALYTIC SEMIGROUPS AND APPLICATIONS. 1. Introduction ANALYTIC SEMIGROUPS AND APPLICATIONS KELLER VANDEBOGERT. Introduction Consider a Banach space X and let f : D X and u : G X, where D and G are real intervals. A is a bounded or unbounded linear operator

More information

FINAL EXAM MATH 220A, UCSD, AUTUMN 14. You have three hours.

FINAL EXAM MATH 220A, UCSD, AUTUMN 14. You have three hours. FINAL EXAM MATH 220A, UCSD, AUTUMN 4 You have three hours. Problem Points Score There are 6 problems, and the total number of points is 00. Show all your work. Please make your work as clear and easy to

More information

1 What s the big deal?

1 What s the big deal? This note is written for a talk given at the graduate student seminar, titled how to solve quantum mechanics with x 4 potential. What s the big deal? The subject of interest is quantum mechanics in an

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

1 Discussion on multi-valued functions

1 Discussion on multi-valued functions Week 3 notes, Math 7651 1 Discussion on multi-valued functions Log function : Note that if z is written in its polar representation: z = r e iθ, where r = z and θ = arg z, then log z log r + i θ + 2inπ

More information

Math 321 Final Examination April 1995 Notation used in this exam: N. (1) S N (f,x) = f(t)e int dt e inx.

Math 321 Final Examination April 1995 Notation used in this exam: N. (1) S N (f,x) = f(t)e int dt e inx. Math 321 Final Examination April 1995 Notation used in this exam: N 1 π (1) S N (f,x) = f(t)e int dt e inx. 2π n= N π (2) C(X, R) is the space of bounded real-valued functions on the metric space X, equipped

More information

TAYLOR AND MACLAURIN SERIES

TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES. Introduction Last time, we were able to represent a certain restricted class of functions as power series. This leads us to the question: can we represent more general functions

More information

Solutions to Complex Analysis Prelims Ben Strasser

Solutions to Complex Analysis Prelims Ben Strasser Solutions to Complex Analysis Prelims Ben Strasser In preparation for the complex analysis prelim, I typed up solutions to some old exams. This document includes complete solutions to both exams in 23,

More information

MS 2001: Test 1 B Solutions

MS 2001: Test 1 B Solutions MS 2001: Test 1 B Solutions Name: Student Number: Answer all questions. Marks may be lost if necessary work is not clearly shown. Remarks by me in italics and would not be required in a test - J.P. Question

More information

Chapter 30 MSMYP1 Further Complex Variable Theory

Chapter 30 MSMYP1 Further Complex Variable Theory Chapter 30 MSMYP Further Complex Variable Theory (30.) Multifunctions A multifunction is a function that may take many values at the same point. Clearly such functions are problematic for an analytic study,

More information

Asymptotic behaviour of the heat equation in twisted waveguides

Asymptotic behaviour of the heat equation in twisted waveguides Asymptotic behaviour of the heat equation in twisted waveguides Gabriela Malenová Faculty of Nuclear Sciences and Physical Engineering, CTU, Prague Nuclear Physics Institute, AS ČR, Řež Graphs and Spectra,

More information

VANDERBILT UNIVERSITY. MATH 3120 INTRO DO PDES The Schrödinger equation

VANDERBILT UNIVERSITY. MATH 3120 INTRO DO PDES The Schrödinger equation VANDERBILT UNIVERSITY MATH 31 INTRO DO PDES The Schrödinger equation 1. Introduction Our goal is to investigate solutions to the Schrödinger equation, i Ψ t = Ψ + V Ψ, 1.1 µ where i is the imaginary number

More information

Hartogs Theorem: separate analyticity implies joint Paul Garrett garrett/

Hartogs Theorem: separate analyticity implies joint Paul Garrett  garrett/ (February 9, 25) Hartogs Theorem: separate analyticity implies joint Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ (The present proof of this old result roughly follows the proof

More information

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period:

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: WORKSHEET: Series, Taylor Series AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: 1 Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The

More information

Functions of a Complex Variable and Integral Transforms

Functions of a Complex Variable and Integral Transforms Functions of a Complex Variable and Integral Transforms Department of Mathematics Zhou Lingjun Textbook Functions of Complex Analysis with Applications to Engineering and Science, 3rd Edition. A. D. Snider

More information

Math Homework 2

Math Homework 2 Math 73 Homework Due: September 8, 6 Suppose that f is holomorphic in a region Ω, ie an open connected set Prove that in any of the following cases (a) R(f) is constant; (b) I(f) is constant; (c) f is

