Slide10 Haykin Chapter 14: Neurodynamics (3rd Ed. Chapter 13)

Size: px
Start display at page:

Download "Slide10 Haykin Chapter 14: Neurodynamics (3rd Ed. Chapter 13)"

Transcription

1 Slie10 Haykin Chapter 14: Neuroynamics (3r E. Chapter 13) CPSC Instructor: Yoonsuck Choe Spring 2012 Neural Networks with Temporal Behavior Inclusion of feeback gives temporal characteristics to neural networks: recurrent networks. Two ways to a feeback: Local feeback Global feeback Recurrent networks can become unstable or stable. Main interest is in recurrent network s stability: neuroynamics. Stability is a property of the whole system: coorination between parts is necessary. 1 2 Stability in Nonlinear Dynamical System Lyapunov stablity: more on this later. Stuy of neuroynamics: Deterministic neuroynamics: expresse as nonlinear ifferential equations. Stochastic neuroynamics: expresse in terms of stochastic nonlinear ifferential equations. Recurrent networks perturbe by noise. Preliminaries: Dynamical Systems A ynamical system is a system whose state varies with time. State-space moel: values of state variables change over time. Example: x 1 (t), x 2 (t),..., x N (t) are state variables that hol ifferent values uner inepenent variable t. This escribes a system of orer N, an x(t) is calle the state vector. The ynamics of the system is expresse using orinary ifferential equations: t x j(t) = F j (x j (t)), j = 1, 2,..., N. or, more conveniently x(t) = F(x(t)). t 3 4

2 Autonomous vs. Non-autonomous Dynamical State Space Systems x 2 t=1 x/t t=0 Autonomous: F( ) oes not explicitly epen on time. Non-autonomous: F( ) explicitly epens on time. t=2... x 1 F as a Vector Fiel Since x can be seen as velocity, F(x) can be seen as a t velocity vector fiel, or a vector fiel. In a vector fiel, each point in space (x) is associate with one unique vector (irection an magnitue). In a scalar fiel, one point has one scalar value. 5 It is convenient to view the state-space equation x t escribing the motion of a point in N-imensional space = F(x) as (Eucliean or non-eucliean). Note: t is continuous! The points traverse over time is calle the trajectory or the orbit. The tangent vector shows the instantaneous velocity at the initial conition. 6 Phase Portrait an Vector Fiel Conitions for the Solution of the State Space Equation A unique solution to the state space equation exists only uner certain conitions, which resticts the form of F(x). For a solution to exist, it is sufficient for F(x) to be continuous in all of its arguments. For uniqueness, it must meet the Lipschitz conition. Lipschitz conition: Let x an u be a pair of vectors in an open set M in a normal vector space. A vector function F(x) that satisfies: Re curves show the state (phase) portrait represente by trajectories from ifferent initial points. The blue arrows in the backgroun shows the vector fiel. Source: byers/oe/b_cp_lab/pict.html 7 F(x) F(u) K x u for some constant K, the above is sai to be Lipschitz, an K is calle the Lipschitz constant for F(x). If F i / x j are finite everywhere, F(x) meet the Lipschitz conition. 8

3 Stability of Equilibrium States x M is sai to be an equilibrium state (or singular point) of the system if x t x= x = F( x) = 0. How the system behaves near these equilibrium states is of great interest. Near these points, we can approximate the ynamics by linearizing F(x) (using Taylor expansion) aroun x, i.e., x(t) = x + x(t): F(x) x + A x(t) Stability of in Linearize System In the linearize system, the property of the Jacobian matrix A etermine the behavior near equilibrium points. This is because x(t) A x(t). t If A is nonsingular, A 1 exists an this can be use to escribe the local behavior near the equilibrium x. where A is the Jacobian: A = x F(x) x= x The eigenvalues of the matrix A characterize ifferent classes of behaviors Eigenvalues/Eigenvectors Example: 2n-Orer System For a square matrix A, if a vector x an a scalar value λ exists so that (A λi)x = 0 then x is calle an eigenvector of A an λ an eigenvalue. Note, the above is simply Ax = λx An intuitive meaning is: x is the irection in which applying the linear transformation A only changes the magnitue of x (by λ) but not the angle. There can be as many as n eigenvector/eigenvalue for an n n matrix. 11 Positive/negative, real/imaginary character of eigenvalues of Jacobian etermine behavior. Stable noe (real -), unstable focus (Complex, + real) Stable focus (Complex, - real), Sale point (real + -) Unstable noe(real +), Center (Complex, 0 real) 12

4 Definitions of Stability Lyapunov s Theorem Uniformly stable for an arbitrary ɛ > 0, if there exists a positive δ such that x(0) x < δ implies x(t) x < ɛ for all t > 0. Convergent if there exists a positive δ such that x(0) x < δ implies x(t) x as t Asymptotically stable if both stable an convergent. Globally asymptotically stable if stable an all trajectoreis of the system converge to x as time t approaches infinity. Theorem 1: The equilibrium state x is stable if in a small neighborhoo of x there exists a positive efinite function V (x) such that its erivative with respect to time is negative semiefinite in that region. Theorem 2: The equilibrium state x is asymptotically stable if in a small neighborhoo of x there exists a positive efinite function V (x) such that its erivative with respect to time is negative efinite in that region. A scalar function V (x) that satisfies these conitions is calle a Lyapunov function for the equilibrium state x Attractors Types of Attractors Dissipative systems are characterize by attracting sets or manifols of imensionality lower than that of the embeing space. These are calle attractors. Regions of initial conitions of nonzero state space volume converge to these attractors as time t increases. Point attractors (left) Limit cycle attractors (right) Strange (chaotic) attractors (not shown) 15 16

