Deadlock Ezio Bartocci Institute for Computer Engineering

Size: px
Start display at page:

Download "Deadlock Ezio Bartocci Institute for Computer Engineering"

Transcription

1 TECHNISCHE UNIVERSITÄT WIEN Fakultät für Informatik Cyber-Physical Systems Group Deadlock Ezio Bartocci Institute for Computer Engineering

2 Deadlock Permanent blocking of a set of processes, which compete for a common resource or communicate with each other Cyclic resource conflict between two or more processes: 1. Each process holds one resource and 2. Waits on a resource that is hold by another process There is no universal solution for this problem

3 Example Roundabout Roundabout; car from right has priority Cars only drive forward Cars ó Processes Street segments ó Resources Deadlock: each car blocks a street segment an tries to move to the segment of the upcoming car

4 Example Processes Processes access common resources; Mutual Exclusion P1: Get B Get A Release B Release A... P2: Get A Get B Release B Release A... P3: Get A Release A Get B Release B...

5 Joint Progress Diagram P1 Release A Release B Get A Get B P3 Get A Release A Get B Release B

6 Joint Progress Diagram P1 Release A Release B Get A Get B Deadlock inevitable P2 Get A Get B Release B Release A

7 The 4 Deadlock-Conditions Three requirements for the system: 1. Mutual Exclusion Exclusive access to resources (on process holds the resource, no other process can use it) 2. Hold and Wait Process can hold resources while waiting for other resources 3. No Preemption Held resources cannot be forcibly removed from a process holding it

8 The 4 Deadlock-Conditions Sequence of events may occur that leads to: 4. Circular Wait Closed chain of processes, such that each process holds at least one resource needed by another process in the chain Process P1 requests held by Resource A Resource B held by requests Process P2

9 Deadlock-Conditions Deadlock = unresolvable circular wait Circular Wait cannot be resolved when conditions 1 to 3 are true ð Conditions 1 to 4 are necessary and sufficient for a deadlock

10 Treatment of Deadlocks Deadlock Prevention Avoid one of the four Deadlock-Conditions Deadlock Avoidance Resource reservation/allocation which may lead to a deadlock are not allowed/granted Deadlock Detection Resource allocation always allowed Periodic check if a deadlock exists and recovery from the deadlock if any

11 Indirect Deadlock Prevention Mutual Exclusion This is a goal; cannot be prevented Hold and Wait Processes can acquire all resources at once Blocks until all resources available Ø Long time waiting, delay of processes Ø Inefficient use of allocated resources Ø Process must know in advance what resources are needed

12 Indirect Deadlock Prevention No Preemption a) Process releases held resources, if the request for other resources is denied; requests all resources later again b) A request of a resource of one process may require another process to release the held/needed resource Applicable for resources, which state can be easily saved and restored if necessary (cf. processor state)

13 Direct Deadlock Prevention Protocol to avoid the Circular Wait Strict linear ordering O of resource types, e.g., O(Tape Drives) = 2, O(Disk Drives) = 4 First Requirement: process requests resources of type R i (all in one step) Next: process is only allowed to acquire resources of type R k such that O(R k ) > O(R i )

14 Prevention of Circular Wait ind. Proof: protocol avoids Circular Wait Assumption: there is a Circular Wait of P 0 P n s.t. for all i: P i holds R i and waits on R (i+1) mod n W.r.t. the protocol it is valid that: O(R 0 ) < O(R 1 ) < < O(R n ) < O(R 0 ) ð which is not possible according to the protocol The protocol prevents a deadlock Inefficiency: possibly unnecessarily denying resources due to the ordering

15 Deadlock Avoidance Conditions 1 to 3 allowed, selective assignment of resources Process Initiation Denial: a process is not started if its demands can lead to a deadlock Resource Allocation Denial: resource-demands will be refused if it can lead to a deadlock Higher parallelism than deadlock prevention Requirement: resource demands of process must be known

16 Deadlock Avoidance Notation n Processes m Resource categories Vectors Resource = (R 1, R 2,, R m ) Total amount of resources in the system Available = (V 1, V 2,, V m ) Resources that are not held/allocated to any process

17 Deadlock Avoidance Notation Matrices Claim = C 11, C 12,, C 1m C n1, C n2,, C nm C_ij.. requirement of process i for resource j Allocation = A 11, A 12,, A 1m A n1, A n2,, A nm A_ij.. current allocation to process i of resource j

18 Process Initiation Denial A process P n+1 is only started, if its resource demands cannot lead to a deadlock, that is: R i C (n+1)i + n C ki k=1 Disadvantage: assumes the worst that all processes will make their maximal claim together ð restricts parallelism

19 Resource Allocation Denial - Banker s Algorithm State: current allocation of resources to processes, characterized by vectors and matrices Safe State: at least one sequence of resource allocations exists that leads to no deadlock, i.e., all processes complete their execution (marked as finished ) Unsafe State: no such sequence exists

20 Banker s Algorithm - Notation Additional matrix Required = N 11, N 12,, N 1m N n1, N n2,, N nm N ki = C ki - A ki Before a resource allocation: check if allocation leads to a safe state Safe State ð assignment of resources?? Unsafe State ð no resource assignments??