More information

Homework 27. Homework 28. Homework 29. Homework 30. Prof. Girardi, Math 703, Fall 2012 Homework: Define f : C C and u, v : R 2 R by

Homework 27. Homework 28. Homework 29. Homework 30. Prof. Girardi, Math 703, Fall 2012 Homework: Define f : C C and u, v : R 2 R by Homework 27 Define f : C C and u, v : R 2 R by f(z) := xy where x := Re z, y := Im z u(x, y) = Re f(x + iy) v(x, y) = Im f(x + iy). Show that 1. u and v satisfies the Cauchy Riemann equations at (x, y)

More information

Implicit Functions, Curves and Surfaces

Implicit Functions, Curves and Surfaces Chapter 11 Implicit Functions, Curves and Surfaces 11.1 Implicit Function Theorem Motivation. In many problems, objects or quantities of interest can only be described indirectly or implicitly. It is then

More information

McGill University Math 354: Honors Analysis 3

McGill University Math 354: Honors Analysis 3 Practice problems McGill University Math 354: Honors Analysis 3 not for credit Problem 1. Determine whether the family of F = {f n } functions f n (x) = x n is uniformly equicontinuous. 1st Solution: The

More information

Our goal is to solve a general constant coecient linear second order. this way but that will not always happen). Once we have y 1, it will always

Our goal is to solve a general constant coecient linear second order. this way but that will not always happen). Once we have y 1, it will always October 5 Relevant reading: Section 2.1, 2.2, 2.3 and 2.4 Our goal is to solve a general constant coecient linear second order ODE a d2 y dt + bdy + cy = g (t) 2 dt where a, b, c are constants and a 0.

More information

= 2 x y 2. (1)

= 2 x y 2. (1) COMPLEX ANALYSIS PART 5: HARMONIC FUNCTIONS A Let me start by asking you a question. Suppose that f is an analytic function so that the CR-equation f/ z = 0 is satisfied. Let us write u and v for the real

More information

285K Homework #1. Sangchul Lee. April 28, 2017

285K Homework #1. Sangchul Lee. April 28, 2017 285K Homework #1 Sangchul Lee April 28, 2017 Problem 1. Suppose that X is a Banach space with respect to two norms: 1 and 2. Prove that if there is c (0, such that x 1 c x 2 for each x X, then there is

More information

Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends

Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends Kenichi ITO (University of Tokyo) joint work with Erik SKIBSTED (Aarhus University) 3 July 2018 Example: Free

More information

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0 8.7 Taylor s Inequality Math 00 Section 005 Calculus II Name: ANSWER KEY Taylor s Inequality: If f (n+) is continuous and f (n+) < M between the center a and some point x, then f(x) T n (x) M x a n+ (n

More information

MASTERS EXAMINATION IN MATHEMATICS SOLUTIONS

MASTERS EXAMINATION IN MATHEMATICS SOLUTIONS MASTERS EXAMINATION IN MATHEMATICS PURE MATHEMATICS OPTION SPRING 010 SOLUTIONS Algebra A1. Let F be a finite field. Prove that F [x] contains infinitely many prime ideals. Solution: The ring F [x] of

More information

Local smoothing and Strichartz estimates for manifolds with degenerate hyperbolic trapping

Local smoothing and Strichartz estimates for manifolds with degenerate hyperbolic trapping Local smoothing and Strichartz estimates for manifolds with degenerate hyperbolic trapping H. Christianson partly joint work with J. Wunsch (Northwestern) Department of Mathematics University of North

More information

UNIT-II Z-TRANSFORM. This expression is also called a one sided z-transform. This non causal sequence produces positive powers of z in X (z).

UNIT-II Z-TRANSFORM. This expression is also called a one sided z-transform. This non causal sequence produces positive powers of z in X (z). Page no: 1 UNIT-II Z-TRANSFORM The Z-Transform The direct -transform, properties of the -transform, rational -transforms, inversion of the transform, analysis of linear time-invariant systems in the -

More information

CHAPTER 6 bis. Distributions

CHAPTER 6 bis. Distributions CHAPTER 6 bis Distributions The Dirac function has proved extremely useful and convenient to physicists, even though many a mathematician was truly horrified when the Dirac function was described to him:

More information

Bielefeld Course on Nonlinear Waves - June 29, Department of Mathematics University of North Carolina, Chapel Hill. Solitons on Manifolds

