Quantum chaos analysis of the ideal interchange spectrum in a stellarator

Size: px
Start display at page:

Download "Quantum chaos analysis of the ideal interchange spectrum in a stellarator"

Transcription

1 4th Asia-Pacific Dynamics Days Conference, DDAP04 July 12 14, 2006 Quantum chaos analysis of the ideal interchange spectrum in a stellarator R. L. Dewar The Australian National University, Canberra C. Nührenberg Max Planck Institute for Plasma Physics, Greifswald T. Tatsuno University of Maryland, College Park

2 Plan of this talk n Introduction to COSNet n Evidence for quantum chaos in normal mode spectrum of an ideal-mhd interchange-unstable 3D plasma confinement system (stellarator) n Comparison with data from cylindrical model (i.e. integrable) with same q profile n Toy model explaining non-generic interchange spectrum found in integrable case [Dewar et al., Phys. Rev. E 70, (2004)] n Conclusion 2

3 Searchable: If you would like to make yourself known to the Australian complex systems community you are invited to go to and join!

4 COSNet Themes (help develop in the Wiki!) Irreversibility and emergence in nonequilibrium systems Turbulence and coherent structures, control and computation Dynamics and statistics of multi-scale systems Network theory Cellular automata, agent-based modelling and simulation 4

5 COSNet Application Areas 1. Complex Physical Systems 2. Complex Biological Systems 3. Complex Computational Systems 4. Complex Socio-Economic Systems 5

6 COSNet: Some Big Questions How did life emerge from primordial chaos? Can we tame a turbulent, burning fusion plasma to power our civilisation in coming centuries? Can we design an economic system that works without cyclic booms and busts? Will machines ever develop intelligence? 6

7 Tokamaks and Stellarators Tokamaks ~ axisymmetric toroidal plasmas e.g. KSTAR, Daejeon Stellarators ~ deliberately break axisymmetry e.g. H-1NF, Canberra 7

8 Plasmas complex fluids n Strongly nonequilibrium n Multiple time/space scales n Turbulent transport (quasi-2d in strong magnetic field) n However, will ignore all this and study ideal magnetohydrodynamic (MHD) model: no dissipation no displacement current adiabatic equation of state linearize about static equilibrium spectrum of unstable normal modes 8

9 History of quantum chaos n Wigner ( 30s) nuclear spectrum Wigner conjecture n Dyson & Mehta ( 60s Canberra Summer School 1967) improved on Wigner using eigenvalues of ensemble of random matrices n Berry & Tabor ( 70s), relation to semiclassical chaos; genericity in integrable and chaotic systems 9

10 Statistical characterization of spectra: probability distribution for eigenvalue separation P(s) sensitive test for chaos NB We suppose the spectrum has first been unfolded by transforming eigenvalues so that d<n(e)>/de ~ 1 for large E. Let P(s)ds be the probability of finding two consecutive eigenvalues E n a distance s apart: Generic integrable systems give Poisson distribution, as if random! (Eigenvalues uncorrelated) No avoidance of degeneracies Level repulsion Generic chaotic systems give dist n. like random matrices from a Gaussian Orthogonal Ensemble 10

11 Integrable WKB ray dynamics/separable wave equation Typical (?) generic case waves in a box: w 2 = (2p) 2 c s 2 ( m2 a 2 + n2 b 2 ) b w = const a Many accidental neardegeneracies fi most probable separation s = 0 fi Poisson distribution P(s) = exp(-s) 11

12 Caveat: Waves in box not (quite) generic Casati, Chirikov & Guarneri, Phys Rev Lett 54, 1350 (1985) 12

13 Quantum chaos in a stadium McDonald & Kaufman Phys Rev Lett 42, 1189 (1979) 13

14 Is MHD interchange instability spectrum generic?: Similarities & differences Like quantum, microwave & acoustics spectral problems, ideal MHD on static equilibrium is Hermitian fi real eigenvalues l (= w 2 unstable modes have w 2 < 0, w = ig). Unlike typical spectral problems the MHD spectrum is to be found from a generalized eigenvalue problem, Lj = lmj, in which L and M contain spatial derivatives of the same order. 14