5 Neuroynamical Moels We will focus on state variables are continuous-value, an those with ynamics expresse in ifferential equations or ifference equations. Properties: Large number of egree of freeom. Nonlinearity Dissipative (as oppose to conservative), i.e., open system. Noise Manipulation of Attractors as a Recurrent Nnet Paraigm We can ientify attractors with computational objects (associative memories, input-output mappers, etc.). In orer to o so, we must exercise control over the location of the attractors in the state space of the system. A learning algorithm will manipulate the equations governing the ynamical behavior so that a esire location of attractors are set. One goo way to o this is to use the energy minimization paraigm (e.g., by Hopfiel) Hopfiel Moel Discrete Hopfiel Moel Base on McCulloch-Pitts moel (neurons with +1 or -1 output). Energy function is efine as E = 1 2 j=1 w ji x i x j (i j). Network ynamics will evolve in the irection that minimizes E. N units with full connection among every noe (no self-feeback). Given M input patterns, each having the same imensionality as the network, can be memorize in attractors of the network. Implements a content-aressable memory. Starting with an initial pattern, the ynamic will converge towar the attractor of the basin of attraction where the inital pattern was place

6 Content-Aressable Memory Map a set of patterns to be memorize ξ µ onto fixe points x µ in the ynamical system realize by the recurrent network. Encoing: Mapping from ξ µ to x µ Decoing: Reverse mapping from state space x µ to ξ µ. Hopfiel Moel: Storage The learning is similar to Hebbian learning: M w ji = 1 ξ µ,j ξ µ,i N µ=1 with w ji = 0 if i = j. (Learning is one-shot.) In matrix form the above becomes: W = 1 N M µ=1 ξ µ ξ T µ MI The resulting weight matrix W is symmetric: W = W T Hopfiel Moel: Activation (Retrieval) Initialize the network with a probe pattern ξ probe. x j (0) = ξ probe,j. Upate output of each neuron (picking them by ranom) as x j (n + 1) = sgn ( N until x reaches a fixe point. w ji x i (n) ). Spurious States The weight matrix W is symmetric, thus the eigenvalues of W are all real. For large number of patters M, the matrix is egenerate, i.e., several eigenvectors can have the same eigenvalue. These eigenvectors form a subspace, an when the associate eigenvalue is 0, it is calle a null space. This is ue to M being smaller than the number of neurons N. Hopfiel network as content aressable memory: Discrete Hopfiel network acts as a vector projector (project probe vector onto subspace spanne by training patterns). Unerlying ynamics rive the network to converge to one of the corners of the unit hypercube. Spurious states are those corners of the hypercube that o not belong to the training pattern set

7 Storage Capacity of Hopfiel Network Given a probe equal to the store pattern ξ ν, the activation of the jth neuron can be ecompose into the signal term an the noise term: v j = N = 1 N w jiξ ν,i M ξ N µ,j ξ µ,iξ ν,i µ=1 = ξ ν,j }{{} signal (ξ 3 ν,j =ξ ν,j {±1}) The signal-to-noise ratio is efine as ρ = + 1 N M µ=1,µ ν variance of signal = 1 variance of noise (M 1)/N N M The reciprocal of ρ, calle the loa parameter is esignate as α. ξ µ,j ξ µ,i ξ ν,i } {{ } noise Accoring to Amit an others, this value nees to be less than 0.14 (critical value α c ). 25 Storage Capacity of Hopfiel Network (cont ) Given α = 0.14, the storage capacity becomes M c = α c N = 0.14N when some error is allowe in the final patterns. For almost error-free performance, the storage capacity become N M c = 2 log e N Thus, storage capacity of Hopfiel network scales less than linearly with the size N of the network. This is a major limitation of the Hopfiel moel. 26 Cohen-Grossberg Theorem Cohen an Grossberg (1983) showe how to assess the stability of a certain class of neural networks: t u j = a j (u j ). [ b j (u j ) c ji ϕ i (u i ) Neural network with the above ynamics amits a Lyapunov function efine as: E = 1 2 where j=1 c ji ϕ i (u i )ϕ j (u j ) j=1 ϕ (λ) = λ (ϕ j(λ)). 27 ] uj 0, j = 1, 2,..., N b j(λ)ϕ j (λ)λ, Cohen-Grossberg Theorem (cont ) For the efinition in the previous slie to be vali, the following conitions nee to be met. The synaptic weights are symmetric. The function a j (u j ) satisfies the conition for nonnegativity. The nonlinear activation function ϕ j (u j ) nees to follow the monotonicity conition: With the above ϕ j (u j) = E t 0 ensuring global stability of the system. u j ϕ j (u j ) 0. Hopfiel moel can be seen as a special case of the Cohen-Grossberg theorem. 28

8 Demo Noisy input Partial input Capacity overloa 29

Euler equations for multiple integrals

Euler equations for multiple integrals Euler equations for multiple integrals January 22, 2013 Contents 1 Reminer of multivariable calculus 2 1.1 Vector ifferentiation......................... 2 1.2 Matrix ifferentiation........................