Bielefeld Course on Nonlinear Waves - June 29, Department of Mathematics University of North Carolina, Chapel Hill. Solitons on Manifolds Joint work (on various projects) with Pierre Albin (UIUC), Hans Christianson (UNC), Jason Metcalfe (UNC), Michael Taylor (UNC), Laurent Thomann (Nantes) Department of Mathematics University of North Carolina,

More information

Hardy martingales and Jensen s Inequality

Hardy martingales and Jensen s Inequality Hardy martingales and Jensen s Inequality Nakhlé H. Asmar and Stephen J. Montgomery Smith Department of Mathematics University of Missouri Columbia Columbia, Missouri 65211 U. S. A. Abstract Hardy martingales

More information

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES Notes. x n+ = ax n has the general solution x n = x a n. 2. x n+ = x n + b has the general solution x n = x + (n )b. 3. x n+ = ax n + b (with a ) can be

More information

13 Definite integrals

13 Definite integrals 3 Definite integrals Read: Boas h. 4. 3. Laurent series: Def.: Laurent series (LS). If f() is analytic in a region R, then converges in R, with a n = πi f() = a n ( ) n + n= n= f() ; b ( ) n+ n = πi b

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

The Calculus of Residues

The Calculus of Residues hapter 7 The alculus of Residues If fz) has a pole of order m at z = z, it can be written as Eq. 6.7), or fz) = φz) = a z z ) + a z z ) +... + a m z z ) m, 7.) where φz) is analytic in the neighborhood

More information

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R.

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R. Ergodic Theorems Samy Tindel Purdue University Probability Theory 2 - MA 539 Taken from Probability: Theory and examples by R. Durrett Samy T. Ergodic theorems Probability Theory 1 / 92 Outline 1 Definitions

More information

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain.

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. For example f(x) = 1 1 x = 1 + x + x2 + x 3 + = ln(1 + x) = x x2 2

More information

We denote the space of distributions on Ω by D ( Ω) 2.

We denote the space of distributions on Ω by D ( Ω) 2. Sep. 1 0, 008 Distributions Distributions are generalized functions. Some familiarity with the theory of distributions helps understanding of various function spaces which play important roles in the study

More information

INTEGRATION WORKSHOP 2004 COMPLEX ANALYSIS EXERCISES

INTEGRATION WORKSHOP 2004 COMPLEX ANALYSIS EXERCISES INTEGRATION WORKSHOP 2004 COMPLEX ANALYSIS EXERCISES PHILIP FOTH 1. Cauchy s Formula and Cauchy s Theorem 1. Suppose that γ is a piecewise smooth positively ( counterclockwise ) oriented simple closed

More information

Convex Analysis and Economic Theory Winter 2018

Convex Analysis and Economic Theory Winter 2018 Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analysis and Economic Theory Winter 2018 Supplement A: Mathematical background A.1 Extended real numbers The extended real number

More information

A SOLUTION TO SHEIL-SMALL S HARMONIC MAPPING PROBLEM FOR POLYGONS. 1. Introduction

A SOLUTION TO SHEIL-SMALL S HARMONIC MAPPING PROBLEM FOR POLYGONS. 1. Introduction A SOLUTION TO SHEIL-SMALL S HARMONIC MAPPING PROLEM FOR POLYGONS DAOUD SHOUTY, ERIK LUNDERG, AND ALLEN WEITSMAN Abstract. The problem of mapping the interior of a Jordan polygon univalently by the Poisson

More information

Sections 2.1, 2.2 and 2.4: Limit of a function Motivation:

Sections 2.1, 2.2 and 2.4: Limit of a function Motivation: Sections 2.1, 2.2 and 2.4: Limit of a function Motivation: There are expressions which can be computed only using Algebra, meaning only using the operations +,, and. Examples which can be computed using

More information

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi Real Analysis Math 3AH Rudin, Chapter # Dominique Abdi.. If r is rational (r 0) and x is irrational, prove that r + x and rx are irrational. Solution. Assume the contrary, that r+x and rx are rational.