15 3-D Geometry: numerical study of MHD spectrum of W7-X stellarator, Greifswald W7-X helias being built in Greifswald Mode families: 5-fold symmetry couples toroidal Fourier indices n±5. Restriction to real eigenfunctions couples ±n. Net effect is only 3 uncoupled subspaces. C. Nührenberg using CAS3D Galerkin code 15

16 To get many modes, choose Mercier (interchange) unstable case 16

17 Galerkin studies on Mercierunstable, W7X-like equilibrium Analysis of data set of CAS3D eigenvalues using m,n tableaux each with a full spectrum in n corresponding to the mode families N fam = 0, 1, 2 and running up to n =n max. For each n, sufficient m s are used to capture all m + nq = 0 possibilities for q = 1/i range within plasma, plus some more. i axis = i min = i edge = Resonance condition is n + m i = 0. This tableau is for n max = 21, 22, 25, resp. 17

18 CAS3D data for n max = 19 Analysis of data set of 96 CAS3D eigenvalues found for case n max = 19 using mode tableau with 88 Fourier harmonics. N = 1 is most unstable eigenvalue (most ve l), N = 96 is the least unstable. fit to d 0 expd 1 l +exp(c 0 + c 1 l + c 2 l 2 + c 3 l 3 ) Log-linear plot of raw data After unfolding using double-exponential fit 18

19 Level spacing PDFs for the three mode families Strong level repulsion in N = 0 and N = 1 families. Is N = 2 spectrum mixed? n max = 25 N modes = 137 n max = 22 N modes = 178 n max = 21 N modes = 214 Combining spectra from independent subspaces greatly reduces level 19 repulsion

20 Refined Grid: 451 radial grid points N = 1 case little changed still close to Wigner conjecture N = 2 case now shows level repulsion now close to Wigner conjecture 20

21 Results robust wrt unfolding method 21

22 So 3D MHD interchange spectrum is QC-Generic? Why this is surprising n Our recent work on integrable case indicated non-genericity (see later in this talk) n Our earlier work on a different stellarator indicated a regular spectrum (next slide) 22

23 WKB quantization for ideal ballooning modes in LHD TERPSICHORE (dots)/wkb (lines) comparison for LHD extended modes (Cooper, Singleton & Dewar PP 96) Ray eqns. ~integrable for tokamaklike modes Agrees with EBK quantization (with k a = n) 23

24 MHD separable case: Interchange modes in (effectively) cylindrical geometry Averaging over field periods and introducing stream function j with dependence j(r,t) = j(r)exp(gt + imq - inz /R 0 ) eigenmode equation: is Suydam instability criterion: Denote radial quantum no. by l 24

25 Accumulation points very different from generic waves in a box spectrum Eigenvalue g depends on 3 quantum nos., l, n, m. But asymptotically at large m, n, it depends only on l and m n/m fi accumulation points at each rational m as n, m Æ m = i(1) - m = i(0) - m n/m Over finite range, only l = 0 contributes to spectrum m max Accumulation point at g = 0 as l Æ m, n lattice l, m dependence 25

26 Finite m, n spectral plot for l = 0 accumulation point Lower accumulation sequence from n and m in exact 4/7 ratio S 0 - S 0 + upper accumulation sequence from approximants of 4/7 26

27 Spacing distribution for l = 0 is non-poissonian (bimodal) 27

28 Toy interchange spectrum model for a given radial mode number l y = expi(mq + nf) E n,m = n m E n,m = n m = const In limit m max Æ, the spectrum is infinitely dense and infinitely degenerate fi essential spectrum fi need to regularize by using cutoff m max or equivalent. 28