21 Banker s Algorithm Initialization: mark all processes as unfinished Work vector W i = V i, for all i loop search P k with unfinished (P k ) and N ki <= W i for all i no process found ð goto END else ð mark processes as finished and release its resources: W i = W i + A ki for all i end loop END: all processes marked finished ð Safe State else ð Unsafe State

22 Banker s Alg. - Application Test, if current resource request Q ki of process P k shall be granted 1. Test: Q ki <= N ki for all i true ð next false ð error (requirement too high) 2. Test: Q ki <= V i for all i true ð next false ð wait (resource not available) 3. Tentative grant the demand and Check for Safe State (see continuation on next slide)

23 Banker s Alg. - Application Continuation 3. for all i: V i := V i - Q ki A ki := A ki + Q ki N ki := N ki - Q ki 4. Test: Is the current?? State a Safe State? true ð allocate resources Q ki to P k false ð delay the request to later

24 Banker s Algorithm - Example 3 resources, 4 processes Initial state: R = (9 3 6) C = A = V = (1 1 2)

25 Banker s Algorithm - Example Demand of P 2 : Q 2 = (1 0 1) C = A = V = (0 1 1) Safe State: sequence of execution P 2, P 1, P 3, P 4 allows completion of all processes (after execution of P 2 is W = (6 2 3) ) Resource assignment to P 2 granted

26 R: (9 3 6) V: (1 1 2) Q 2 : (1 0 1) Banker s 3 2 Algorithm Beispiel C: A: N: W: (0 1 1) C: A: N: W: (6 2 3) C: A: N: W: (7 2 3) C: A: N:

27 Banker s Algorithm - Beispiel2 Demand of P 1 : Q 1 = (1 0 1) C = A = V = (0 1 1) Unsafe State: each process needs at least one unit of resource R 1 No assignment of resources to P 1

28 R: (9 3 6) V: (1 1 2) Q 1 : (1 0 1) C: A: N: W: (0 1 1) C: A: N: Unsafe State!!!

29 Banker s Alg. - Bemerkungen Safe State ð no deadlock possible Unsafe State ð deadlock possible, but may not happen Processes do not need the resources during their overall execution time Maximal demands/requirements in the resource categories do not occur simultaneously Strategies assume independent processes for deadlock avoidance (no conditional synchronization between processes)

30 Deadlock Detection Requested resources are granted whenever it is possible Necessary OS arrangements: Algorithm for deadlock detection Algorithm for recovery from a deadlock Deadlock check, e.g., on every resource request ð CPU-intensive

31 Deadlock Detection Algorithm Mark deadlock-free processes Initialization: set all processes P k to unmarked mark all processes P k with A ki = 0 for all i set W i := V i for all i loop search unmarked P k mit Q ki <= W i for all i Test: exists such an unmarked process P k? true ð mark P k ; set W i := W i + A ki for all i false ð exit loop end loop -- unmarked processes are in a deadlock

32 Deadlock Detection - Example Q = A = V = ( ) mark P 4 (uses no resources) W:= ( ) Q 3i (demand of P 3 ) <= W i, therefore mark P3 and set W := W + ( ) à ( ) Algorithm terminates, returns deadlock of P 1 and P 2

33 Deadlock Detection - Notes Optimistic assumption: processes do not need additional resources for completion Violation of this assumptions may lead to a deadlock later on ð Will be detected at the next call of the Deadlock Detection Algorithm

34 Deadlock Recovery Resolve the detected deadlock Abort all processes in the deadlock chain (typically used) Rollback of all involved processes to a specific state (deadlock may occur again) Abort individual processes of the chain until the deadlock is resolved (repeatedly call the detection algorithm)

35 Deadlock Recovery (2) Resources are gradually withdrawn and assigned to other processes until the deadlock is resolved Reset processes which resources have been withdrawn to a point before the resource acquisition Selection of the process to withdraw a resource: Least CPU-time used? Least amount of acquired resources? Least progress?

36 Integrated Deadlock-Strategy Combine the approaches Group the resources into classes and order the classes - Swappable space (secundary memory) - Process resources (I/O-Geräte, Files, etc.) - Main memory Circular wait prevention between classes Use strategy that fits best for an individual class (e.g., main memory - prevention: preemption, process resources - avoidance)

37 Summary 4 Conditions: Mutual Exclusion Hold and Wait No Preemption Circular Wait Deadlock Prevention Deadlock Avoidance Deadlock Detection and Recovery

CSC501 Operating Systems Principles. Deadlock

CSC501 Operating Systems Principles. Deadlock CSC501 Operating Systems Principles Deadlock 1 Last Lecture q Priority Inversion Q Priority Inheritance Protocol q Today Q Deadlock 2 The Deadlock Problem q Definition Q A set of blocked processes each

More information

Last class: Today: Synchronization. Deadlocks

Last class: Today: Synchronization. Deadlocks Last class: Synchronization Today: Deadlocks Definition A set of processes is deadlocked if each process in the set is waiting for an event that only another process in the set can cause. An event could

More information

Deadlock. CSE 2431: Introduction to Operating Systems Reading: Chap. 7, [OSC]

Deadlock. CSE 2431: Introduction to Operating Systems Reading: Chap. 7, [OSC] Deadlock CSE 2431: Introduction to Operating Systems Reading: Chap. 7, [OSC] 1 Outline Resources Deadlock Deadlock Prevention Deadlock Avoidance Deadlock Detection Deadlock Recovery 2 Review: Synchronization

More information

CS 453 Operating Systems. Lecture 7 : Deadlock

CS 453 Operating Systems. Lecture 7 : Deadlock CS 453 Operating Systems Lecture 7 : Deadlock 1 What is Deadlock? Every New Yorker knows what a gridlock alert is - it s one of those days when there is so much traffic that nobody can move. Everything

More information

Deadlock (2) Dave Eckhardt Brian Railing Roger Dannenberg

Deadlock (2) Dave Eckhardt Brian Railing Roger Dannenberg Deadlock () Dave Eckhardt Brian Railing Roger Dannenberg 1 1-410, S'18 Synchronization P You should really have, today: Drawn pictures of thread stacks (even if not perfect) Figured out where stubs belong,