More information

u t v t v t c a u t b a v t u t v t b a

u t v t v t c a u t b a v t u t v t b a Nonlinear Dynamical Systems In orer to iscuss nonlinear ynamical systems, we must first consier linear ynamical systems. Linear ynamical systems are just systems of linear equations like we have been stuying

More information

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control

19 Eigenvalues, Eigenvectors, Ordinary Differential Equations, and Control 19 Eigenvalues, Eigenvectors, Orinary Differential Equations, an Control This section introuces eigenvalues an eigenvectors of a matrix, an iscusses the role of the eigenvalues in etermining the behavior

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x) Y. D. Chong (2016) MH2801: Complex Methos for the Sciences 1. Derivatives The erivative of a function f(x) is another function, efine in terms of a limiting expression: f (x) f (x) lim x δx 0 f(x + δx)

More information

model considered before, but the prey obey logistic growth in the absence of predators. In

model considered before, but the prey obey logistic growth in the absence of predators. In 5.2. First Orer Systems of Differential Equations. Phase Portraits an Linearity. Section Objective(s): Moifie Preator-Prey Moel. Graphical Representations of Solutions. Phase Portraits. Vector Fiels an

More information

ELEC3114 Control Systems 1

ELEC3114 Control Systems 1 ELEC34 Control Systems Linear Systems - Moelling - Some Issues Session 2, 2007 Introuction Linear systems may be represente in a number of ifferent ways. Figure shows the relationship between various representations.

More information

Introduction to the Vlasov-Poisson system

Introduction to the Vlasov-Poisson system Introuction to the Vlasov-Poisson system Simone Calogero 1 The Vlasov equation Consier a particle with mass m > 0. Let x(t) R 3 enote the position of the particle at time t R an v(t) = ẋ(t) = x(t)/t its

More information

6 General properties of an autonomous system of two first order ODE

6 General properties of an autonomous system of two first order ODE 6 General properties of an autonomous system of two first orer ODE Here we embark on stuying the autonomous system of two first orer ifferential equations of the form ẋ 1 = f 1 (, x 2 ), ẋ 2 = f 2 (, x

More information

Linear ODEs. Types of systems. Linear ODEs. Definition (Linear ODE) Linear ODEs. Existence of solutions to linear IVPs.

Linear ODEs. Types of systems. Linear ODEs. Definition (Linear ODE) Linear ODEs. Existence of solutions to linear IVPs. Linear ODEs Linear ODEs Existence of solutions to linear IVPs Resolvent matrix Autonomous linear systems p. 1 Linear ODEs Types of systems Definition (Linear ODE) A linear ODE is a ifferential equation

More information

Dynamical Systems and a Brief Introduction to Ergodic Theory

Dynamical Systems and a Brief Introduction to Ergodic Theory Dynamical Systems an a Brief Introuction to Ergoic Theory Leo Baran Spring 2014 Abstract This paper explores ynamical systems of ifferent types an orers, culminating in an examination of the properties

More information

Hopfield Network for Associative Memory

Hopfield Network for Associative Memory CSE 5526: Introduction to Neural Networks Hopfield Network for Associative Memory 1 The next few units cover unsupervised models Goal: learn the distribution of a set of observations Some observations

More information

BEYOND THE CONSTRUCTION OF OPTIMAL SWITCHING SURFACES FOR AUTONOMOUS HYBRID SYSTEMS. Mauro Boccadoro Magnus Egerstedt Paolo Valigi Yorai Wardi

BEYOND THE CONSTRUCTION OF OPTIMAL SWITCHING SURFACES FOR AUTONOMOUS HYBRID SYSTEMS. Mauro Boccadoro Magnus Egerstedt Paolo Valigi Yorai Wardi BEYOND THE CONSTRUCTION OF OPTIMAL SWITCHING SURFACES FOR AUTONOMOUS HYBRID SYSTEMS Mauro Boccaoro Magnus Egerstet Paolo Valigi Yorai Wari {boccaoro,valigi}@iei.unipg.it Dipartimento i Ingegneria Elettronica

More information

Lagrangian and Hamiltonian Dynamics

Lagrangian and Hamiltonian Dynamics Lagrangian an Hamiltonian Dynamics Volker Perlick (Lancaster University) Lecture 1 The Passage from Newtonian to Lagrangian Dynamics (Cockcroft Institute, 22 February 2010) Subjects covere Lecture 2: Discussion

More information

Improved Rate-Based Pull and Push Strategies in Large Distributed Networks

Improved Rate-Based Pull and Push Strategies in Large Distributed Networks Improve Rate-Base Pull an Push Strategies in Large Distribute Networks Wouter Minnebo an Benny Van Hout Department of Mathematics an Computer Science University of Antwerp - imins Mielheimlaan, B-00 Antwerp,

More information

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors Math 18.02 Notes on ifferentials, the Chain Rule, graients, irectional erivative, an normal vectors Tangent plane an linear approximation We efine the partial erivatives of f( xy, ) as follows: f f( x+

More information

Left-invariant extended Kalman filter and attitude estimation

Left-invariant extended Kalman filter and attitude estimation Left-invariant extene Kalman filter an attitue estimation Silvere Bonnabel Abstract We consier a left-invariant ynamics on a Lie group. One way to efine riving an observation noises is to make them preserve

More information

LeChatelier Dynamics

LeChatelier Dynamics LeChatelier Dynamics Robert Gilmore Physics Department, Drexel University, Philaelphia, Pennsylvania 1914, USA (Date: June 12, 28, Levine Birthay Party: To be submitte.) Dynamics of the relaxation of a

More information

Convergence of Random Walks

Convergence of Random Walks Chapter 16 Convergence of Ranom Walks This lecture examines the convergence of ranom walks to the Wiener process. This is very important both physically an statistically, an illustrates the utility of

More information

Switching Time Optimization in Discretized Hybrid Dynamical Systems

Switching Time Optimization in Discretized Hybrid Dynamical Systems Switching Time Optimization in Discretize Hybri Dynamical Systems Kathrin Flaßkamp, To Murphey, an Sina Ober-Blöbaum Abstract Switching time optimization (STO) arises in systems that have a finite set