More information

ERRATA: Probabilistic Techniques in Analysis

ERRATA: Probabilistic Techniques in Analysis ERRATA: Probabilistic Techniques in Analysis ERRATA 1 Updated April 25, 26 Page 3, line 13. A 1,..., A n are independent if P(A i1 A ij ) = P(A 1 ) P(A ij ) for every subset {i 1,..., i j } of {1,...,

More information

Infinite Continued Fractions

Infinite Continued Fractions Infinite Continued Fractions 8-5-200 The value of an infinite continued fraction [a 0 ; a, a 2, ] is lim c k, where c k is the k-th convergent k If [a 0 ; a, a 2, ] is an infinite continued fraction with

More information

Math 489AB A Very Brief Intro to Fourier Series Fall 2008

Math 489AB A Very Brief Intro to Fourier Series Fall 2008 Math 489AB A Very Brief Intro to Fourier Series Fall 8 Contents Fourier Series. The coefficients........................................ Convergence......................................... 4.3 Convergence

More information

Solutions for Econometrics I Homework No.3

Solutions for Econometrics I Homework No.3 Solutions for Econometrics I Homework No3 due 6-3-15 Feldkircher, Forstner, Ghoddusi, Pichler, Reiss, Yan, Zeugner April 7, 6 Exercise 31 We have the following model: y T N 1 X T N Nk β Nk 1 + u T N 1

More information

b n x n + b n 1 x n b 1 x + b 0

b n x n + b n 1 x n b 1 x + b 0 Math Partial Fractions Stewart 7.4 Integrating basic rational functions. For a function f(x), we have examined several algebraic methods for finding its indefinite integral (antiderivative) F (x) = f(x)

More information

FRACTIONAL HYPERGEOMETRIC ZETA FUNCTIONS

FRACTIONAL HYPERGEOMETRIC ZETA FUNCTIONS FRACTIONAL HYPERGEOMETRIC ZETA FUNCTIONS HUNDUMA LEGESSE GELETA, ABDULKADIR HASSEN Both authors would like to dedicate this in fond memory of Marvin Knopp. Knop was the most humble and exemplary teacher

More information

MORE NOTES FOR MATH 823, FALL 2007

MORE NOTES FOR MATH 823, FALL 2007 MORE NOTES FOR MATH 83, FALL 007 Prop 1.1 Prop 1. Lemma 1.3 1. The Siegel upper half space 1.1. The Siegel upper half space and its Bergman kernel. The Siegel upper half space is the domain { U n+1 z C

More information

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N Applied Analysis prelim July 15, 216, with solutions Solve 4 of the problems 1-5 and 2 of the problems 6-8. We will only grade the first 4 problems attempted from1-5 and the first 2 attempted from problems

More information

Poisson Image Editing

Poisson Image Editing Poisson Image Editing Sébastien Boisgérault, Mines ParisTech, under CC BY-NC-SA 4.0 January 21, 2016 Contents Introduction 1 Modelling the Problem 2 Harmonic Functions 5 The irichlet Problem 8 Harmonic/Fourier

More information

MULTICENTRIC CALCULUS AND THE RIESZ PROJECTION

MULTICENTRIC CALCULUS AND THE RIESZ PROJECTION JOURNAL OF NUMERICAL ANALYSIS AND APPROXIMATION THEORY J. Numer. Anal. Approx. Theory, vol. 44 (2015) no. 2, pp. 127 145 ictp.acad.ro/jnaat MULTICENTRIC CALCULUS AND THE RIESZ PROJECTION DIANA APETREI

More information

A review: The Laplacian and the d Alembertian. j=1

A review: The Laplacian and the d Alembertian. j=1 Chapter One A review: The Laplacian and the d Alembertian 1.1 THE LAPLACIAN One of the main goals of this course is to understand well the solution of wave equation both in Euclidean space and on manifolds

More information

Chapter 6: Residue Theory. Introduction. The Residue Theorem. 6.1 The Residue Theorem. 6.2 Trigonometric Integrals Over (0, 2π) Li, Yongzhao

Chapter 6: Residue Theory. Introduction. The Residue Theorem. 6.1 The Residue Theorem. 6.2 Trigonometric Integrals Over (0, 2π) Li, Yongzhao Outline Chapter 6: Residue Theory Li, Yongzhao State Key Laboratory of Integrated Services Networks, Xidian University June 7, 2009 Introduction The Residue Theorem In the previous chapters, we have seen

More information

Part IB. Further Analysis. Year

Part IB. Further Analysis. Year Year 2004 2003 2002 2001 10 2004 2/I/4E Let τ be the topology on N consisting of the empty set and all sets X N such that N \ X is finite. Let σ be the usual topology on R, and let ρ be the topology on