More information

CS162 Operating Systems and Systems Programming Lecture 7 Semaphores, Conditional Variables, Deadlocks"

CS162 Operating Systems and Systems Programming Lecture 7 Semaphores, Conditional Variables, Deadlocks CS162 Operating Systems and Systems Programming Lecture 7 Semaphores, Conditional Variables, Deadlocks" September 19, 2012! Ion Stoica! http://inst.eecs.berkeley.edu/~cs162! Recap: Monitors" Monitors represent

More information

CIS 4930/6930: Principles of Cyber-Physical Systems

CIS 4930/6930: Principles of Cyber-Physical Systems CIS 4930/6930: Principles of Cyber-Physical Systems Chapter 11 Scheduling Hao Zheng Department of Computer Science and Engineering University of South Florida H. Zheng (CSE USF) CIS 4930/6930: Principles

More information

Lecture Note #6: More on Task Scheduling EECS 571 Principles of Real-Time Embedded Systems Kang G. Shin EECS Department University of Michigan

Lecture Note #6: More on Task Scheduling EECS 571 Principles of Real-Time Embedded Systems Kang G. Shin EECS Department University of Michigan Lecture Note #6: More on Task Scheduling EECS 571 Principles of Real-Time Embedded Systems Kang G. Shin EECS Department University of Michigan Note 6-1 Mars Pathfinder Timing Hiccups? When: landed on the

More information

CPU Scheduling. Heechul Yun

CPU Scheduling. Heechul Yun CPU Scheduling Heechul Yun 1 Recap Four deadlock conditions: Mutual exclusion No preemption Hold and wait Circular wait Detection Avoidance Banker s algorithm 2 Recap: Banker s Algorithm 1. Initialize

More information

Shared resources. Sistemi in tempo reale. Giuseppe Lipari. Scuola Superiore Sant Anna Pisa -Italy

Shared resources. Sistemi in tempo reale. Giuseppe Lipari. Scuola Superiore Sant Anna Pisa -Italy istemi in tempo reale hared resources Giuseppe Lipari cuola uperiore ant Anna Pisa -Italy inher.tex istemi in tempo reale Giuseppe Lipari 7/6/2005 12:35 p. 1/21 Interacting tasks Until now, we have considered

More information

1 Lamport s Bakery Algorithm

1 Lamport s Bakery Algorithm Com S 6 Spring Semester 2009 Algorithms for Multiprocessor Synchronization Lecture 3: Tuesday, 27th January 2009 Instructor: Soma Chaudhuri Scribe: Neeraj Khanolkar Lamport s Bakery Algorithm Algorithm

More information

Safety and Liveness. Thread Synchronization: Too Much Milk. Critical Sections. A Really Cool Theorem

Safety and Liveness. Thread Synchronization: Too Much Milk. Critical Sections. A Really Cool Theorem Safety and Liveness Properties defined over an execution of a program Thread Synchronization: Too Much Milk Safety: nothing bad happens holds in every finite execution prefix Windows never crashes No patient

More information

UC Santa Barbara. Operating Systems. Christopher Kruegel Department of Computer Science UC Santa Barbara

UC Santa Barbara. Operating Systems. Christopher Kruegel Department of Computer Science UC Santa Barbara Operating Systems Christopher Kruegel Department of Computer Science http://www.cs.ucsb.edu/~chris/ Many processes to execute, but one CPU OS time-multiplexes the CPU by operating context switching Between

More information

Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions

Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions Mitra Nasri Chair of Real-time Systems, Technische Universität Kaiserslautern, Germany nasri@eit.uni-kl.de

More information

Real Time Operating Systems

Real Time Operating Systems Real Time Operating ystems hared Resources Luca Abeni Credits: Luigi Palopoli, Giuseppe Lipari, and Marco Di Natale cuola uperiore ant Anna Pisa -Italy Real Time Operating ystems p. 1 Interacting Tasks

More information

Exercises Solutions. Automation IEA, LTH. Chapter 2 Manufacturing and process systems. Chapter 5 Discrete manufacturing problems

Exercises Solutions. Automation IEA, LTH. Chapter 2 Manufacturing and process systems. Chapter 5 Discrete manufacturing problems Exercises Solutions Note, that we have not formulated the answers for all the review questions. You will find the answers for many questions by reading and reflecting about the text in the book. Chapter

More information

Correctness of Concurrent Programs

Correctness of Concurrent Programs Correctness of Concurrent Programs Trifon Ruskov ruskov@tu-varna.acad.bg Technical University of Varna - Bulgaria Correctness of Concurrent Programs Correctness of concurrent programs needs to be formalized:

More information

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University Che-Wei Chang chewei@mail.cgu.edu.tw Department of Computer Science and Information Engineering, Chang Gung University } 2017/11/15 Midterm } 2017/11/22 Final Project Announcement 2 1. Introduction 2.