29 Farey sequences of rationals: drop duplicates (use p, q instead of n, m) F 1 F 8 F 8 = 0 1, 1 8, 1 7, 1 6, 1 5, 1 4, 2 7,1 3, 3 8, 2 5, 3 7, 1 2, 4 7, 3 5, 5 8, 2 3, 5 7, 3 4, 4 5, 5 6, 6 7, 7 8,1 1 Gaps occur around low-order rationals due to slow (1/Q) convergence of nearest approximants Each term in a given Farey sequence is the mediant,, of its neighbors: p 1 Number of terms ~ 3Q 2 /p 2 p 2 p 1 + p 2 q 1 q 2 q 1 + q 2 29

30 Devil s staircase and levelspacing distribution Renormalize (unfold) energy levels to make average slope unity: 2 0 n < m m max E n,m = m max 2 2 E n,m Level-spacing distribution: degeneracy fi delta function at origin. We can understand the tail by considering PDF for Farey sequences 30

31 Farey spectrum contd. 31

32 Back to stellarators: Cylindrical model with same rotational transform profile as 3D case studied (Vol. averaged beta 5%) Eigenfunction for m = 16, n = 17 mode 32

33 Unfolding cylindrical interchange spectrum Log-lin. plot of data with doubleexponential fit similar to W7X spectrum near origin (accumulation point as radial mode no. l Æ ) After unfolding using double-exponential fit 33

34 Spacing PDFs with all radial mode numbers included now look Poissonian 34

35 Conclusion n When all unstable eigenvalues are included, ideal-mhd interchange spectrum appears to generate a generic eigenvalue-spacing probability distribution function Poisson in cylindrical (integrable) case Wigner/GOE in strongly nonaxisymmetric stellarator case fi MHD modes can exhibit typical quantum chaos behaviour 35

36 To dos n Investigate 3D mode structure in W7X to understand better why it is strongly quaotic, despite extended nature of interchange modes along field lines Plots Semiclassical (WKB ballooning) analysis n Understand why double exponential fit works for density of states n Analyze 3D drift wave spectrum how does quantum chaos interact with turbulence? n Develop chaotic toy model, find Riemannium Hamiltonian! 36

Quantum Chaos? Genericity and Nongenericity in the MHD Spectrum of Nonaxisymmetric Toroidal Plasmas

Quantum Chaos? Genericity and Nongenericity in the MHD Spectrum of Nonaxisymmetric Toroidal Plasmas Journal of the Korean Physical Society, Vol. 50, No. 1, January 2007, pp. 112 117 Review Articles Quantum Chaos? Genericity and Nongenericity in the MHD Spectrum of Nonaxisymmetric Toroidal Plasmas R.

More information

Statistical characterization of the interchange-instability spectrum of a separable ideal-magnetohydrodynamic model system

Statistical characterization of the interchange-instability spectrum of a separable ideal-magnetohydrodynamic model system PHYSICAL REVIEW E 70, 066409 (004) Statistical characterization of the interchange-instability spectrum of a separable ideal-magnetohydrodynamic model system R. L. Dewar, 1,, * T. Tatsuno, 3, Z. Yoshida,

More information

Simulation Study of Interaction between Energetic Ions and Alfvén Eigenmodes in LHD

Simulation Study of Interaction between Energetic Ions and Alfvén Eigenmodes in LHD 1 Simulation Study of Interaction between Energetic Ions and Alfvén Eigenmodes in LHD Y. Todo 1), N. Nakajima 1), M. Osakabe 1), S. Yamamoto 2), D. A. Spong 3) 1) National Institute for Fusion Science,

More information

TitleQuantum Chaos in Generic Systems.

TitleQuantum Chaos in Generic Systems. TitleQuantum Chaos in Generic Systems Author(s) Robnik, Marko Citation 物性研究 (2004), 82(5): 662-665 Issue Date 2004-08-20 URL http://hdl.handle.net/2433/97885 Right Type Departmental Bulletin Paper Textversion

More information

Chapter 29. Quantum Chaos

Chapter 29. Quantum Chaos Chapter 29 Quantum Chaos What happens to a Hamiltonian system that for classical mechanics is chaotic when we include a nonzero h? There is no problem in principle to answering this question: given a classical