More information

ECE 422 Power System Operations & Planning 7 Transient Stability

ECE 422 Power System Operations & Planning 7 Transient Stability ECE 4 Power System Operations & Planning 7 Transient Stability Spring 5 Instructor: Kai Sun References Saaat s Chapter.5 ~. EPRI Tutorial s Chapter 7 Kunur s Chapter 3 Transient Stability The ability of

More information

Stability Analysis of Nonlinear Networks via M-matrix Theory: Beyond Linear Consensus

Stability Analysis of Nonlinear Networks via M-matrix Theory: Beyond Linear Consensus 2012 American Control Conference Fairmont Queen Elizabeth, Montréal, Canaa June 27-June 29, 2012 Stability Analysis of Nonlinear Networks via M-matrix Theory: Beyon Linear Consensus Airlie Chapman an Mehran

More information

An Iterative Incremental Learning Algorithm for Complex-Valued Hopfield Associative Memory

An Iterative Incremental Learning Algorithm for Complex-Valued Hopfield Associative Memory An Iterative Incremental Learning Algorithm for Complex-Value Hopfiel Associative Memory aoki Masuyama (B) an Chu Kiong Loo Faculty of Computer Science an Information Technology, University of Malaya,

More information

4. Important theorems in quantum mechanics

4. Important theorems in quantum mechanics TFY4215 Kjemisk fysikk og kvantemekanikk - Tillegg 4 1 TILLEGG 4 4. Important theorems in quantum mechanics Before attacking three-imensional potentials in the next chapter, we shall in chapter 4 of this

More information

Nonlinear Adaptive Ship Course Tracking Control Based on Backstepping and Nussbaum Gain

Nonlinear Adaptive Ship Course Tracking Control Based on Backstepping and Nussbaum Gain Nonlinear Aaptive Ship Course Tracking Control Base on Backstepping an Nussbaum Gain Jialu Du, Chen Guo Abstract A nonlinear aaptive controller combining aaptive Backstepping algorithm with Nussbaum gain

More information

G4003 Advanced Mechanics 1. We already saw that if q is a cyclic variable, the associated conjugate momentum is conserved, L = const.

G4003 Advanced Mechanics 1. We already saw that if q is a cyclic variable, the associated conjugate momentum is conserved, L = const. G4003 Avance Mechanics 1 The Noether theorem We alreay saw that if q is a cyclic variable, the associate conjugate momentum is conserve, q = 0 p q = const. (1) This is the simplest incarnation of Noether

More information

Chapter 2 Lagrangian Modeling

Chapter 2 Lagrangian Modeling Chapter 2 Lagrangian Moeling The basic laws of physics are use to moel every system whether it is electrical, mechanical, hyraulic, or any other energy omain. In mechanics, Newton s laws of motion provie

More information

Designing Information Devices and Systems II Fall 2017 Note Theorem: Existence and Uniqueness of Solutions to Differential Equations

Designing Information Devices and Systems II Fall 2017 Note Theorem: Existence and Uniqueness of Solutions to Differential Equations EECS 6B Designing Information Devices an Systems II Fall 07 Note 3 Secon Orer Differential Equations Secon orer ifferential equations appear everywhere in the real worl. In this note, we will walk through

More information

Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. ω Q. Pr (y(ω x) < 0) = Pr A k

Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. ω Q. Pr (y(ω x) < 0) = Pr A k A Proof of Lemma 2 B Proof of Lemma 3 Proof: Since the support of LL istributions is R, two such istributions are equivalent absolutely continuous with respect to each other an the ivergence is well-efine

More information

F 1 x 1,,x n. F n x 1,,x n

F 1 x 1,,x n. F n x 1,,x n Chapter Four Dynamical Systems 4. Introuction The previous chapter has been evote to the analysis of systems of first orer linear ODE s. In this chapter we will consier systems of first orer ODE s that

More information

SYMPLECTIC GEOMETRY: LECTURE 3

SYMPLECTIC GEOMETRY: LECTURE 3 SYMPLECTIC GEOMETRY: LECTURE 3 LIAT KESSLER 1. Local forms Vector fiels an the Lie erivative. A vector fiel on a manifol M is a smooth assignment of a vector tangent to M at each point. We think of M as

More information

Outline. Summary of topics relevant for the final. Outline of this part. Scalar difference equations. General theory of ODEs. Linear ODEs.

Outline. Summary of topics relevant for the final. Outline of this part. Scalar difference equations. General theory of ODEs. Linear ODEs. Outline Scalar ifference equations Summary of topics relevant for the final General theory of ODEs Linear ODEs Linear maps Analysis near fixe points (linearization) Bifurcations How to analyze a system

More information

From Local to Global Control

From Local to Global Control Proceeings of the 47th IEEE Conference on Decision an Control Cancun, Mexico, Dec. 9-, 8 ThB. From Local to Global Control Stephen P. Banks, M. Tomás-Roríguez. Automatic Control Engineering Department,

More information

Math 11 Fall 2016 Section 1 Monday, September 19, Definition: A vector parametric equation for the line parallel to vector v = x v, y v, z v

Math 11 Fall 2016 Section 1 Monday, September 19, Definition: A vector parametric equation for the line parallel to vector v = x v, y v, z v Math Fall 06 Section Monay, September 9, 06 First, some important points from the last class: Definition: A vector parametric equation for the line parallel to vector v = x v, y v, z v passing through

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

CHAPTER 1 : DIFFERENTIABLE MANIFOLDS. 1.1 The definition of a differentiable manifold

CHAPTER 1 : DIFFERENTIABLE MANIFOLDS. 1.1 The definition of a differentiable manifold CHAPTER 1 : DIFFERENTIABLE MANIFOLDS 1.1 The efinition of a ifferentiable manifol Let M be a topological space. This means that we have a family Ω of open sets efine on M. These satisfy (1), M Ω (2) the

