Monte Carlo Simulation for Statistical Decay of Compound Nucleus

Size: px
Start display at page:

Download "Monte Carlo Simulation for Statistical Decay of Compound Nucleus"

Transcription

1 5th ASRC International Workshop Perspectives in Nuclear Fission JAEA Mar. 4 6, 22 Monte Carlo Simulation for Statistical Decay of Compound Nucleus T. Kawano, P. Talou, M.B. Chadwick, I. Stetcu Los Alamos National Laboratory B. Becker, Y. Danon Rensselaer Polytechnic Institute

2 Introduction Stochastic Aspects of Prompt Fission Neutrons and γ-rays Distributions of fission fragments Mass and charge distributions Y (Z, A) just after scission Spin and parity distribution R(J, π) in the initial fragments Kinetic energy T XE and excitation energy T KE distributions P (Ex ) and energy sharing between two fragments Distributions in evaporation process Level density of all nuclei appeared in the de-excitation process Neutron and γ-ray competition at each excited state Neuron emission angle to obtain the spectrum in the Lab-frame The microscopic calculation of prompt fission neutrons and γ-rays requires to integrate (sum) over these distributions.

3 Monte Carlo for Prompt Fission Neutrons and Gammas From Averaged Quantity to Distributions of These Quantities Neutron spectrum represented by a simple functional form Madland-Nix spectrum, modified MN by Ohsawa, P-by-P model by Tudora predominant pairs selected from Y (Z, A), or include all pairs a simple excitation energy distribution assumed (Terrell 958) Monte Carlo approaches to the fission spectra Lemaire et al., Randrup and Vogt, Litaize and Serot, Schmidt, Ohsawa Y (Z, A) and P (Ex ) sampled from distributions nuclear decay process calculated with an evaporation model Full Monte Carlo simulation Talou et al. Y (Z, A), P (Ex ), and R(J, π) sampled from distributions nuclear decay process calculated with the deterministic or Monte Carlo Hauser- Feshbach model

4 Neutron, Gamma ray Emission Probability E x Z, A Z, A- E S n E gamma-ray emission P (ɛ γ )de = T γ(e x E )ρ(z, A, E ) de N neutron emission P (ɛ n )de = T n(e x S n E )ρ(z, A, E ) de N where T n,γ are the transmission coefficients, ρ(z, A, E) is the level density, and the normalization N is given by N = Ex Ex S n T γ (E x E )ρ(z, A, E )de + T n (E x S n E )ρ(z, A, E )de integration performed only for spin and parity conserved states at low excitation energies, discrete level data are used (taken from RIPL-3)

5 Monte Carlo Hauser Feshbach Method Total Excitation Energy Z, A Z, A- (d) (c) (a) (b) S (A) n Z, A-2 S (A-) n Algorithm in CGM starting at (Z, A, E ), P (ɛ n ) and P (ɛ γ ) are calculated choose a next state (Z, A, E ) by a random sampling method repeat this until the state reaches at a discrete level each time P s are re-calculated it is faster if all the P s are calculated at the beginning, but the memory size can be GByte at a discrete level, do Monte Carlo gamma-ray cascade based on branching ratios in RIPL-3

6 Sequential Neutron Emission Simulation Neutron and gamma-ray emission spectra from excited 4 Xe initial spin distribution by the level density, events 2 hours on a laptop computer MeV first neutron second neutron gamma-ray 5 MeV first neutron second neutron gamma-ray 2 MeV first neutron second neutron third neutron gamma-ray Spectrum [/MeV].. Spectrum [/MeV].. Spectrum [/MeV] Secondary Energy [MeV] Secondary Energy [MeV] Secondary Energy [MeV] MeV 5 MeV 2 MeV ɛ γ =.87 MeV.89 MeV.6 MeV ɛ n =.37 MeV.44 MeV.48 MeV

7 Initial Spin/Parity Changes Energy Spectra neutron and gamma-rays from 38 Xe at 5 MeV J = J = Neutron Spectrum [x/mev]... Gamma Spectrum [x/mev] Secondary Neutron Energy [MeV] Secondary Gamma Energy [MeV] The initial spin (distribution) also has a large impact on the neutron/gamma-ray competition above neutron separation energies.

8 Application to Fission Fragment Decay Initial Conditions U-235 thermal neutron fission Y (A, T KE) evaluated from experimental data P (Z A) from Wahl systematics R(J, π) from level density J distribution, with scaled σ(u) R(J, π) = J + /2 2σ 2 exp T XE given by the distributions above and energy conservation { } (J + /2)2 2σ 2 Parameters in the Hauser-Feshbach Model Neutron optical potential by Koning-Delaroche Kopecky s γ-ray strength function Level density systematics based on KTUY5 mass model Nuclear Excitation Energy [MeV] Fragment Mass Y (A, U ex ) for R T =

9 Anisothermal Parameter Excitation Energy Sharing Between Fragments 2 Excitation Energy Ratio (light/heavy) Excitation Energy Ratio (light/heavy) RT=. RT=.5 RT from Litaize and Serot (2) Heavy Fragment Mass RT=. RT=.5 RT from Litaize and Serot (2) Heavy Fragment Mass Ratio of the temperatures in two fragments: R T = T l = U l a h (U h ) T h U h a l (U l ) Many different estimates for RT Ohsawa, Talou, Litaize and Serot, Shu Neng-Chuan et al. Schmidt et al., Manailescu et al., Becker et al., Vogt and Randrup (different parametrization) RT =. still gives more excitation energy to the light fragment near A = 3 due to the level density Actual excitation energy sharing depends on the level density model adopted

10 Prompt Neutron Multiplicity and Probability Probabilities for Each Multiplicity, and ν for Each Fragment.5.4 RT=.2 RT from Litaize and Serot Franklyn 978 Boldeman 967 Diven 956 Holden RT=.2 RT from Litaize and Serot Maslin 967 Nishio 998 Batenkov 24 Probability.3.2 Number of Neutrons Number of Neutrons Mass Number Note that R T by Litaize and Serot is for 252 Cf Deterministic HF calculations for CN Decay process for better statistics RT is sensitive to ν(a), but not so sensitive to P (ν)