More information

Operating Systems. VII. Synchronization

Operating Systems. VII. Synchronization Operating Systems VII. Synchronization Ludovic Apvrille ludovic.apvrille@telecom-paristech.fr Eurecom, office 470 http://soc.eurecom.fr/os/ @OS Eurecom Outline Synchronization issues 2/22 Fall 2017 Institut

More information

Real-Time Scheduling and Resource Management

Real-Time Scheduling and Resource Management ARTIST2 Summer School 2008 in Europe Autrans (near Grenoble), France September 8-12, 2008 Real-Time Scheduling and Resource Management Lecturer: Giorgio Buttazzo Full Professor Scuola Superiore Sant Anna

More information

Aperiodic Task Scheduling

Aperiodic Task Scheduling Aperiodic Task Scheduling Jian-Jia Chen (slides are based on Peter Marwedel) TU Dortmund, Informatik 12 Germany Springer, 2010 2017 年 11 月 29 日 These slides use Microsoft clip arts. Microsoft copyright

More information

Causality and Time. The Happens-Before Relation

Causality and Time. The Happens-Before Relation Causality and Time The Happens-Before Relation Because executions are sequences of events, they induce a total order on all the events It is possible that two events by different processors do not influence

More information

Lab Course: distributed data analytics

Lab Course: distributed data analytics Lab Course: distributed data analytics 01. Threading and Parallelism Nghia Duong-Trung, Mohsan Jameel Information Systems and Machine Learning Lab (ISMLL) University of Hildesheim, Germany International

More information

Real Time Operating Systems

Real Time Operating Systems Real Time Operating ystems Luca Abeni luca.abeni@unitn.it Interacting Tasks Until now, only independent tasks... A job never blocks or suspends A task only blocks on job termination In real world, jobs

More information

Simulation of Process Scheduling Algorithms

Simulation of Process Scheduling Algorithms Simulation of Process Scheduling Algorithms Project Report Instructor: Dr. Raimund Ege Submitted by: Sonal Sood Pramod Barthwal Index 1. Introduction 2. Proposal 3. Background 3.1 What is a Process 4.

More information

Exploring an Unknown Graph to Locate a Black Hole Using Tokens

Exploring an Unknown Graph to Locate a Black Hole Using Tokens Exploring an Unknown Graph to Locate a Black Hole Using Tokens Stefan Dobrev 1, Paola Flocchini 1, Rastislav Královič 1,2, and Nicola Santoro 3 1 SITE, University of Ottawa, {sdobrev,flocchin}@site.uottawa.ca

More information

The Weakest Failure Detector to Solve Mutual Exclusion

The Weakest Failure Detector to Solve Mutual Exclusion The Weakest Failure Detector to Solve Mutual Exclusion Vibhor Bhatt Nicholas Christman Prasad Jayanti Dartmouth College, Hanover, NH Dartmouth Computer Science Technical Report TR2008-618 April 17, 2008

More information

SPT is Optimally Competitive for Uniprocessor Flow

SPT is Optimally Competitive for Uniprocessor Flow SPT is Optimally Competitive for Uniprocessor Flow David P. Bunde Abstract We show that the Shortest Processing Time (SPT) algorithm is ( + 1)/2-competitive for nonpreemptive uniprocessor total flow time

More information

CSCE 313 Introduction to Computer Systems. Instructor: Dezhen Song

CSCE 313 Introduction to Computer Systems. Instructor: Dezhen Song CSCE 313 Introduction to Computer Systems Instructor: Dezhen Song Schedulers in the OS CPU Scheduling Structure of a CPU Scheduler Scheduling = Selection + Dispatching Criteria for scheduling Scheduling

More information

There are three priority driven approaches that we will look at

There are three priority driven approaches that we will look at Priority Driven Approaches There are three priority driven approaches that we will look at Earliest-Deadline-First (EDF) Least-Slack-Time-first (LST) Latest-Release-Time-first (LRT) 1 EDF Earliest deadline

More information

Embedded Systems 14. Overview of embedded systems design

Embedded Systems 14. Overview of embedded systems design Embedded Systems 14-1 - Overview of embedded systems design - 2-1 Point of departure: Scheduling general IT systems In general IT systems, not much is known about the computational processes a priori The

More information

CPU SCHEDULING RONG ZHENG

CPU SCHEDULING RONG ZHENG CPU SCHEDULING RONG ZHENG OVERVIEW Why scheduling? Non-preemptive vs Preemptive policies FCFS, SJF, Round robin, multilevel queues with feedback, guaranteed scheduling 2 SHORT-TERM, MID-TERM, LONG- TERM

More information

Clock-driven scheduling

Clock-driven scheduling Clock-driven scheduling Also known as static or off-line scheduling Michal Sojka Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering November 8, 2017

More information

Introduction to Model Checking. Debdeep Mukhopadhyay IIT Madras

Introduction to Model Checking. Debdeep Mukhopadhyay IIT Madras Introduction to Model Checking Debdeep Mukhopadhyay IIT Madras How good can you fight bugs? Comprising of three parts Formal Verification techniques consist of three parts: 1. A framework for modeling

More information

1 st Semester 2007/2008

1 st Semester 2007/2008 Chapter 17: System Departamento de Engenharia Informática Instituto Superior Técnico 1 st Semester 2007/2008 Slides baseados nos slides oficiais do livro Database System c Silberschatz, Korth and Sudarshan.

More information

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013 Lecture 3 Real-Time Scheduling Daniel Kästner AbsInt GmbH 203 Model-based Software Development 2 SCADE Suite Application Model in SCADE (data flow + SSM) System Model (tasks, interrupts, buses, ) SymTA/S

More information

Real-time operating systems course. 6 Definitions Non real-time scheduling algorithms Real-time scheduling algorithm

Real-time operating systems course. 6 Definitions Non real-time scheduling algorithms Real-time scheduling algorithm Real-time operating systems course 6 Definitions Non real-time scheduling algorithms Real-time scheduling algorithm Definitions Scheduling Scheduling is the activity of selecting which process/thread should

More information

CSE 380 Computer Operating Systems

CSE 380 Computer Operating Systems CSE 380 Computer Operating Systems Instructor: Insup Lee & Dianna Xu University of Pennsylvania, Fall 2003 Lecture Note 3: CPU Scheduling 1 CPU SCHEDULING q How can OS schedule the allocation of CPU cycles