More information

IPA Derivatives for Make-to-Stock Production-Inventory Systems With Backorders Under the (R,r) Policy

IPA Derivatives for Make-to-Stock Production-Inventory Systems With Backorders Under the (R,r) Policy IPA Derivatives for Make-to-Stock Prouction-Inventory Systems With Backorers Uner the (Rr) Policy Yihong Fan a Benamin Melame b Yao Zhao c Yorai Wari Abstract This paper aresses Infinitesimal Perturbation

More information

Sparse Reconstruction of Systems of Ordinary Differential Equations

Sparse Reconstruction of Systems of Ordinary Differential Equations Sparse Reconstruction of Systems of Orinary Differential Equations Manuel Mai a, Mark D. Shattuck b,c, Corey S. O Hern c,a,,e, a Department of Physics, Yale University, New Haven, Connecticut 06520, USA

More information

Lecture XVI: Symmetrical spacetimes

Lecture XVI: Symmetrical spacetimes Lecture XVI: Symmetrical spacetimes Christopher M. Hirata Caltech M/C 350-17, Pasaena CA 91125, USA (Date: January 4, 2012) I. OVERVIEW Our principal concern this term will be symmetrical solutions of

More information

4 Second-Order Systems

4 Second-Order Systems 4 Second-Order Systems Second-order autonomous systems occupy an important place in the study of nonlinear systems because solution trajectories can be represented in the plane. This allows for easy visualization

More information

Calculus of Variations

Calculus of Variations 16.323 Lecture 5 Calculus of Variations Calculus of Variations Most books cover this material well, but Kirk Chapter 4 oes a particularly nice job. x(t) x* x*+ αδx (1) x*- αδx (1) αδx (1) αδx (1) t f t

More information

Optimal Variable-Structure Control Tracking of Spacecraft Maneuvers

Optimal Variable-Structure Control Tracking of Spacecraft Maneuvers Optimal Variable-Structure Control racking of Spacecraft Maneuvers John L. Crassiis 1 Srinivas R. Vaali F. Lanis Markley 3 Introuction In recent years, much effort has been evote to the close-loop esign

More information

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad Fundamentals of Dynamical Systems / Discrete-Time Models Dr. Dylan McNamara people.uncw.edu/ mcnamarad Dynamical systems theory Considers how systems autonomously change along time Ranges from Newtonian

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

Generalized-Type Synchronization of Hyperchaotic Oscillators Using a Vector Signal

Generalized-Type Synchronization of Hyperchaotic Oscillators Using a Vector Signal Commun. Theor. Phys. (Beijing, China) 44 (25) pp. 72 78 c International Acaemic Publishers Vol. 44, No. 1, July 15, 25 Generalize-Type Synchronization of Hyperchaotic Oscillators Using a Vector Signal

More information

Vectors in two dimensions

Vectors in two dimensions Vectors in two imensions Until now, we have been working in one imension only The main reason for this is to become familiar with the main physical ieas like Newton s secon law, without the aitional complication

More information

Schrödinger s equation.

Schrödinger s equation. Physics 342 Lecture 5 Schröinger s Equation Lecture 5 Physics 342 Quantum Mechanics I Wenesay, February 3r, 2010 Toay we iscuss Schröinger s equation an show that it supports the basic interpretation of

More information

APPPHYS 217 Thursday 8 April 2010

APPPHYS 217 Thursday 8 April 2010 APPPHYS 7 Thursay 8 April A&M example 6: The ouble integrator Consier the motion of a point particle in D with the applie force as a control input This is simply Newton s equation F ma with F u : t q q

More information

THE DIVERGENCE. 1. Interpretation of the divergence 1 2. The divergence theorem Gauss law 6

THE DIVERGENCE. 1. Interpretation of the divergence 1 2. The divergence theorem Gauss law 6 THE DIVERGENCE CRISTIAN E. GUTIÉRREZ SEPTEMBER 16, 2008 CONTENTS 1. Interpretation of the ivergence 1 2. The ivergence theorem 4 2.1. Gauss law 6 1. INTERPRETATION OF THE DIVERGENCE Let F(, t) : R n R

More information

A LIMIT THEOREM FOR RANDOM FIELDS WITH A SINGULARITY IN THE SPECTRUM

A LIMIT THEOREM FOR RANDOM FIELDS WITH A SINGULARITY IN THE SPECTRUM Teor Imov r. ta Matem. Statist. Theor. Probability an Math. Statist. Vip. 81, 1 No. 81, 1, Pages 147 158 S 94-911)816- Article electronically publishe on January, 11 UDC 519.1 A LIMIT THEOREM FOR RANDOM

More information

Hopfield Neural Network

Hopfield Neural Network Lecture 4 Hopfield Neural Network Hopfield Neural Network A Hopfield net is a form of recurrent artificial neural network invented by John Hopfield. Hopfield nets serve as content-addressable memory systems

More information

'HVLJQ &RQVLGHUDWLRQ LQ 0DWHULDO 6HOHFWLRQ 'HVLJQ 6HQVLWLYLW\,1752'8&7,21

'HVLJQ &RQVLGHUDWLRQ LQ 0DWHULDO 6HOHFWLRQ 'HVLJQ 6HQVLWLYLW\,1752'8&7,21 Large amping in a structural material may be either esirable or unesirable, epening on the engineering application at han. For example, amping is a esirable property to the esigner concerne with limiting

More information

On state representations of time-varying nonlinear systems

On state representations of time-varying nonlinear systems On state representations of time-varying nonlinear systems Paulo Sérgio Pereira a Silva a, Simone Batista a, a University of São Paulo, Escola Politécnicca PTC Av. Luciano Gualberto trav. 03, 158, 05508-900