11 Average CMS and LAB Neutron Spectra Kinematic Boost for the Light Fragment in the LAB Spectrum CMS Spectrum [/MeV].. LAB Spectrum [/MeV].. RT=.2 L H RT=.2 L H RT Litaize and Serot L H Madland-Nix L H.. Fission Neutron Energy [MeV] RT Litaize and Serot L H Madland-Nix L H.. Fission Neutron Energy [MeV] The CMS-LAB conversion by Terrell s method The Madland-Nix spectrum represents the fission spectrum in ENDF

12 Full Monte Carlo Calculation, Ratio to Maxwellian Detailed Comparison with MN Model Calculation.2.2 Ratio to Maxwellian (T=.42 MeV) Ratio to Maxwellian (T=.42 MeV) Litaize and Serot (Determinisit) RT=.2 (Monte Carlo) Madland-Nix.. Secondary Neutron Energy [MeV].2 Johansson 977 Hambsch 29 RT=.2 (Monte Carlo) Madland-Nix.. Secondary Neutron Energy [MeV] Our LAB-spectrum gives higher than ENDF below 2 MeV and above MeV Need more statistics to obtain higher energy tail Optimization of RT is required too (Becker et al. PRC paper prepared)

13 Evaporation (Weisskopf) or Maxwellian? Asymptotic form at very low energies Evaporation: fe (ɛ) = Aɛ exp( ɛ/t ) f E (ɛ ) = fe (ɛ) ɛ for ɛ Maxwellian: fm (ɛ) = A ɛ exp( ɛ/t ) f M (ɛ ) = 2 ɛ fm (ɛ) ɛ/2 for ɛ Watt: fw (ɛ) = A sinh(. Bɛ) exp( ɛ/t ) f W (ɛ ) = B 2 ɛ fw (ɛ) ɛ/2 for ɛ. from Hauser-Feshbach s-wave neutron transmission coefficient T = 2πS ɛ level density is assumed to be constant within a small energy width fhf (ɛ) T ρ(e x ) = C ɛ for ɛ Spectra [arb. unit]. Maxwellian Evaporation Watt.. Emission Energy [arb. unit]

14 Concluding Remarks Hauser-Feshbach Method for Fission Fragment Decay CGM: Monte Carlo Hauser-Feshbach code developed at LANL In this study we performed Monte Carlo simulations for prompt fission neutron and γ-ray emissions. Sampled fission fragments from Z, A, Ex distributions Neutron and γ-ray emission with the Hauser-Feshbach method, both deterministic and Monte Carlo Several models for anisothermal parameter RT tested. We applied our model to the fission of 235 U at the thermal energy, and calculated P (ν), ν(a), and total neutron emission spectra. The γ-ray results (not shown in this talk) similar to ENDF evaluation. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-6NA25396.

Monte Carlo Simulation for Statistical Decay of Compound Nucleus

Monte Carlo Simulation for Statistical Decay of Compound Nucleus CNR20, Prague, Czech Republic, Sep. 9 23, 20 Monte Carlo Simulation for Statistical Decay of Compound Nucleus T. Kawano, P. Talou, M.B Chadwick Los Alamos National Laboratory Compound Nuclear Reaction,

More information

Statistical Theory for the Beta-Delayed Neutron and Gamma-Ray Emission

Statistical Theory for the Beta-Delayed Neutron and Gamma-Ray Emission Statistical Theory for the Beta-Delayed Neutron and Gamma-Ray Emission T. Kawano, P Möller Theoretical Division, Los Alamos National Laboratory LA-UR-13-21895 Slide 1 Combining QRPA Calculation and Statistical

More information

Correlated Prompt Fission Data

Correlated Prompt Fission Data Correlated Prompt Fission Data Patrick Talou 1, T. Kawano 1, I. Stetcu 1, D. Neudecker 2 1 Theoretical Division, Los Alamos National Laboratory, USA 2 XCP-5, Computational Physics Division, Los Alamos

More information

Statistical Model Calculations for Neutron Radiative Capture Process

Statistical Model Calculations for Neutron Radiative Capture Process Statistical Nuclear Physics and its Applications in Astrophysics, Jul. 8-, 2008 Statistical Model Calculations for Neutron Radiative Capture Process T. Kawano T-6 Nuclear Physics Los Alamos National Laboratory

More information

A Monte Carlo Simulation of Prompt Gamma Emission from Fission Fragments

A Monte Carlo Simulation of Prompt Gamma Emission from Fission Fragments A Monte Carlo Simulation of Prompt Gamma Emission from Fission Fragments D. Regnier, O. Litaize, O. Serot CEA Cadarache, DEN/DER/SPRC/LEPH WONDER, 27/09/2012 D. Regnier, O. Litaize, O. Serot - CEA Cadarache,

More information

Monte Carlo Hauser-Feshbach Modeling of Prompt Fission Neutrons and Gamma Rays

Monte Carlo Hauser-Feshbach Modeling of Prompt Fission Neutrons and Gamma Rays EPJ Web of Conferences 21, 83 (212) DOI: 1.151/ epjconf/ 2122183 C Owned by the authors, published by EDP Sciences, 212 Monte Carlo Hauser-Feshbach Modeling of Prompt Fission Neutrons and Gamma Rays Patrick

More information

Investigation of Prompt Fission Neutron and Gamma Spectra with their covariance matrices. Application to 239 Pu+n th, 238 U+n 1.