More information

arxiv:chao-dyn/ v1 3 Jul 1995

arxiv:chao-dyn/ v1 3 Jul 1995 Chaotic Spectra of Classically Integrable Systems arxiv:chao-dyn/9506014v1 3 Jul 1995 P. Crehan Dept. of Mathematical Physics, University College Dublin, Belfield, Dublin 2, Ireland PCREH89@OLLAMH.UCD.IE

More information

LEVEL REPULSION IN INTEGRABLE SYSTEMS

LEVEL REPULSION IN INTEGRABLE SYSTEMS LEVEL REPULSION IN INTEGRABLE SYSTEMS Tao Ma and R. A. Serota Department of Physics University of Cincinnati Cincinnati, OH 45244-0011 serota@ucmail.uc.edu Abstract Contrary to conventional wisdom, level

More information

Anderson Localization Looking Forward

Anderson Localization Looking Forward Anderson Localization Looking Forward Boris Altshuler Physics Department, Columbia University Collaborations: Also Igor Aleiner Denis Basko, Gora Shlyapnikov, Vincent Michal, Vladimir Kravtsov, Lecture2

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 3 Beforehand Weak Localization and Mesoscopic Fluctuations Today

More information

Size Effect of Diagonal Random Matrices

Size Effect of Diagonal Random Matrices Abstract Size Effect of Diagonal Random Matrices A.A. Abul-Magd and A.Y. Abul-Magd Faculty of Engineering Science, Sinai University, El-Arish, Egypt The statistical distribution of levels of an integrable

More information

Is Quantum Mechanics Chaotic? Steven Anlage

Is Quantum Mechanics Chaotic? Steven Anlage Is Quantum Mechanics Chaotic? Steven Anlage Physics 40 0.5 Simple Chaos 1-Dimensional Iterated Maps The Logistic Map: x = 4 x (1 x ) n+ 1 μ n n Parameter: μ Initial condition: 0 = 0.5 μ 0.8 x 0 = 0.100

More information

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence of Diffusion in Certain Random Lattices ; Phys.Rev., 1958, v.109, p.1492 L.D. Landau, Fermi-Liquid

More information

Experimental and theoretical aspects of quantum chaos

Experimental and theoretical aspects of quantum chaos Experimental and theoretical aspects of quantum chaos A SOCRATES Lecture Course at CAMTP, University of Maribor, Slovenia Hans-Jürgen Stöckmann Fachbereich Physik, Philipps-Universität Marburg, D-35032

More information

Effect of the Toroidal Asymmetry on the Structure of TAE Modes in Stellarators

Effect of the Toroidal Asymmetry on the Structure of TAE Modes in Stellarators Effect of the Toroidal Asymmetry on the Structure of TAE Modes in Stellarators Yu.V. Yakovenko 1), Ya.I. Kolesnichenko 1), V.V. Lutsenko 1), A. Weller 2), A. Werner 2) 1) Institute for Nuclear Research,

More information

INITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS

INITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS INITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS A.D. Turnbull and L.L. Lao General Atomics (with contributions from W.A. Cooper and R.G. Storer) Presentation

More information

(a) (b) (c) (d) (e) (f) r (minor radius) time. time. Soft X-ray. T_e contours (ECE) r (minor radius) time time

(a) (b) (c) (d) (e) (f) r (minor radius) time. time. Soft X-ray. T_e contours (ECE) r (minor radius) time time Studies of Spherical Tori, Stellarators and Anisotropic Pressure with M3D 1 L.E. Sugiyama 1), W. Park 2), H.R. Strauss 3), S.R. Hudson 2), D. Stutman 4), X-Z. Tang 2) 1) Massachusetts Institute of Technology,

More information

MHD Simulation of High Wavenumber Ballooning-like Modes in LHD

MHD Simulation of High Wavenumber Ballooning-like Modes in LHD 1 TH/P9-16 MHD Simulation of High Wavenumber Ballooning-like Modes in LHD H. Miura and N. Nakajima National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292, JAPAN e-mail contact of main