More information

Improper Nesting Example

Improper Nesting Example Improper Nesting Example One of the limits on the use of parbegin/parend, and any related constructs, is that the program involved must be properly nested. Not all programs are. For example, consider the

More information

Periodic scheduling 05/06/

Periodic scheduling 05/06/ Periodic scheduling T T or eriodic scheduling, the best that we can do is to design an algorithm which will always find a schedule if one exists. A scheduler is defined to be otimal iff it will find a

More information

Clock Synchronization

Clock Synchronization Today: Canonical Problems in Distributed Systems Time ordering and clock synchronization Leader election Mutual exclusion Distributed transactions Deadlock detection Lecture 11, page 7 Clock Synchronization

More information

Blocking time under basic priority inheritance: Polynomial bound and exact computation

Blocking time under basic priority inheritance: Polynomial bound and exact computation Blocking time under basic priority inheritance: Polynomial bound and exact computation Paolo Torroni, Zeynep Kiziltan, Eugenio Faldella 1 arxiv:1806.01589v1 [cs.os] 5 Jun 2018 Abstract The Priority Inheritance

More information

Overview: Synchronous Computations

Overview: Synchronous Computations Overview: Synchronous Computations barriers: linear, tree-based and butterfly degrees of synchronization synchronous example 1: Jacobi Iterations serial and parallel code, performance analysis synchronous

More information

Efficient TDM-based Arbitration for Mixed-Criticality Systems on Multi-Cores

Efficient TDM-based Arbitration for Mixed-Criticality Systems on Multi-Cores Efficient TDM-based Arbitration for Mixed-Criticality Systems on Multi-Cores Florian Brandner with Farouk Hebbache, 2 Mathieu Jan, 2 Laurent Pautet LTCI, Télécom ParisTech, Université Paris-Saclay 2 CEA

More information

Online Energy-Aware I/O Device Scheduling for Hard Real-Time Systems with Shared Resources

Online Energy-Aware I/O Device Scheduling for Hard Real-Time Systems with Shared Resources Online Energy-Aware I/O Device Scheduling for Hard Real-Time Systems with Shared Resources Abstract The challenge in conserving energy in embedded real-time systems is to reduce power consumption while

More information

Distributed Deadlock-Avoidance. IMDEA Software Institute, Spain

Distributed Deadlock-Avoidance. IMDEA Software Institute, Spain Distributed Deadlock-voidance César Sánchez IMDE Software Institute, Spain DRV Workshop, ertinoro 19-May, 216 Distributed Deadlock-voidance little story about how static knowledge can help solve unsolvable

More information

INF 4140: Models of Concurrency Series 3

INF 4140: Models of Concurrency Series 3 Universitetet i Oslo Institutt for Informatikk PMA Olaf Owe, Martin Steffen, Toktam Ramezani INF 4140: Models of Concurrency Høst 2016 Series 3 14. 9. 2016 Topic: Semaphores (Exercises with hints for solution)

More information

TDDB68 Concurrent programming and operating systems. Lecture: CPU Scheduling II

TDDB68 Concurrent programming and operating systems. Lecture: CPU Scheduling II TDDB68 Concurrent programming and operating systems Lecture: CPU Scheduling II Mikael Asplund, Senior Lecturer Real-time Systems Laboratory Department of Computer and Information Science Copyright Notice:

More information

CPU scheduling. CPU Scheduling

CPU scheduling. CPU Scheduling EECS 3221 Operating System Fundamentals No.4 CPU scheduling Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University CPU Scheduling CPU scheduling is the basis of multiprogramming

More information

Process Scheduling for RTS. RTS Scheduling Approach. Cyclic Executive Approach

Process Scheduling for RTS. RTS Scheduling Approach. Cyclic Executive Approach Process Scheduling for RTS Dr. Hugh Melvin, Dept. of IT, NUI,G RTS Scheduling Approach RTS typically control multiple parameters concurrently Eg. Flight Control System Speed, altitude, inclination etc..

More information

Distributed Algorithms Time, clocks and the ordering of events

Distributed Algorithms Time, clocks and the ordering of events Distributed Algorithms Time, clocks and the ordering of events Alberto Montresor University of Trento, Italy 2016/04/26 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

More information

Comp 204: Computer Systems and Their Implementation. Lecture 11: Scheduling cont d

Comp 204: Computer Systems and Their Implementation. Lecture 11: Scheduling cont d Comp 204: Computer Systems and Their Implementation Lecture 11: Scheduling cont d 1 Today Scheduling algorithms continued Shortest remaining time first (SRTF) Priority scheduling Round robin (RR) Multilevel

More information

An Optimal k-exclusion Real-Time Locking Protocol Motivated by Multi-GPU Systems

An Optimal k-exclusion Real-Time Locking Protocol Motivated by Multi-GPU Systems An Optimal k-exclusion Real-Time Locking Protocol Motivated by Multi-GPU Systems Glenn A. Elliott and James H. Anderson Department of Computer Science, University of North Carolina at Chapel Hill Abstract

More information

Embedded Systems Development

Embedded Systems Development Embedded Systems Development Lecture 3 Real-Time Scheduling Dr. Daniel Kästner AbsInt Angewandte Informatik GmbH kaestner@absint.com Model-based Software Development Generator Lustre programs Esterel programs

More information

Clojure Concurrency Constructs, Part Two. CSCI 5828: Foundations of Software Engineering Lecture 13 10/07/2014

Clojure Concurrency Constructs, Part Two. CSCI 5828: Foundations of Software Engineering Lecture 13 10/07/2014 Clojure Concurrency Constructs, Part Two CSCI 5828: Foundations of Software Engineering Lecture 13 10/07/2014 1 Goals Cover the material presented in Chapter 4, of our concurrency textbook In particular,

More information

Bounding the End-to-End Response Times of Tasks in a Distributed. Real-Time System Using the Direct Synchronization Protocol.