Investigation of Prompt Fission Neutron and Gamma Spectra with their covariance matrices. Application to 239 Pu+n th, 238 U+n 1. Investigation of Prompt Fission Neutron and Gamma Spectra with their covariance matrices. Application to 239 Pu+n th, 238 U+n 1.8MeV, 235 U+n th O. Litaize, L. Berge, D. Regnier, O. Serot, Y. Peneliau,

More information

Detailed Modeling of Fission

Detailed Modeling of Fission Detailed Modeling of Fission Ramona Vogt (LLNL) LLNL-PRES-6698" This work performed under the auspices of the U.S. Department of Energy by under Contract DE-AC5-7NA744" Fission Nomenclature! Compound nucleus:

More information

Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei

Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei 5th Workshop on Nuclear Level Density and Gamma Strength Oslo, May 18-22, 2015 LLNL-PRES-670315 LLNL-PRES-XXXXXX This work was performed

More information

Correlations in Prompt Neutrons and Gamma Rays from Fission

Correlations in Prompt Neutrons and Gamma Rays from Fission Correlations in Prompt Neutrons and Gamma Rays from Fission S. A. Pozzi 1, M. J. Marcath 1, T. H. Shin 1, Angela Di Fulvio 1, S. D. Clarke 1, E. W. Larsen 1, R. Vogt 2,3, J. Randrup 4, R. C. Haight 5,

More information

FIFRELIN TRIPOLI-4 coupling for Monte Carlo simulations with a fission model. Application to shielding calculations

FIFRELIN TRIPOLI-4 coupling for Monte Carlo simulations with a fission model. Application to shielding calculations FIFRELIN TRIPOLI-4 coupling for Monte Carlo simulations with a fission model. Application to shielding calculations Odile Petit 1,*, Cédric Jouanne 1, Olivier Litaize 2, Olivier Serot 2, Abdelhazize Chebboubi

More information

Influence of primary fragment excitation energy and spin distributions on fission observables

Influence of primary fragment excitation energy and spin distributions on fission observables Influence of primary fragment excitation energy and spin distributions on fission observables Olivier Litaize 1,, Loïc hulliez 1,2, Olivier Serot 1, Abdelaziz Chebboubi 1, and Pierre amagno 1 1 CEA, DEN,

More information

Status of Subgroup 24

Status of Subgroup 24 Status of Subgroup 24 M. Herman National Nuclear Data Center, BNL for SG24 mwherman@bnl.gov Brookhaven Science Associates SG 24 membership M. Herman (BNL) - Chairman C. Mattoon (BNL) S. Mughaghab (BNL)

More information

Cf-252 spontaneous fission prompt neutron and photon correlations

Cf-252 spontaneous fission prompt neutron and photon correlations Cf-252 spontaneous fission prompt neutron and photon correlations M. J. Marcath 1,*, P. Schuster 1, P. Talou 2, I. Stetcu 2, T. Kawano 2, M. Devlin 2, R. C. Haight 2, R. Vogt 3,4, J. Randrup 5, S. D. Clarke

More information

Statistical-Model and Direct-Semidirect-Model Calculations of Neutron Radiative Capture Process

Statistical-Model and Direct-Semidirect-Model Calculations of Neutron Radiative Capture Process New Era of Nuclear Physics in the Cosmos, the r-process Nucleo-Synthesis RIKEN, Japan, Sep. 25,26, 2008 Statistical-Model and Direct-Semidirect-Model Calculations of Neutron Radiative Capture Process T.

More information

Correlations in Prompt Neutrons and Gamma Rays from Fission

Correlations in Prompt Neutrons and Gamma Rays from Fission Correlations in Prompt Neutrons and Gamma Rays from Fission S. A. Pozzi 1, B. Wieger 1, M. J. Marcath 1, S. Ward 1, J. L. Dolan 1, T. H. Shin 1, S. D. Clarke 1, M. Flaska 1, E. W. Larsen 1, A. Enqvist

More information

Modeling fission in FIFRELIN

Modeling fission in FIFRELIN Excitation energy (MeV) Modeling fission in FIFRELIN 40 38 36 34 3 30 8 6 4 0 18 16 14 1 10 8 6 4 0 Heavy Primary 0 4 6 8 10 1 14 16 18 0 Total angular momentum 0 1E3 3E3 4E3 5E3 6E3 8E3 9E3 1E4 Olivier

More information

Fundamental and Applied Nuclear Fission Research at LANL

Fundamental and Applied Nuclear Fission Research at LANL LA-UR-13-27602 Fundamental and Applied Nuclear Fission Research at LANL Patrick Talou T-2, Nuclear Physics Group, Los Alamos National Laboratory New Mexico, USA INT 13-3 Quantitative Large Amplitude Shape

More information

Fission Yield CEA-Cadarache

Fission Yield CEA-Cadarache Fission Yield Activities @ CEA-Cadarache Olivier SEROT CEA-Cadarache DEN/DER/SPRC/LEPh 13108 Saint Paul lez Durance France PAGE 1 Content Fission Yield Measurements on Lohengrin @ Institut Laue Langevin

More information

Benchmark test: Description of prompt-neutron spectra with the GEF code

Benchmark test: Description of prompt-neutron spectra with the GEF code Benchmark test: Description of prompt-neutron spectra with the GEF code Karl-Heinz Schmidt Beatriz Jurado January 2014 1 Introduction This work deals with the description of prompt-neutron spectra in neutroninduced

More information

Characteristics of prompt fission γ-ray emission experimental results and predictions

Characteristics of prompt fission γ-ray emission experimental results and predictions Characteristics of prompt fission γ-ray emission experimental results and predictions A. Oberstedt NEMEA-7/CIELO Workshop of the Collaborative International Evaluated Library Organization IRMM Geel, Belgium

More information

Correlation in Spontaneous Fission of Cf252

Correlation in Spontaneous Fission of Cf252 Correlation in Spontaneous Fission of Cf252 Stefano Marin 1, Matthew J. Marcath 1, Patricia F. Schuster 1, Shaun D. Clarke 1, and Sara A. Pozzi 1 1. Department of Nuclear Engineering and Radiological Sciences,

More information

Correlations of neutron multiplicity and gamma multiplicity with. fragment mass and total kinetic energy in spontaneous fission of 252 Cf

Correlations of neutron multiplicity and gamma multiplicity with. fragment mass and total kinetic energy in spontaneous fission of 252 Cf Correlations of neutron multiplicity and gamma multiplicity with fragment mass and total kinetic energy in spontaneous fission of 252 Cf Taofeng Wang 1,2, Guangwu Li 3, Wenhui Zhang 3, Liping Zhu 3, Qinghua