More information

Lyapunov Functions. V. J. Venkataramanan and Xiaojun Lin. Center for Wireless Systems and Applications. School of Electrical and Computer Engineering,

Lyapunov Functions. V. J. Venkataramanan and Xiaojun Lin. Center for Wireless Systems and Applications. School of Electrical and Computer Engineering, On the Queue-Overflow Probability of Wireless Systems : A New Approach Combining Large Deviations with Lyapunov Functions V. J. Venkataramanan an Xiaojun Lin Center for Wireless Systems an Applications

More information

Least-Squares Regression on Sparse Spaces

Least-Squares Regression on Sparse Spaces Least-Squares Regression on Sparse Spaces Yuri Grinberg, Mahi Milani Far, Joelle Pineau School of Computer Science McGill University Montreal, Canaa {ygrinb,mmilan1,jpineau}@cs.mcgill.ca 1 Introuction

More information

arxiv: v5 [cs.lg] 28 Mar 2017

arxiv: v5 [cs.lg] 28 Mar 2017 Equilibrium Propagation: Briging the Gap Between Energy-Base Moels an Backpropagation Benjamin Scellier an Yoshua Bengio * Université e Montréal, Montreal Institute for Learning Algorithms March 3, 217

More information

Backward Bifurcation of Sir Epidemic Model with Non- Monotonic Incidence Rate under Treatment

Backward Bifurcation of Sir Epidemic Model with Non- Monotonic Incidence Rate under Treatment OSR Journal of Mathematics (OSR-JM) e-ssn: 78-578, p-ssn: 39-765X. Volume, ssue 4 Ver. (Jul-Aug. 4), PP -3 Backwar Bifurcation of Sir Epiemic Moel with Non- Monotonic ncience Rate uner Treatment D. Jasmine

More information

Laplacian Cooperative Attitude Control of Multiple Rigid Bodies

Laplacian Cooperative Attitude Control of Multiple Rigid Bodies Laplacian Cooperative Attitue Control of Multiple Rigi Boies Dimos V. Dimarogonas, Panagiotis Tsiotras an Kostas J. Kyriakopoulos Abstract Motivate by the fact that linear controllers can stabilize the

More information

Nested Saturation with Guaranteed Real Poles 1

Nested Saturation with Guaranteed Real Poles 1 Neste Saturation with Guarantee Real Poles Eric N Johnson 2 an Suresh K Kannan 3 School of Aerospace Engineering Georgia Institute of Technology, Atlanta, GA 3332 Abstract The global stabilization of asymptotically

More information

State observers and recursive filters in classical feedback control theory

State observers and recursive filters in classical feedback control theory State observers an recursive filters in classical feeback control theory State-feeback control example: secon-orer system Consier the riven secon-orer system q q q u x q x q x x x x Here u coul represent

More information

The Exact Form and General Integrating Factors

The Exact Form and General Integrating Factors 7 The Exact Form an General Integrating Factors In the previous chapters, we ve seen how separable an linear ifferential equations can be solve using methos for converting them to forms that can be easily

More information

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12 Chapter 6 Nonlinear Systems and Phenomena 6.1 Stability and the Phase Plane We now move to nonlinear systems Begin with the first-order system for x(t) d dt x = f(x,t), x(0) = x 0 In particular, consider

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

Capacity Analysis of MIMO Systems with Unknown Channel State Information

Capacity Analysis of MIMO Systems with Unknown Channel State Information Capacity Analysis of MIMO Systems with Unknown Channel State Information Jun Zheng an Bhaskar D. Rao Dept. of Electrical an Computer Engineering University of California at San Diego e-mail: juzheng@ucs.eu,

More information

Monopoly Part III: Multiple Local Equilibria and Adaptive Search

Monopoly Part III: Multiple Local Equilibria and Adaptive Search FH-Kiel University of Applie Sciences Prof Dr Anreas Thiemer, 00 e-mail: anreasthiemer@fh-kiele Monopoly Part III: Multiple Local Equilibria an Aaptive Search Summary: The information about market eman

More information

Analysis of a Fractional Order Prey-Predator Model (3-Species)

Analysis of a Fractional Order Prey-Predator Model (3-Species) Global Journal of Computational Science an Mathematics. ISSN 48-9908 Volume 5, Number (06), pp. -9 Research Inia Publications http://www.ripublication.com Analysis of a Fractional Orer Prey-Preator Moel

More information

Topic 2.3: The Geometry of Derivatives of Vector Functions

Topic 2.3: The Geometry of Derivatives of Vector Functions BSU Math 275 Notes Topic 2.3: The Geometry of Derivatives of Vector Functions Textbook Sections: 13.2 From the Toolbox (what you nee from previous classes): Be able to compute erivatives scalar-value functions

More information

Permanent vs. Determinant

Permanent vs. Determinant Permanent vs. Determinant Frank Ban Introuction A major problem in theoretical computer science is the Permanent vs. Determinant problem. It asks: given an n by n matrix of ineterminates A = (a i,j ) an

More information

Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Supplementary Information

Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Supplementary Information Inferring ynamic architecture of cellular networks using time series of gene expression, protein an metabolite ata Euaro Sontag, Anatoly Kiyatkin an Boris N. Kholoenko *, Department of Mathematics, Rutgers

More information

Witten s Proof of Morse Inequalities

Witten s Proof of Morse Inequalities Witten s Proof of Morse Inequalities by Igor Prokhorenkov Let M be a smooth, compact, oriente manifol with imension n. A Morse function is a smooth function f : M R such that all of its critical points