Bounding the End-to-End Response Times of Tasks in a Distributed. Real-Time System Using the Direct Synchronization Protocol. Bounding the End-to-End Response imes of asks in a Distributed Real-ime System Using the Direct Synchronization Protocol Jun Sun Jane Liu Abstract In a distributed real-time system, a task may consist

More information

Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication

Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication Stavros Tripakis Abstract We introduce problems of decentralized control with communication, where we explicitly

More information

Zone-based Synthesis of Timed Models with Strict Phased Fault Recovery

Zone-based Synthesis of Timed Models with Strict Phased Fault Recovery Zone-based Synthesis of Timed Models with Strict Phased Fault Recovery Fathiyeh Faghih and Borzoo Bonakdarpour School of Computer Science, University of Waterloo, Canada TECHNICAL REPORT CS-2013-05 Abstract.

More information

Process Scheduling. Process Scheduling. CPU and I/O Bursts. CPU - I/O Burst Cycle. Variations in Bursts. Histogram of CPU Burst Times

Process Scheduling. Process Scheduling. CPU and I/O Bursts. CPU - I/O Burst Cycle. Variations in Bursts. Histogram of CPU Burst Times Scheduling The objective of multiprogramming is to have some process running all the time The objective of timesharing is to have the switch between processes so frequently that users can interact with

More information

6.852: Distributed Algorithms Fall, Class 24

6.852: Distributed Algorithms Fall, Class 24 6.852: Distributed Algorithms Fall, 2009 Class 24 Today s plan Self-stabilization Self-stabilizing algorithms: Breadth-first spanning tree Mutual exclusion Composing self-stabilizing algorithms Making

More information

Embedded Systems 15. REVIEW: Aperiodic scheduling. C i J i 0 a i s i f i d i

Embedded Systems 15. REVIEW: Aperiodic scheduling. C i J i 0 a i s i f i d i Embedded Systems 15-1 - REVIEW: Aperiodic scheduling C i J i 0 a i s i f i d i Given: A set of non-periodic tasks {J 1,, J n } with arrival times a i, deadlines d i, computation times C i precedence constraints

More information

DMP. Deterministic Shared Memory Multiprocessing. Presenter: Wu, Weiyi Yale University

DMP. Deterministic Shared Memory Multiprocessing. Presenter: Wu, Weiyi Yale University DMP Deterministic Shared Memory Multiprocessing 1 Presenter: Wu, Weiyi Yale University Outline What is determinism? How to make execution deterministic? What s the overhead of determinism? 2 What Is Determinism?

More information

Lecture 4: Process Management

Lecture 4: Process Management Lecture 4: Process Management Process Revisited 1. What do we know so far about Linux on X-86? X-86 architecture supports both segmentation and paging. 48-bit logical address goes through the segmentation

More information

Acceleration of Gravity

Acceleration of Gravity EV3 program description The program 10 determines the acceleration of gravity of a small metal ball by calculating the time between the opening of the arm and the ball s collision on a Touch Sensor. If

More information

Utility Accrual, Real-Time Scheduling Under the Unimodal Arbitrary Arrival Model with Energy Bounds

Utility Accrual, Real-Time Scheduling Under the Unimodal Arbitrary Arrival Model with Energy Bounds Utility Accrual, Real-Time Scheduling Under the Unimodal Arbitrary Arrival Model with Energy Bounds Haisang Wu, Binoy Ravindran, and E. Douglas Jensen Abstract In this paper, we consider timeliness and

More information

T U M. Performing Permuting on a Multiprocessor Architecture Using Packet Communication I N S T I T U T F Ü R I N F O R M A T I K

T U M. Performing Permuting on a Multiprocessor Architecture Using Packet Communication I N S T I T U T F Ü R I N F O R M A T I K T U M I S T I T U T F Ü R I F O R M A T I K Performing Permuting on a Multiprocessor Architecture Using Packet Communication Riko Jacob Michael Schnupp ABCDE FGHIJ KLMO TUM-I0817 Juni 08 T E C H I S C

More information

Lecture 6. Real-Time Systems. Dynamic Priority Scheduling

Lecture 6. Real-Time Systems. Dynamic Priority Scheduling Real-Time Systems Lecture 6 Dynamic Priority Scheduling Online scheduling with dynamic priorities: Earliest Deadline First scheduling CPU utilization bound Optimality and comparison with RM: Schedulability

More information

Online Scheduling Switch for Maintaining Data Freshness in Flexible Real-Time Systems

Online Scheduling Switch for Maintaining Data Freshness in Flexible Real-Time Systems Online Scheduling Switch for Maintaining Data Freshness in Flexible Real-Time Systems Song Han 1 Deji Chen 2 Ming Xiong 3 Aloysius K. Mok 1 1 The University of Texas at Austin 2 Emerson Process Management

More information

Refinement-Robust Fairness

Refinement-Robust Fairness Refinement-Robust Fairness Hagen Völzer Institut für Theoretische Informatik Universität zu Lübeck May 10, 2005 0 Overview 1. Problem 2. Formalization 3. Solution 4. Remarks 1 Problem weak fairness wrt

More information

Shedding the Shackles of Time-Division Multiplexing

Shedding the Shackles of Time-Division Multiplexing Shedding the Shackles of Time-Division Multiplexing Farouk Hebbache with Florian Brandner, 2 Mathieu Jan, Laurent Pautet 2 CEA List, LS 2 LTCI, Télécom ParisTech, Université Paris-Saclay Multi-core Architectures