More information

A Predictive Theory for Fission. A. J. Sierk Peter Möller John Lestone

A Predictive Theory for Fission. A. J. Sierk Peter Möller John Lestone A Predictive Theory for Fission A. J. Sierk Peter Möller John Lestone Support This research is supported by the LDRD Office at LANL as part of LDRD-DR project 20120077DR: Advancing the Fundamental Understanding

More information

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL SURROGATE REACTIONS An overview of papers by Jason Burke from LLNL Compound Nuclear Reaction cross sections Cross sections for compound-nuclear reactions are required input for astrophysical models and

More information

arxiv: v1 [nucl-th] 17 Jan 2019

arxiv: v1 [nucl-th] 17 Jan 2019 Unified Coupled-Channels and Hauser-Feshbach Model Calculation for Nuclear Data Evaluation Toshihiko Kawano Los Alamos National Laboratory, Los Alamos, NM 87545, USA Email: kawano@lanl.gov arxiv:191.5641v1

More information

Needs for Nuclear Reactions on Actinides

Needs for Nuclear Reactions on Actinides Needs for Nuclear Reactions on Actinides Mark Chadwick Los Alamos National Laboratory Talk at the Workshop on Nuclear Data Needs & Capabilities for Applications, May 27-29, 2015 Nuclear Data for National

More information

Theoretical Analysis of Neutron Double-Differential Cross Section of n + 19 F at 14.2 MeV

Theoretical Analysis of Neutron Double-Differential Cross Section of n + 19 F at 14.2 MeV Commun. Theor. Phys. (Beijing, China) 47 (2007) pp. 102 106 c International Academic Publishers Vol. 47, No. 1, January 15, 2007 Theoretical Analysis of Neutron Double-Differential Cross Section of n +

More information

Microscopic cross sections : an utopia? S. Hilaire 1, A.J. Koning 2 & S. Goriely 3.

Microscopic cross sections : an utopia? S. Hilaire 1, A.J. Koning 2 & S. Goriely 3. Microscopic cross sections : an utopia? S. Hilaire 1, A.J. Koning 2 & S. Goriely 3 www.talys.eu 1 CEA,DAM,DIF - France 2 Nuclear Research and Consultancy Group, Petten, The Netherlands 3 Institut d Astronomie

More information

I N D C INTERNATIONAL NUCLEAR DATA COMMITTEE PROMPT NEUTRON EMISSION IN NUCLEAR FISSION

I N D C INTERNATIONAL NUCLEAR DATA COMMITTEE PROMPT NEUTRON EMISSION IN NUCLEAR FISSION International Atomic Energy Agency INDC(GDR)-056/L I N D C INTERNATIONAL NUCLEAR DATA COMMITTEE PROMPT NEUTRON EMISSION IN NUCLEAR FISSION D. Seeliger, H. Kalka, H. Märten, A. Ruben, K. Arnold, I. Düring

More information

Alex Dombos Michigan State University Nuclear and Particle Physics

Alex Dombos Michigan State University Nuclear and Particle Physics Nuclear Science and Security Consortium September Workshop and Advisory Board Meeting The impact of prompt neutron emission from fission fragments on the final abundance pattern of the astrophysical r-process

More information

Covariance Matrix Evaluation for Independent Fission Yields

Covariance Matrix Evaluation for Independent Fission Yields Covariance Matrix Evaluation for Independent Fission Yields N. Terranova 1, O. Serot 2, P. rchier 2, C. De Saint Jean 2, M. Sumini 1 1 Dipartimento di Ingegneria Industriale (DIN), Università di Bologna,

More information

PROMPT EMISSION MODELING IN THE FISSION PROCESS

PROMPT EMISSION MODELING IN THE FISSION PROCESS PROMPT EMISSION MODELING IN THE FISSION PROCESS I.VISAN 1,, G.GIUBEGA 1, A. TUDORA 1 1 University of Bucharest, Faculty of Physics, Bucharest-Magurele, POB MG-11, R-769, Romania E-mail: iuliana.visan@yahoo.com;

More information

Review of nuclear data of major actinides and 56 Fe in JENDL-4.0

Review of nuclear data of major actinides and 56 Fe in JENDL-4.0 Review of nuclear data of major actinides and 56 Fe in JENDL-4.0 Osamu Iwamoto, Nobuyuki Iwamoto Nuclear Data Center, Nuclear Science and Engineering Directorate Japan Atomic Energy Agency Ibaraki, Japan

More information

Angular and energy distributions of the prompt fission neutrons from thermal neutron-induced fission of 239 Pu

Angular and energy distributions of the prompt fission neutrons from thermal neutron-induced fission of 239 Pu Angular and energy distributions of the prompt fission neutrons from thermal neutron-induced fission of 239 Pu Vorobyev AS, Shcherbakov OA, Gagarski AM, Val ski GV, Petrov GA National Research Center Kurchatov

More information

VorobyevA.S., ShcherbakovO.A., GagarskiA.M., Val ski G.V., Petrov G.A.