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

Complex Analysis, Stein and Shakarchi The Fourier Transform

Complex Analysis, Stein and Shakarchi The Fourier Transform Complex Analysis, Stein and Shakarchi Chapter 4 The Fourier Transform Yung-Hsiang Huang 2017.11.05 1 Exercises 1. Suppose f L 1 (), and f 0. Show that f 0. emark 1. This proof is observed by Newmann (published

More information

13 Maximum Modulus Principle

13 Maximum Modulus Principle 3 Maximum Modulus Principle Theorem 3. (maximum modulus principle). If f is non-constant and analytic on an open connected set Ω, then there is no point z 0 Ω such that f(z) f(z 0 ) for all z Ω. Remark

More information

44 CHAPTER 3. CAVITY SCATTERING

44 CHAPTER 3. CAVITY SCATTERING 44 CHAPTER 3. CAVITY SCATTERING For the TE polarization case, the incident wave has the electric field parallel to the x 3 -axis, which is also the infinite axis of the aperture. Since both the incident

More information

1.1 Introduction to Limits

1.1 Introduction to Limits Chapter 1 LIMITS 1.1 Introduction to Limits Why Limit? Suppose that an object steadily moves forward, with s(t) denotes the position at time t. The average speed over the interval [1,2] is The average

More information

6. Residue calculus. where C is any simple closed contour around z 0 and inside N ε.

6. Residue calculus. where C is any simple closed contour around z 0 and inside N ε. 6. Residue calculus Let z 0 be an isolated singularity of f(z), then there exists a certain deleted neighborhood N ε = {z : 0 < z z 0 < ε} such that f is analytic everywhere inside N ε. We define Res(f,

More information

Some Fun with Divergent Series

Some Fun with Divergent Series Some Fun with Divergent Series 1. Preliminary Results We begin by examining the (divergent) infinite series S 1 = 1 + 2 + 3 + 4 + 5 + 6 + = k=1 k S 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + = k=1 k 2 (i)

More information

N E W S A N D L E T T E R S

N E W S A N D L E T T E R S N E W S A N D L E T T E R S 74th Annual William Lowell Putnam Mathematical Competition Editor s Note: Additional solutions will be printed in the Monthly later in the year. PROBLEMS A1. Recall that a regular

More information

Bochner s Theorem on the Fourier Transform on R

Bochner s Theorem on the Fourier Transform on R Bochner s heorem on the Fourier ransform on Yitao Lei October 203 Introduction ypically, the Fourier transformation sends suitable functions on to functions on. his can be defined on the space L ) + L

More information

REAL AND COMPLEX ANALYSIS

REAL AND COMPLEX ANALYSIS REAL AND COMPLE ANALYSIS Third Edition Walter Rudin Professor of Mathematics University of Wisconsin, Madison Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any

More information

Math /Foundations of Algebra/Fall 2017 Numbers at the Foundations: Real Numbers In calculus, the derivative of a function f(x) is defined

Math /Foundations of Algebra/Fall 2017 Numbers at the Foundations: Real Numbers In calculus, the derivative of a function f(x) is defined Math 400-001/Foundations of Algebra/Fall 2017 Numbers at the Foundations: Real Numbers In calculus, the derivative of a function f(x) is defined using limits. As a particular case, the derivative of f(x)

More information

Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space

Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space Statistical Inference with Reproducing Kernel Hilbert Space Kenji Fukumizu Institute of Statistical Mathematics, ROIS Department

More information

Complex numbers, the exponential function, and factorization over C

Complex numbers, the exponential function, and factorization over C Complex numbers, the exponential function, and factorization over C 1 Complex Numbers Recall that for every non-zero real number x, its square x 2 = x x is always positive. Consequently, R does not contain

More information

= 10 such triples. If it is 5, there is = 1 such triple. Therefore, there are a total of = 46 such triples.

= 10 such triples. If it is 5, there is = 1 such triple. Therefore, there are a total of = 46 such triples. . Two externally tangent unit circles are constructed inside square ABCD, one tangent to AB and AD, the other to BC and CD. Compute the length of AB. Answer: + Solution: Observe that the diagonal of the

More information

The Title of an Article

The Title of an Article The Title of an Article Dr. Author Jones University of Somewhere Abstract This article illustrates many features of a mathematics article, but we do not explain the spurious appearance of the formula (

More information

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012 INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012 September 5, 2012 Mapping Properties Lecture 13 We shall once again return to the study of general behaviour of holomorphic functions

More information

July 21 Math 2254 sec 001 Summer 2015

July 21 Math 2254 sec 001 Summer 2015 July 21 Math 2254 sec 001 Summer 2015 Section 8.8: Power Series Theorem: Let a n (x c) n have positive radius of convergence R, and let the function f be defined by this power series f (x) = a n (x c)

More information

Quadratic and Polynomial Inequalities in one variable have look like the example below.