More information

On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas

On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas 1 On Electron-Cyclotron Waves in Relativistic Non-Thermal Tokamak Plasmas Lj. Nikolić and M.M. Škorić Vinča Institute of Nuclear Sciences, P.O.Box 522, Belgrade 11001, Serbia and Montenegro ljnikoli@tesla.rcub.bg.ac.yu

More information

Global particle-in-cell simulations of Alfvénic modes

Global particle-in-cell simulations of Alfvénic modes Global particle-in-cell simulations of Alfvénic modes A. Mishchenko, R. Hatzky and A. Könies Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-749 Greifswald, Germany Rechenzentrum der Max-Planck-Gesellschaft

More information

arxiv:physics/ v1 [physics.med-ph] 8 Jan 2003

arxiv:physics/ v1 [physics.med-ph] 8 Jan 2003 arxiv:physics/0301011v1 [physics.med-ph] 8 Jan 2003 Spectral Statistics of RR Intervals in ECG Mladen MARTINIS, Vesna MIKUTA-MARTINIS, Andrea KNEŽEVIĆ, and Josip ČRNUGELJ Division of Theoretical Physics

More information

Preferred spatio-temporal patterns as non-equilibrium currents

Preferred spatio-temporal patterns as non-equilibrium currents Preferred spatio-temporal patterns as non-equilibrium currents Escher Jeffrey B. Weiss Atmospheric and Oceanic Sciences University of Colorado, Boulder Arin Nelson, CU Baylor Fox-Kemper, Brown U Royce

More information

The Transition to Chaos

The Transition to Chaos Linda E. Reichl The Transition to Chaos Conservative Classical Systems and Quantum Manifestations Second Edition With 180 Illustrations v I.,,-,,t,...,* ', Springer Dedication Acknowledgements v vii 1

More information

Emergence of chaotic scattering in ultracold lanthanides.

Emergence of chaotic scattering in ultracold lanthanides. Emergence of chaotic scattering in ultracold lanthanides. Phys. Rev. X 5, 041029 arxiv preprint 1506.05221 A. Frisch, S. Baier, K. Aikawa, L. Chomaz, M. J. Mark, F. Ferlaino in collaboration with : Dy

More information

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison

Heat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UW-Madison Heat Transport in a Stochastic Magnetic Field John Sarff Physics Dept, UW-Madison CMPD & CMSO Winter School UCLA Jan 5-10, 2009 Magnetic perturbations can destroy the nested-surface topology desired for

More information

Two Fluid Dynamo and Edge-Resonant m=0 Tearing Instability in Reversed Field Pinch

Two Fluid Dynamo and Edge-Resonant m=0 Tearing Instability in Reversed Field Pinch 1 Two Fluid Dynamo and Edge-Resonant m= Tearing Instability in Reversed Field Pinch V.V. Mirnov 1), C.C.Hegna 1), S.C. Prager 1), C.R.Sovinec 1), and H.Tian 1) 1) The University of Wisconsin-Madison, Madison,

More information

Three Dimensional Effects in Tokamaks How Tokamaks Can Benefit From Stellarator Research

Three Dimensional Effects in Tokamaks How Tokamaks Can Benefit From Stellarator Research 1 TH/P9-10 Three Dimensional Effects in Tokamaks How Tokamaks Can Benefit From Stellarator Research S. Günter, M. Garcia-Munoz, K. Lackner, Ph. Lauber, P. Merkel, M. Sempf, E. Strumberger, D. Tekle and

More information

Quantum Billiards. Martin Sieber (Bristol) Postgraduate Research Conference: Mathematical Billiard and their Applications

Quantum Billiards. Martin Sieber (Bristol) Postgraduate Research Conference: Mathematical Billiard and their Applications Quantum Billiards Martin Sieber (Bristol) Postgraduate Research Conference: Mathematical Billiard and their Applications University of Bristol, June 21-24 2010 Most pictures are courtesy of Arnd Bäcker

More information

Theory of Mesoscopic Systems

Theory of Mesoscopic Systems Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 2 08 June 2006 Brownian Motion - Diffusion Einstein-Sutherland Relation for electric