VorobyevA.S., ShcherbakovO.A., GagarskiA.M., Val ski G.V., Petrov G.A. Investigation of the Prompt Neutron Emission Mechanism in Low Energy Fission of 233, 235 U(n th, f) and 252 Cf(sf) VorobyevA.S., ShcherbakovO.A., GagarskiA.M., Val ski G.V., Petrov G.A. Petersburg Nuclear

More information

General description of fission observables: The GEF code*

General description of fission observables: The GEF code* General description of fission observables: The GEF code* Karl-Heinz Schmidt, Beatriz Jurado, Christelle Schmitt ND2016 International Conference on Nuclear Data for Science and Technology Sept. 11-16,

More information

JRC Place on dd Month YYYY Event Name 1

JRC Place on dd Month YYYY Event Name 1 JRC Place on dd Month YYYY Event Name 1 A new measurement of the prompt fission neutron emission spectrum of 235 U(n,f) Correlation of prompt neutron emission with fission fragment properties F.-J. Hambsch

More information

Neutron-induced cross sections of actinides via de surrogate reaction method

Neutron-induced cross sections of actinides via de surrogate reaction method Neutron-induced cross sections of actinides via de surrogate reaction method B. Jurado 1), Q. Ducasse 1), M. Aiche 1), L. Mathieu 1), T.Tornyi 2), A. Goergen 2), J. N. Wilson 3), G. Boutoux 5), I. Companis

More information

Determination of neutron induced fission fragment spin distribution after neutron evaporation

Determination of neutron induced fission fragment spin distribution after neutron evaporation Determination of neutron induced fission fragment spin distribution after neutron evaporation A. Chebboubi, G. Kessedjian, C. Sage, O. Méplan LPSC, Université Grenoble-Alpes, CNRS/IN2P3, F-38026 Grenoble,

More information

What Powers the Stars?

What Powers the Stars? What Powers the Stars? In brief, nuclear reactions. But why not chemical burning or gravitational contraction? Bright star Regulus (& Leo dwarf galaxy). Nuclear Energy. Basic Principle: conversion of mass

More information

Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center. Michal Mocko

Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center. Michal Mocko Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center Michal Mocko G. Muhrer, F. Tovesson, J. Ullmann International Topical Meeting on Nuclear Research Applications and Utilization

More information

Fitting Function for Experimental Energy Ordered Spectra in Nuclear Continuum Studies

Fitting Function for Experimental Energy Ordered Spectra in Nuclear Continuum Studies Fitting Function for Experimental Energy Ordered Spectra in Nuclear Continuum Studies J.R. Pinzón, F. Cristancho January 17, 2012 Abstract We review the main features of the Hk-EOS method for the experimental

More information

A new theoretical approach to low-energy fission based on general laws of quantum and statistical mechanics

A new theoretical approach to low-energy fission based on general laws of quantum and statistical mechanics A new theoretical approach to low-energy fission based on general laws of quantum and statistical mechanics Karl-Heinz Schmidt Beatriz Jurado Contribution to the meeting of the WPEG subgroup Improved Fission

More information

A comparison between two evaluations of neutron multiplicity distributions

A comparison between two evaluations of neutron multiplicity distributions Abstract A comparison between two evaluations of neutron multiplicity distributions J. P. February 22 nd 200 Applied Physics Division, Los Alamos National Laboratory Los Alamos, NM 7545, USA Within MCNP6,

More information

Intrinsic energy partition in fission

Intrinsic energy partition in fission EPJ Web of Conferences 42, 06003 (2013) DOI: 10.1051/ epjconf/ 20134206003 C Owned by the authors, published by EDP Sciences, 2013 Intrinsic energy partition in fission M. Mirea 1,a Horia Hulubei National

More information

Alpha Decay. Decay alpha particles are monoenergetic. Nuclides with A>150 are unstable against alpha decay. E α = Q (1-4/A)

Alpha Decay. Decay alpha particles are monoenergetic. Nuclides with A>150 are unstable against alpha decay. E α = Q (1-4/A) Alpha Decay Because the binding energy of the alpha particle is so large (28.3 MeV), it is often energetically favorable for a heavy nucleus to emit an alpha particle Nuclides with A>150 are unstable against

More information

Subroutines to Simulate Fission Neutrons for Monte Carlo Transport Codes. J. P. Lestone Los Alamos National Laboratory, Los Alamos, New Mexico, USA

Subroutines to Simulate Fission Neutrons for Monte Carlo Transport Codes. J. P. Lestone Los Alamos National Laboratory, Los Alamos, New Mexico, USA Subroutines to Simulate Fission Neutrons for Monte Carlo Transport Codes J. P. Lestone Los Alamos National Laboratory, Los Alamos, New Mexico, USA Abstract Fortran subroutines have been written to simulate

More information

Challenges in experiments and modelling of nuclear fission: prompt neutron and γ-ray emission

Challenges in experiments and modelling of nuclear fission: prompt neutron and γ-ray emission Challenges in experiments and modelling of nuclear fission: prompt neutron and γ-ray emission F.-J. Hambsch IRMM, Belgium Content Introduction Neutron multiplicities and Neutron-fission fragment correlations

More information

Determining Compound-Nuclear Reaction Cross Sections via Surrogate Reactions: Approximation Schemes for (n,f) Reactions

Determining Compound-Nuclear Reaction Cross Sections via Surrogate Reactions: Approximation Schemes for (n,f) Reactions Determining Compound-Nuclear Reaction Cross Sections via Surrogate Reactions: Approximation Schemes for (n,f) Reactions Jutta E. Escher and Frank S. Dietrich Lawrence Livermore National Laboratory P.O.

More information

The surrogate-reaction method: status and perspectives. Beatriz Jurado, CENBG, France

The surrogate-reaction method: status and perspectives. Beatriz Jurado, CENBG, France The surrogate-reaction method: status and perspectives Beatriz Jurado, CENBG, France 1" Nuclear data for waste incineration and innovative fuel cycles Minor actinides incineration Th/U cycle Neutron-induced

More information

Surrogate reactions: the Weisskopf-Ewing approximation and its limitations

Surrogate reactions: the Weisskopf-Ewing approximation and its limitations International Conference on Nuclear Data for Science and Technology 2007 DOI: 10.1051/ndata:07537 Invited Surrogate reactions: the Weisskopf-Ewing approximation and its limitations J. Escher 1,a, L.A.