More information

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund Non-Preemptive and Limited Preemptive Scheduling LS 12, TU Dortmund 09 May 2017 (LS 12, TU Dortmund) 1 / 31 Outline Non-Preemptive Scheduling A General View Exact Schedulability Test Pessimistic Schedulability

More information

Distributed Consensus

Distributed Consensus Distributed Consensus Reaching agreement is a fundamental problem in distributed computing. Some examples are Leader election / Mutual Exclusion Commit or Abort in distributed transactions Reaching agreement

More information

Pipelining. Traditional Execution. CS 365 Lecture 12 Prof. Yih Huang. add ld beq CS CS 365 2

Pipelining. Traditional Execution. CS 365 Lecture 12 Prof. Yih Huang. add ld beq CS CS 365 2 Pipelining CS 365 Lecture 12 Prof. Yih Huang CS 365 1 Traditional Execution 1 2 3 4 1 2 3 4 5 1 2 3 add ld beq CS 365 2 1 Pipelined Execution 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

More information

Dynamic Time Quantum based Round Robin CPU Scheduling Algorithm

Dynamic Time Quantum based Round Robin CPU Scheduling Algorithm Dynamic Time Quantum based Round Robin CPU Scheduling Algorithm Yosef Berhanu Department of Computer Science University of Gondar Ethiopia Abebe Alemu Department of Computer Science University of Gondar

More information

The FMLP + : An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

The FMLP + : An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis The FMLP + : An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis Björn B. Brandenburg Max Planck Institute for Software Systems (MPI-SWS) Abstract Multiprocessor real-time

More information

A Self-Stabilizing Algorithm for Finding a Minimal Distance-2 Dominating Set in Distributed Systems

A Self-Stabilizing Algorithm for Finding a Minimal Distance-2 Dominating Set in Distributed Systems JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 24, 1709-1718 (2008) A Self-Stabilizing Algorithm for Finding a Minimal Distance-2 Dominating Set in Distributed Systems JI-CHERNG LIN, TETZ C. HUANG, CHENG-PIN

More information

Sub-Optimal Scheduling of a Flexible Batch Manufacturing System using an Integer Programming Solution

Sub-Optimal Scheduling of a Flexible Batch Manufacturing System using an Integer Programming Solution Sub-Optimal Scheduling of a Flexible Batch Manufacturing System using an Integer Programming Solution W. Weyerman, D. West, S. Warnick Information Dynamics and Intelligent Systems Group Department of Computer

More information

CSE613: Parallel Programming, Spring 2012 Date: May 11. Final Exam. ( 11:15 AM 1:45 PM : 150 Minutes )

CSE613: Parallel Programming, Spring 2012 Date: May 11. Final Exam. ( 11:15 AM 1:45 PM : 150 Minutes ) CSE613: Parallel Programming, Spring 2012 Date: May 11 Final Exam ( 11:15 AM 1:45 PM : 150 Minutes ) This exam will account for either 10% or 20% of your overall grade depending on your relative performance

More information

Implementing Uniform Reliable Broadcast with Binary Consensus in Systems with Fair-Lossy Links

Implementing Uniform Reliable Broadcast with Binary Consensus in Systems with Fair-Lossy Links Implementing Uniform Reliable Broadcast with Binary Consensus in Systems with Fair-Lossy Links Jialin Zhang Tsinghua University zhanggl02@mails.tsinghua.edu.cn Wei Chen Microsoft Research Asia weic@microsoft.com

More information

Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication 1

Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication 1 Decentralized Control of Discrete Event Systems with Bounded or Unbounded Delay Communication 1 Stavros Tripakis 2 VERIMAG Technical Report TR-2004-26 November 2004 Abstract We introduce problems of decentralized

More information

Global Real-Time Semaphore Protocols: A Survey, Unified Analysis, and Comparison

Global Real-Time Semaphore Protocols: A Survey, Unified Analysis, and Comparison Global Real-Time Semaphore Protocols: A Survey, Unified Analysis, and Comparison Maolin Yang Alexander Wieder Björn B. Brandenburg Max Planck Institute for Software Systems (MPI-SWS) University of Electronic

More information

Rate Monotonic Analysis (RMA)

Rate Monotonic Analysis (RMA) Rate Monotonic Analysis (RMA) ktw@csie.ntu.edu.tw (Real-Time and Embedded System Laboratory) Major References: An Introduction to Rate Monotonic Analysis Tutorial Notes SEI MU* Distributed Real-Time System

More information

Resource Sharing in an Enhanced Rate-Based Execution Model

Resource Sharing in an Enhanced Rate-Based Execution Model In: Proceedings of the 15th Euromicro Conference on Real-Time Systems, Porto, Portugal, July 2003, pp. 131-140. Resource Sharing in an Enhanced Rate-Based Execution Model Xin Liu Steve Goddard Department

More information

Worst-Case Execution Time Analysis. LS 12, TU Dortmund

Worst-Case Execution Time Analysis. LS 12, TU Dortmund Worst-Case Execution Time Analysis Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 09/10, Jan., 2018 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 43 Most Essential Assumptions for Real-Time Systems Upper

More information

Half Life Variable Quantum Time Round Robin (HLVQTRR)

Half Life Variable Quantum Time Round Robin (HLVQTRR) Half Life Variable Quantum Time Round Robin () Simon Ashiru, Salleh Abdullahi, Sahalu Junaidu Department of Mathematics, ABU Zaria, Nigeria Abstract Round Robin (RR), one of the oldest CPU scheduling algorithms

More information

Scheduling Periodic Real-Time Tasks on Uniprocessor Systems. LS 12, TU Dortmund

Scheduling Periodic Real-Time Tasks on Uniprocessor Systems. LS 12, TU Dortmund Scheduling Periodic Real-Time Tasks on Uniprocessor Systems Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 08, Dec., 2015 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 38 Periodic Control System Pseudo-code