More information

WUCHEN LI AND STANLEY OSHER

WUCHEN LI AND STANLEY OSHER CONSTRAINED DYNAMICAL OPTIMAL TRANSPORT AND ITS LAGRANGIAN FORMULATION WUCHEN LI AND STANLEY OSHER Abstract. We propose ynamical optimal transport (OT) problems constraine in a parameterize probability

More information

EE 370L Controls Laboratory. Laboratory Exercise #7 Root Locus. Department of Electrical and Computer Engineering University of Nevada, at Las Vegas

EE 370L Controls Laboratory. Laboratory Exercise #7 Root Locus. Department of Electrical and Computer Engineering University of Nevada, at Las Vegas EE 370L Controls Laboratory Laboratory Exercise #7 Root Locus Department of Electrical an Computer Engineering University of Nevaa, at Las Vegas 1. Learning Objectives To emonstrate the concept of error

More information

Diagonalization of Matrices Dr. E. Jacobs

Diagonalization of Matrices Dr. E. Jacobs Diagonalization of Matrices Dr. E. Jacobs One of the very interesting lessons in this course is how certain algebraic techniques can be use to solve ifferential equations. The purpose of these notes is

More information

The total derivative. Chapter Lagrangian and Eulerian approaches

The total derivative. Chapter Lagrangian and Eulerian approaches Chapter 5 The total erivative 51 Lagrangian an Eulerian approaches The representation of a flui through scalar or vector fiels means that each physical quantity uner consieration is escribe as a function

More information

On Characterizing the Delay-Performance of Wireless Scheduling Algorithms

On Characterizing the Delay-Performance of Wireless Scheduling Algorithms On Characterizing the Delay-Performance of Wireless Scheuling Algorithms Xiaojun Lin Center for Wireless Systems an Applications School of Electrical an Computer Engineering, Purue University West Lafayette,

More information

θ x = f ( x,t) could be written as

θ x = f ( x,t) could be written as 9. Higher orer PDEs as systems of first-orer PDEs. Hyperbolic systems. For PDEs, as for ODEs, we may reuce the orer by efining new epenent variables. For example, in the case of the wave equation, (1)

More information

TAYLOR S POLYNOMIAL APPROXIMATION FOR FUNCTIONS

TAYLOR S POLYNOMIAL APPROXIMATION FOR FUNCTIONS MISN-0-4 TAYLOR S POLYNOMIAL APPROXIMATION FOR FUNCTIONS f(x ± ) = f(x) ± f ' (x) + f '' (x) 2 ±... 1! 2! = 1.000 ± 0.100 + 0.005 ±... TAYLOR S POLYNOMIAL APPROXIMATION FOR FUNCTIONS by Peter Signell 1.

More information

Total Energy Shaping of a Class of Underactuated Port-Hamiltonian Systems using a New Set of Closed-Loop Potential Shape Variables*

Total Energy Shaping of a Class of Underactuated Port-Hamiltonian Systems using a New Set of Closed-Loop Potential Shape Variables* 51st IEEE Conference on Decision an Control December 1-13 212. Maui Hawaii USA Total Energy Shaping of a Class of Uneractuate Port-Hamiltonian Systems using a New Set of Close-Loop Potential Shape Variables*

More information

The Kepler Problem. 1 Features of the Ellipse: Geometry and Analysis

The Kepler Problem. 1 Features of the Ellipse: Geometry and Analysis The Kepler Problem For the Newtonian 1/r force law, a miracle occurs all of the solutions are perioic instea of just quasiperioic. To put it another way, the two-imensional tori are further ecompose into

More information

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y

ensembles When working with density operators, we can use this connection to define a generalized Bloch vector: v x Tr x, v y Tr y Ph195a lecture notes, 1/3/01 Density operators for spin- 1 ensembles So far in our iscussion of spin- 1 systems, we have restricte our attention to the case of pure states an Hamiltonian evolution. Toay

More information

Lecture 3: Development of the Truss Equations.

Lecture 3: Development of the Truss Equations. 3.1 Derivation of the Stiffness Matrix for a Bar in Local Coorinates. In 3.1 we will perform Steps 1-4 of Logan s FEM. Derive the truss element equations. 1. Set the element type. 2. Select a isplacement

More information

Lecture Introduction. 2 Examples of Measure Concentration. 3 The Johnson-Lindenstrauss Lemma. CS-621 Theory Gems November 28, 2012

Lecture Introduction. 2 Examples of Measure Concentration. 3 The Johnson-Lindenstrauss Lemma. CS-621 Theory Gems November 28, 2012 CS-6 Theory Gems November 8, 0 Lecture Lecturer: Alesaner Mąry Scribes: Alhussein Fawzi, Dorina Thanou Introuction Toay, we will briefly iscuss an important technique in probability theory measure concentration

More information

Separation of Variables

Separation of Variables Physics 342 Lecture 1 Separation of Variables Lecture 1 Physics 342 Quantum Mechanics I Monay, January 25th, 2010 There are three basic mathematical tools we nee, an then we can begin working on the physical

More information

FLUCTUATIONS IN THE NUMBER OF POINTS ON SMOOTH PLANE CURVES OVER FINITE FIELDS. 1. Introduction

FLUCTUATIONS IN THE NUMBER OF POINTS ON SMOOTH PLANE CURVES OVER FINITE FIELDS. 1. Introduction FLUCTUATIONS IN THE NUMBER OF POINTS ON SMOOTH PLANE CURVES OVER FINITE FIELDS ALINA BUCUR, CHANTAL DAVID, BROOKE FEIGON, MATILDE LALÍN 1 Introuction In this note, we stuy the fluctuations in the number