More information

1 v. L18.pdf Spring 2010, P627, YK February 22, 2012

1 v. L18.pdf Spring 2010, P627, YK February 22, 2012 L18.pdf Spring 2010, P627, YK February 22, 2012 18 T2 Nuclear Information Service at LANL: http://t2.lanl.gov/data/ ENDF/B VI Neutron Data : http://t2.lanl.gov/cgi bin/nuclides/endind Thermal neutron x

More information

Monte Carlo Based Toy Model for Fission Process

Monte Carlo Based Toy Model for Fission Process Monte Carlo Based Toy Model for Fission Process R. Kurniadi, A. Waris, S. Viridi Nuclear Physics and Biophysics Research Division Abstract Fission yield has been calculated notoriously by two calculations

More information

Capture and Fission with DANCE and NEUANCE

Capture and Fission with DANCE and NEUANCE Capture and Fission with DANCE and NEUANCE Marian Jandel Nuclear and Radiochemistry Group P(ND)^2-2, Oct 14-17, 2014, Bruyeres-le-Chatel, France UNCLASSIFIED Nuclear data measurements at DANCE Neutron

More information

Beta decay for neutron capture Sean Liddick

Beta decay for neutron capture Sean Liddick Beta decay for neutron capture Sean Liddick 6 th Oslo Workshop on Strength and Level Density, May 8-12, 2017 Nuclear Physics Uncertainties for r-process: (n,γ) (n,γ) uncertainties Monte-Carlo variations

More information

The shell model Monte Carlo approach to level densities: recent developments and perspectives

The shell model Monte Carlo approach to level densities: recent developments and perspectives The shell model Monte Carlo approach to level densities: recent developments and perspectives Yoram Alhassid (Yale University) Introduction: the shell model Monte Carlo (SMMC) approach Level density in

More information

Fission yield calculations with TALYS/GEF

Fission yield calculations with TALYS/GEF Fission yield calculations with TALYS/GEF S.Pomp 1,*, A. Al-Adili 1, A. Koning 2,1, M. Onegin 3, V. Simutkin 1 1 Uppsala University, Div. of applied nuclear physics, Sweden 2 Nuclear Research and Consultancy

More information

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh).

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh). Surface effect Coulomb effect ~200 MeV 1 B.E. per nucleon for 238 U (BE U ) and 119 Pd (BE Pd )? 2x119xBE Pd 238xBE U =?? K.E. of the fragments 10 11 J/g Burning coal 10 5 J/g Why not spontaneous? Two

More information

CENBG, Bordeaux, France 2. CEA/DAM-DIF, Arpajon,France 3. CEA/DEN, Saint Paul Lez Durance, France 4. IPN Orsay, Orsay France 5

CENBG, Bordeaux, France 2. CEA/DAM-DIF, Arpajon,France 3. CEA/DEN, Saint Paul Lez Durance, France 4. IPN Orsay, Orsay France 5 D. Denis-Petit 1, B. Jurado 1, P. Marini 2, R. Pérez-Sanchez 1, M. Aiche 1, S. Czajkowski 1, L. Mathieu 1, I. Tsekhanovich 1,V. Méot 2,O. Roig 2,B. Morillon 2, P. Romain 2, O. Bouland 3, L. Audouin 4,

More information

Integral of--nuclear plus interference components. of the elastic scattering cross section. Sum of binary (p,n ) and (p,x) reactions

Integral of--nuclear plus interference components. of the elastic scattering cross section. Sum of binary (p,n ) and (p,x) reactions EVALUATION OF p + 3Si CROSS SECTIONS FOR THE ENERGY RANGE 1 to 15 MeV M. B. Chadwick and P. G. Young 1 July 1997 This evaluation provides a. complete representation of the nuclear data needed for transport,

More information

Isospin influence on Fragments production in. G. Politi for NEWCHIM/ISODEC collaboration

Isospin influence on Fragments production in. G. Politi for NEWCHIM/ISODEC collaboration Isospin influence on Fragments production in 78 Kr + 40 Ca and 86 Kr + 48 Ca collisions at 10 MeV/nucleon G. Politi for NEWCHIM/ISODEC collaboration Dipartimento di Fisica e Astronomia Sezione INFN - Catania,

More information

Beta decay for neutron capture

Beta decay for neutron capture Beta decay for neutron capture Sean Liddick ICNT, June 7th, 2016 r-process calculations neutron star merger hot wind cold wind Abundance pattern is different for the different astrophysical scenarios.

More information

capture touching point M.G. Itkis, Perspectives in Nuclear fission Tokai, Japan, March

capture touching point M.G. Itkis, Perspectives in Nuclear fission Tokai, Japan, March Nuclear Reaction Mechanism Induced by Heavy Ions MG M.G. Itkis Joint Institute for Nuclear Research, Dubna 5 th ASCR International Workshop Perspectives in Nuclear fission Tokai, Japan, 14 16 16March 212

More information

Fission-yield data. Karl-Heinz Schmidt

Fission-yield data. Karl-Heinz Schmidt Fission-yield data Karl-Heinz Schmidt Topical day From nuclear data to a reliable estimate of spent fuel decay heat October 26, 2017 SCK CEN Lakehouse, Mol, Belgium Lay out Introduction Stages of the fission

More information

Fission fragment mass distributions via prompt γ -ray spectroscopy

Fission fragment mass distributions via prompt γ -ray spectroscopy PRAMANA c Indian Academy of Sciences Vol. 85, No. 3 journal of September 2015 physics pp. 379 384 Fission fragment mass distributions via prompt γ -ray spectroscopy L S DANU, D C BISWAS, B K NAYAK and

More information

Stylianos Nikas Central Michigan University

Stylianos Nikas Central Michigan University Nuclear properties parameterization and implementation on Hauser-Feshbach statistical model based code Stylianos Nikas Central Michigan University In Collaboration with: George Perdikakis Rebecca Surman

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-302 Dr. E. Rizvi Lecture 13 - Gamma Radiation Material For This Lecture Gamma decay: Definition Quantum interpretation Uses of gamma spectroscopy 2 Turn to γ decay

More information

arxiv:nucl-th/ v1 6 Jan 1997

arxiv:nucl-th/ v1 6 Jan 1997 Extended Hauser-Feshbach Method for Statistical Binary-Decay of Light-Mass Systems T. Matsuse, C. Beck, R. Nouicer, D. Mahboub Centre de Recherches Nucléaires, Institut National de Physique Nucléaire et