More information

INF 4140: Models of Concurrency Series 4

INF 4140: Models of Concurrency Series 4 Universitetet i Oslo Institutt for Informatikk PMA Olaf Owe, Martin Steffen, Toktam Ramezani INF 4140: Models of Concurrency Series 4 Høst 2016 30. 9. 2016 Topic: Monitors (Exercises with hints for solution)

More information

Last class: Today: Threads. CPU Scheduling

Last class: Today: Threads. CPU Scheduling 1 Last class: Threads Today: CPU Scheduling 2 Resource Allocation In a multiprogramming system, we need to share resources among the running processes What are the types of OS resources? Question: Which

More information

LSN 15 Processor Scheduling

LSN 15 Processor Scheduling LSN 15 Processor Scheduling ECT362 Operating Systems Department of Engineering Technology LSN 15 Processor Scheduling LSN 15 FCFS/FIFO Scheduling Each process joins the Ready queue When the current process

More information

Allocate-On-Use Space Complexity of Shared-Memory Algorithms

Allocate-On-Use Space Complexity of Shared-Memory Algorithms Allocate-On-Use Space Complexity of Shared-Memory Algorithms James Aspnes Bernhard Haeupler Alexander Tong Philipp Woelfel DISC 2018 Asynchronous shared memory model Processes: p 1 p 2 p 3 p n Objects:

More information

Scheduling. Uwe R. Zimmer & Alistair Rendell The Australian National University

Scheduling. Uwe R. Zimmer & Alistair Rendell The Australian National University 6 Scheduling Uwe R. Zimmer & Alistair Rendell The Australian National University References for this chapter [Bacon98] J. Bacon Concurrent Systems 1998 (2nd Edition) Addison Wesley Longman Ltd, ISBN 0-201-17767-6

More information

Exam Spring Embedded Systems. Prof. L. Thiele

Exam Spring Embedded Systems. Prof. L. Thiele Exam Spring 20 Embedded Systems Prof. L. Thiele NOTE: The given solution is only a proposal. For correctness, completeness, or understandability no responsibility is taken. Sommer 20 Eingebettete Systeme

More information

Exploiting Precedence Relations in the Schedulability Analysis of Distributed Real-Time Systems

Exploiting Precedence Relations in the Schedulability Analysis of Distributed Real-Time Systems Exploiting Precedence Relations in the Schedulability Analysis of Distributed Real-Time Systems By: J.C. Palencia and M. González Harbour Departamento de Electrónica y Computadores, Universidad de Cantabria,

More information

Barrier. Overview: Synchronous Computations. Barriers. Counter-based or Linear Barriers

Barrier. Overview: Synchronous Computations. Barriers. Counter-based or Linear Barriers Overview: Synchronous Computations Barrier barriers: linear, tree-based and butterfly degrees of synchronization synchronous example : Jacobi Iterations serial and parallel code, performance analysis synchronous

More information

The algorithmic analysis of hybrid system

The algorithmic analysis of hybrid system The algorithmic analysis of hybrid system Authors: R.Alur, C. Courcoubetis etc. Course teacher: Prof. Ugo Buy Xin Li, Huiyong Xiao Nov. 13, 2002 Summary What s a hybrid system? Definition of Hybrid Automaton

More information

Analysis and Implementation of Global Preemptive Fixed-Priority Scheduling with Dynamic Cache Allocation*

Analysis and Implementation of Global Preemptive Fixed-Priority Scheduling with Dynamic Cache Allocation* Analysis and Implementation of Global Preemptive Fixed-Priority Scheduling with Dynamic Cache Allocation* Meng Xu Linh Thi Xuan Phan Hyon-Young Choi Insup Lee University of Pennsylvania Abstract We introduce

More information

ENHANCING CPU PERFORMANCE USING SUBCONTRARY MEAN DYNAMIC ROUND ROBIN (SMDRR) SCHEDULING ALGORITHM

ENHANCING CPU PERFORMANCE USING SUBCONTRARY MEAN DYNAMIC ROUND ROBIN (SMDRR) SCHEDULING ALGORITHM ENHANCING CPU PERFORMANCE USING SUBCONTRARY MEAN DYNAMIC ROUND ROBIN (SMD) SCHEDULING ALGORITHM Sourav Kumar Bhoi *1, Sanjaya Kumar Panda 2 and Debashee Tarai 3 * 1 Department of Computer Science & Engineering,

More information

Trajectory planning and feedforward design for electromechanical motion systems version 2

Trajectory planning and feedforward design for electromechanical motion systems version 2 2 Trajectory planning and feedforward design for electromechanical motion systems version 2 Report nr. DCT 2003-8 Paul Lambrechts Email: P.F.Lambrechts@tue.nl April, 2003 Abstract This report considers

More information

On-the-Fly Model Checking for Extended Action-Based Probabilistic Operators

On-the-Fly Model Checking for Extended Action-Based Probabilistic Operators On-the-Fly Model Checking for Extended Action-Based Probabilistic Operators Radu Mateescu and José Ignacio Requeno Inria Grenoble and LIG / Convecs http://convecs.inria.fr SPIN 2016 - Eindhoven, March

More information

On Two Class-Constrained Versions of the Multiple Knapsack Problem

On Two Class-Constrained Versions of the Multiple Knapsack Problem On Two Class-Constrained Versions of the Multiple Knapsack Problem Hadas Shachnai Tami Tamir Department of Computer Science The Technion, Haifa 32000, Israel Abstract We study two variants of the classic

More information