More information

Implicit Lyapunov control of closed quantum systems

Implicit Lyapunov control of closed quantum systems Joint 48th IEEE Conference on Decision an Control an 28th Chinese Control Conference Shanghai, P.R. China, December 16-18, 29 ThAIn1.4 Implicit Lyapunov control of close quantum systems Shouwei Zhao, Hai

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

More information

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 Free rotation of a rigi boy 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 1 Introuction In this section, we escribe the motion of a rigi boy that is free to rotate

More information

APPROXIMATE SOLUTION FOR TRANSIENT HEAT TRANSFER IN STATIC TURBULENT HE II. B. Baudouy. CEA/Saclay, DSM/DAPNIA/STCM Gif-sur-Yvette Cedex, France

APPROXIMATE SOLUTION FOR TRANSIENT HEAT TRANSFER IN STATIC TURBULENT HE II. B. Baudouy. CEA/Saclay, DSM/DAPNIA/STCM Gif-sur-Yvette Cedex, France APPROXIMAE SOLUION FOR RANSIEN HEA RANSFER IN SAIC URBULEN HE II B. Bauouy CEA/Saclay, DSM/DAPNIA/SCM 91191 Gif-sur-Yvette Ceex, France ABSRAC Analytical solution in one imension of the heat iffusion equation

More information

Optimal Control of Spatially Distributed Systems

Optimal Control of Spatially Distributed Systems Optimal Control of Spatially Distribute Systems Naer Motee an Ali Jababaie Abstract In this paper, we stuy the structural properties of optimal control of spatially istribute systems. Such systems consist

More information

Linear and quadratic approximation

Linear and quadratic approximation Linear an quaratic approximation November 11, 2013 Definition: Suppose f is a function that is ifferentiable on an interval I containing the point a. The linear approximation to f at a is the linear function

More information

Students need encouragement. So if a student gets an answer right, tell them it was a lucky guess. That way, they develop a good, lucky feeling.

Students need encouragement. So if a student gets an answer right, tell them it was a lucky guess. That way, they develop a good, lucky feeling. Chapter 8 Analytic Functions Stuents nee encouragement. So if a stuent gets an answer right, tell them it was a lucky guess. That way, they evelop a goo, lucky feeling. 1 8.1 Complex Derivatives -Jack

More information

THE VAN KAMPEN EXPANSION FOR LINKED DUFFING LINEAR OSCILLATORS EXCITED BY COLORED NOISE

THE VAN KAMPEN EXPANSION FOR LINKED DUFFING LINEAR OSCILLATORS EXCITED BY COLORED NOISE Journal of Soun an Vibration (1996) 191(3), 397 414 THE VAN KAMPEN EXPANSION FOR LINKED DUFFING LINEAR OSCILLATORS EXCITED BY COLORED NOISE E. M. WEINSTEIN Galaxy Scientific Corporation, 2500 English Creek

More information

7 Rate-Based Recurrent Networks of Threshold Neurons: Basis for Associative Memory

7 Rate-Based Recurrent Networks of Threshold Neurons: Basis for Associative Memory Physics 178/278 - David Kleinfeld - Fall 2005; Revised for Winter 2017 7 Rate-Based Recurrent etworks of Threshold eurons: Basis for Associative Memory 7.1 A recurrent network with threshold elements The

More information

Topic 7: Convergence of Random Variables

Topic 7: Convergence of Random Variables Topic 7: Convergence of Ranom Variables Course 003, 2016 Page 0 The Inference Problem So far, our starting point has been a given probability space (S, F, P). We now look at how to generate information

More information

LECTURE 1: BASIC CONCEPTS, PROBLEMS, AND EXAMPLES

LECTURE 1: BASIC CONCEPTS, PROBLEMS, AND EXAMPLES LECTURE 1: BASIC CONCEPTS, PROBLEMS, AND EXAMPLES WEIMIN CHEN, UMASS, SPRING 07 In this lecture we give a general introuction to the basic concepts an some of the funamental problems in symplectic geometry/topology,

More information

Polynomial Inclusion Functions

Polynomial Inclusion Functions Polynomial Inclusion Functions E. e Weert, E. van Kampen, Q. P. Chu, an J. A. Muler Delft University of Technology, Faculty of Aerospace Engineering, Control an Simulation Division E.eWeert@TUDelft.nl

More information

Problem set 3: Solutions Math 207A, Fall where a, b are positive constants, and determine their linearized stability.

Problem set 3: Solutions Math 207A, Fall where a, b are positive constants, and determine their linearized stability. Problem set 3: s Math 207A, Fall 2014 1. Fin the fixe points of the Hénon map x n+1 = a x 2 n +by n, y n+1 = x n, where a, b are positive constants, an etermine their linearize stability. The fixe points

More information

Games and Economic Behavior

Games and Economic Behavior Games an Economic Behavior 80 013 39 67 Contents lists available at SciVerse ScienceDirect Games an Economic Behavior www.elsevier.com/locate/geb Fast convergence in evolutionary equilibrium selection

More information

Numerical Integrator. Graphics

Numerical Integrator. Graphics 1 Introuction CS229 Dynamics Hanout The question of the week is how owe write a ynamic simulator for particles, rigi boies, or an articulate character such as a human figure?" In their SIGGRPH course notes,

More information

Hopfield Networks. (Excerpt from a Basic Course at IK 2008) Herbert Jaeger. Jacobs University Bremen

Hopfield Networks. (Excerpt from a Basic Course at IK 2008) Herbert Jaeger. Jacobs University Bremen Hopfield Networks (Excerpt from a Basic Course at IK 2008) Herbert Jaeger Jacobs University Bremen Building a model of associative memory should be simple enough... Our brain is a neural network Individual

More information