More information

Benchmarking the CEM03.03 event generator

Benchmarking the CEM03.03 event generator Vienna meeting on inter-comparison of spallation reactions models Benchmarking the CEM03.03 event generator K. K. Gudima 1, M. I. Baznat 1 S. G. Mashnik 2, and A. J. Sierk 2 1 Institute of Applied Physics,

More information

Statistical properties of nuclei by the shell model Monte Carlo method

Statistical properties of nuclei by the shell model Monte Carlo method Statistical properties of nuclei by the shell model Monte Carlo method Introduction Yoram Alhassid (Yale University) Shell model Monte Carlo (SMMC) method Circumventing the odd particle-number sign problem

More information

Available online at ScienceDirect. Physics Procedia 64 (2015 ) 48 54

Available online at   ScienceDirect. Physics Procedia 64 (2015 ) 48 54 Available online at www.sciencedirect.com ScienceDirect Physics Procedia 64 (2015 ) 48 54 Scientific Workshop on Nuclear Fission dynamics and the Emission of Prompt Neutrons and Gamma Rays, THEORY-3 Evaluation

More information

Author(s) Tatsuzawa, Ryotaro; Takaki, Naoyuki. Citation Physics Procedia (2015), 64:

Author(s) Tatsuzawa, Ryotaro; Takaki, Naoyuki. Citation Physics Procedia (2015), 64: Title Fission Study of Actinide Nuclei Us Reactions Nishio, Katsuhisa; Hirose, Kentaro; Author(s) Hiroyuki; Nishinaka, Ichiro; Orland James; Tsukada, Kazuaki; Chiba, Sat Tatsuzawa, Ryotaro; Takaki, Naoyuki

More information

A measurement of (n, xnγ ) cross sections for 208 Pb fromthresholdupto20mev

A measurement of (n, xnγ ) cross sections for 208 Pb fromthresholdupto20mev Nuclear Physics A 811 (2008) 1 27 www.elsevier.com/locate/nuclphysa A measurement of (n, xnγ ) cross sections for 208 Pb fromthresholdupto20mev L.C. Mihailescu a,b, C. Borcea a,b,1, P. Baumann c, Ph. Dessagne

More information

Measurements of the Prompt Fission Neutron Spectrum at LANSCE: The Chi-Nu Experiment

Measurements of the Prompt Fission Neutron Spectrum at LANSCE: The Chi-Nu Experiment Measurements of the Prompt Fission Neutron Spectrum at LANSCE: The Chi-Nu Experiment 6 th Workshop on Nuclear Fission and Spectroscopy of Neutron-Rich Nuclei K.J. Kelly M. Devlin, J.A. Gomez, R.C. Haight,

More information

Available online at ScienceDirect. Physics Procedia 64 (2015 )

Available online at   ScienceDirect. Physics Procedia 64 (2015 ) Available online at www.sciencedirect.com ScienceDirect Physics Procedia 64 (2015 ) 91 100 Scientific Workshop on Nuclear Fission dynamics and the Emission of Prompt Neutrons and Gamma Rays, THEORY-3 Prompt

More information

Neutron Interactions with Matter

Neutron Interactions with Matter Radioactivity - Radionuclides - Radiation 8 th Multi-Media Training Course with Nuclides.net (Institute Josžef Stefan, Ljubljana, 13th - 15th September 2006) Thursday, 14 th September 2006 Neutron Interactions

More information

Monte Carlo simulation for fragment mass and kinetic energy distributions from the neutron-induced fission of 235 U

Monte Carlo simulation for fragment mass and kinetic energy distributions from the neutron-induced fission of 235 U INVESTIGACIÓN REVISTA MEXICANA DE FÍSICA 53 (5) 366 370 OCTUBRE 2007 Monte Carlo simulation for fragment mass and kinetic energy distributions from the neutron-induced fission of 235 U M. Montoya a,b,

More information

Office of Nonproliferation and Verification Research and Development University and Industry Technical Interchange (UITI2011) Review Meeting

Office of Nonproliferation and Verification Research and Development University and Industry Technical Interchange (UITI2011) Review Meeting Office of Nonproliferation and Verification Research and Development niversity and Industry Technical Interchange (ITI2011) Review Meeting Modeling of SNM Fission Signatures and December 7, 2011 Gennady

More information

MASS DISTRIBUTIONS OF FISSION FRAGMENTS IN THE MERCURY REGION

MASS DISTRIBUTIONS OF FISSION FRAGMENTS IN THE MERCURY REGION MASS DISTRIBUTIONS OF FISSION FRAGMENTS IN THE MERCURY REGION A. V. Andreev, G. G. Adamian, N. V. Antonenko Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia

More information

Level density for reaction cross section calculations

Level density for reaction cross section calculations Level density for reaction cross section calculations Edwards Accelerator Laboratory, Department Physics and Astronomy, Ohio University Motivation The problem: Level density is the most uncertain Input

More information

Available online at ScienceDirect. Physics Procedia 47 (2013 ) M. Mirea

Available online at  ScienceDirect. Physics Procedia 47 (2013 ) M. Mirea Available online at www.sciencedirect.com ScienceDirect Physics Procedia 47 (2013 ) 53 59 Scientific Worshop on Nuclear Fission Dynamics and the Emission of Prompt Neutrons and Gamma Rays, Biarritz, France,

More information

Fission research at JAEA and opportunity with J-PARC for fission and nuclear data

Fission research at JAEA and opportunity with J-PARC for fission and nuclear data Fission research at JAEA and opportunity with J-PARC for fission and nuclear data Katsuhisa Nishio Advanced Science Research Center Japan Atomic Energy Agency Tokai, JAPAN INT 13-3, Workshop, Seattle,

More information

5 th ASRC International Workshop, 14 th -16 th March 2012

5 th ASRC International Workshop, 14 th -16 th March 2012 Fission Fragment Fragment Spectroscopy with Large Arrays and STEFF A.G. Smith, J. Dare, A. Pollitt, E. Murray The University of Manchester W. Urban, T. Soldner ILL Grenoble I. Tsekhanovich, J. Marrantz