Quadratic and Polynomial Inequalities in one variable have look like the example below. Section 8 4: Polynomial Inequalities in One Variable Quadratic and Polynomial Inequalities in one variable have look like the example below. x 2 5x 6 0 (x 2) (x + 4) > 0 x 2 (x 3) > 0 (x 2) 2 (x + 4) 0

More information

Domains of analyticity for response solutions in strongly dissipative forced systems

Domains of analyticity for response solutions in strongly dissipative forced systems Domains of analyticity for response solutions in strongly dissipative forced systems Livia Corsi 1, Roberto Feola 2 and Guido Gentile 2 1 Dipartimento di Matematica, Università di Napoli Federico II, Napoli,

More information

Fourier Sin and Cos Series and Least Squares Convergence

Fourier Sin and Cos Series and Least Squares Convergence Fourier and east Squares Convergence James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University May 7, 28 Outline et s look at the original Fourier sin

More information

MATH COMPLEX ANALYSIS. Contents

MATH COMPLEX ANALYSIS. Contents MATH 3964 - OMPLEX ANALYSIS ANDREW TULLOH AND GILES GARDAM ontents 1. ontour Integration and auchy s Theorem 2 1.1. Analytic functions 2 1.2. ontour integration 3 1.3. auchy s theorem and extensions 3

More information

Pre-Calculus: Functions and Their Properties (Solving equations algebraically and graphically, matching graphs, tables, and equations, and

Pre-Calculus: Functions and Their Properties (Solving equations algebraically and graphically, matching graphs, tables, and equations, and Pre-Calculus: 1.1 1.2 Functions and Their Properties (Solving equations algebraically and graphically, matching graphs, tables, and equations, and finding the domain, range, VA, HA, etc.). Name: Date:

More information

Last Update: April 7, 201 0

Last Update: April 7, 201 0 M ath E S W inter Last Update: April 7, Introduction to Partial Differential Equations Disclaimer: his lecture note tries to provide an alternative approach to the material in Sections.. 5 in the textbook.

More information

f ( x) = L ( the limit of f(x), as x approaches a,

f ( x) = L ( the limit of f(x), as x approaches a, Math 1205 Calculus Sec. 2.4 : The Precise Definition of a imit I. Review A. Informal Definition of imit 1. Def n : et f(x) be defined on an open interval about a except possibly at a itself. If f(x) gets

More information

Types of Real Integrals

Types of Real Integrals Math B: Complex Variables Types of Real Integrals p(x) I. Integrals of the form P.V. dx where p(x) and q(x) are polynomials and q(x) q(x) has no eros (for < x < ) and evaluate its integral along the fol-

More information

MA3111S COMPLEX ANALYSIS I

MA3111S COMPLEX ANALYSIS I MA3111S COMPLEX ANALYSIS I 1. The Algebra of Complex Numbers A complex number is an expression of the form a + ib, where a and b are real numbers. a is called the real part of a + ib and b the imaginary

More information

Introduction to Spectral Theory

Introduction to Spectral Theory P.D. Hislop I.M. Sigal Introduction to Spectral Theory With Applications to Schrodinger Operators Springer Introduction and Overview 1 1 The Spectrum of Linear Operators and Hilbert Spaces 9 1.1 TheSpectrum

More information

Solutions to Tutorial 8 (Week 9)

Solutions to Tutorial 8 (Week 9) The University of Sydney School of Mathematics and Statistics Solutions to Tutorial 8 (Week 9) MATH3961: Metric Spaces (Advanced) Semester 1, 2018 Web Page: http://www.maths.usyd.edu.au/u/ug/sm/math3961/

More information

F (z) =f(z). f(z) = a n (z z 0 ) n. F (z) = a n (z z 0 ) n

F (z) =f(z). f(z) = a n (z z 0 ) n. F (z) = a n (z z 0 ) n 6 Chapter 2. CAUCHY S THEOREM AND ITS APPLICATIONS Theorem 5.6 (Schwarz reflection principle) Suppose that f is a holomorphic function in Ω + that extends continuously to I and such that f is real-valued

More information