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

Analysis of Fission with Selective Channel Scission Model

Analysis of Fission with Selective Channel Scission Model Analysis of Fission with Selective Channel Scission Model Masayuki OHTA and Shoji NAKAMURA Japan Atomic Energy Agency -4 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki, 39-95, Japan E-mail: ohta.masayuki@jaea.go.jp

More information

Photonuclear Activation File. Status and Perspectives

Photonuclear Activation File. Status and Perspectives Photonuclear Activation File ((( P A F ))) Status and Perspectives M-L. Giacri, A. Vanlauwe, J-C. David, D. Doré, D. Ridikas, I. Raskinyte, E. Dupont, V. Macary CEA Saclay, DSM/Dapnia/SPhN http://www-dapnia.cea.fr/sphn/mnm/

More information

Nuclear contribution into single-event upset in 3D on-board electronics at moderate energy cosmic proton impact

Nuclear contribution into single-event upset in 3D on-board electronics at moderate energy cosmic proton impact Nuclear contribution into single-event upset in 3D on-board electronics at moderate energy cosmic proton impact N. G. Chechenin, T. V. Chuvilskaya and A. A. Shirokova Skobeltsyn Institute of Nuclear Physics,

More information

SOME ENDF/B-VI MATERLALS. C. Y. Fu Oak Ridge National Laboratory Oak Ridge, Tennessee USA

SOME ENDF/B-VI MATERLALS. C. Y. Fu Oak Ridge National Laboratory Oak Ridge, Tennessee USA TNG CALCULATONS AND EVALUATXONS OF PHOTON PRODUCTON DATA FOR SOME ENDF/B-V MATERLALS C. Y. Fu Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-636 USA Presentation at OECD NEANSC Specialists Meeting

More information

Nuclear Fission. Q for 238 U + n 239 U is 4.??? MeV. E A for 239 U 6.6 MeV MeV neutrons are needed.

Nuclear Fission. Q for 238 U + n 239 U is 4.??? MeV. E A for 239 U 6.6 MeV MeV neutrons are needed. Q for 235 U + n 236 U is 6.54478 MeV. Table 13.11 in Krane: Activation energy E A for 236 U 6.2 MeV (Liquid drop + shell) 235 U can be fissioned with zero-energy neutrons. Q for 238 U + n 239 U is 4.???

More information

Mass and energy dependence of nuclear spin distributions

Mass and energy dependence of nuclear spin distributions Mass and energy dependence of nuclear spin distributions Till von Egidy Physik-Department, Technische Universität München, Germany Dorel Bucurescu National Institute of Physics and Nuclear Engineering,

More information

Coupled-channels Neutron Reactions on Nuclei

Coupled-channels Neutron Reactions on Nuclei Coupled-channels Neutron Reactions on Nuclei Ian Thompson with: Gustavo Nobre, Frank Dietrich, Jutta Escher (LLNL) and: Toshiko Kawano (LANL), Goran Arbanas (ORNL), P. O. Box, Livermore, CA! This work

More information

MAIN RESULTS AND FUTURE TRENDS OF THE T-ODD ASYMMETRY EFFECTS INVESTIGATIONS IN NUCLEAR FISSION

MAIN RESULTS AND FUTURE TRENDS OF THE T-ODD ASYMMETRY EFFECTS INVESTIGATIONS IN NUCLEAR FISSION SFBE PETERSBURG NUCLEAR PHYSICS INSTITUTE NAMED B.P. KONSTANTINOV MAIN RESULTS AND FUTURE TRENDS OF THE T-ODD ASYMMETRY EFFECTS INVESTIGATIONS IN NUCLEAR FISSION A.Gagarski, F.Goennenwein, I.Guseva, Yu.Kopach,

More information

Compound and heavy-ion reactions

Compound and heavy-ion reactions Compound and heavy-ion reactions Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 March 23, 2011 NUCS 342 (Lecture 24) March 23, 2011 1 / 32 Outline 1 Density of states in a

More information

Asymmetry dependence of Gogny-based optical potential

Asymmetry dependence of Gogny-based optical potential Asymmetry dependence of Gogny-based optical potential G. Blanchon, R. Bernard, M. Dupuis, H. F. Arellano CEA,DAM,DIF F-9297 Arpajon, France March 3-6 27, INT, Seattle, USA / 32 Microscopic ingredients

More information

Composite Nucleus (Activated Complex)

Composite Nucleus (Activated Complex) Lecture 10: Nuclear Potentials and Radioactive Decay I. Nuclear Stability and Basic Decay Modes A. Schematic Representation: Synthesis Equilibration Decay X + Y + Energy A Z * Z ( 10 20 s) ( ~ 10 16 10

More information

IRMM - Institute for Reference Materials and Measurements

IRMM - Institute for Reference Materials and Measurements Reaction cross sections and prompt neutron emission and spectra calculations for 238 U(n,f) and 237 Np( Np(n,f n,f) F.-J. Hambsch, A. Tudora 1, S. Oberstedt 1) Bucharest University, Faculty of Physics,

More information

THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF PHYSICS

THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF PHYSICS THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF PHYSICS TESTING THE LAWRENCE LIVERMORE NATIONAL LABORATORY SIMULATION OF NEUTRON AND GAMMA RAY EMISSION FROM FISSION AND PHOTOFISSION

More information

Deuteron induced reactions

Deuteron induced reactions INT, March 2015 slide 1/23 Deuteron induced reactions Grégory Potel Aguilar (NSCL, LLNL) Filomena Nunes (NSCL) Ian Thompson (LLNL) INT, March 2015 Introduction NT, March 2015 slide 2/23 We present a formalism

More information

Surrogate-reaction studies by the CENBG collaboration: status and perspectives

Surrogate-reaction studies by the CENBG collaboration: status and perspectives Surrogate-reaction studies by the CENBG collaboration: status and perspectives Beatriz Jurado, Centre d Etudes Nucleaires de Bordeaux-Gradignan (CENBG), France The CENBG collaboration M.Aiche, G. Barreau,

More information