More information

ENERGETIC PARTICLES AND BURNING PLASMA PHYSICS

ENERGETIC PARTICLES AND BURNING PLASMA PHYSICS ENERGETIC PARTICLES AND BURNING PLASMA PHYSICS Reported by J. Van Dam Institute for Fusion Studies The University of Texas at Austin US-Japan JIFT Workshop on Theory-Based Modeling and Integrated Simulation

More information

BRIEF COMMUNICATION. Near-magnetic-axis Geometry of a Closely Quasi-Isodynamic Stellarator. Greifswald, Wendelsteinstr. 1, Greifswald, Germany

BRIEF COMMUNICATION. Near-magnetic-axis Geometry of a Closely Quasi-Isodynamic Stellarator. Greifswald, Wendelsteinstr. 1, Greifswald, Germany BRIEF COMMUNICATION Near-magnetic-axis Geometry of a Closely Quasi-Isodynamic Stellarator M.I. Mikhailov a, J. Nührenberg b, R. Zille b a Russian Research Centre Kurchatov Institute, Moscow,Russia b Max-Planck-Institut

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

Recent results in quantum chaos and its applications to nuclei and particles

Recent results in quantum chaos and its applications to nuclei and particles Recent results in quantum chaos and its applications to nuclei and particles J. M. G. Gómez, L. Muñoz, J. Retamosa Universidad Complutense de Madrid R. A. Molina, A. Relaño Instituto de Estructura de la

More information

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 311-0102, Japan 1) University

More information

Toroidal flow stablization of disruptive high tokamaks

Toroidal flow stablization of disruptive high tokamaks PHYSICS OF PLASMAS VOLUME 9, NUMBER 6 JUNE 2002 Robert G. Kleva and Parvez N. Guzdar Institute for Plasma Research, University of Maryland, College Park, Maryland 20742-3511 Received 4 February 2002; accepted

More information

The Berry-Tabor conjecture

The Berry-Tabor conjecture The Berry-Tabor conjecture Jens Marklof Abstract. One of the central observations of quantum chaology is that statistical properties of quantum spectra exhibit surprisingly universal features, which seem

More information

Quantum Chaos: An Exploration of the Stadium Billiard Using Finite Differences

Quantum Chaos: An Exploration of the Stadium Billiard Using Finite Differences Quantum Chaos: An Exploration of the Stadium Billiard Using Finite Differences Kyle Konrad & Dhrubo Jyoti Math 53: Chaos! Professor Alex Barnett Dartmouth College December 4, 2009 Abstract We investigate

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 13 Mar 2003

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 13 Mar 2003 arxiv:cond-mat/0303262v1 [cond-mat.stat-mech] 13 Mar 2003 Quantum fluctuations and random matrix theory Maciej M. Duras Institute of Physics, Cracow University of Technology, ulica Podchor ażych 1, PL-30084

More information

Plans for a laboratory electron-positron plasma experiment

Plans for a laboratory electron-positron plasma experiment Plans for a laboratory electron-positron plasma experiment Thomas Sunn Pedersen, Xabier Sarasola Max-Planck Institute for Plasma Physics, Germany Lutz Schweikhard, Gerrit Marx Ernst-Moritz Arndt Universität

More information

Infernal Alfvén Eigenmodes in Low-Shear Tokamaks. Institute for Nuclear Research, Kyiv, Ukraine

Infernal Alfvén Eigenmodes in Low-Shear Tokamaks. Institute for Nuclear Research, Kyiv, Ukraine 5 th IAEA TM on Theory of Plasma Instabilities Austin, USA, 5-7 Sept. 2011 Infernal Alfvén Eigenmodes in Low-Shear Tokamaks V.S. Marchenko, Ya.I. Kolesnichenko, and S.N. Reznik Institute for Nuclear Research,

More information

Experimental evidence of wave chaos signature in a microwave cavity with several singular perturbations

Experimental evidence of wave chaos signature in a microwave cavity with several singular perturbations Chaotic Modeling and Simulation (CMSIM) 2: 205-214, 2018 Experimental evidence of wave chaos signature in a microwave cavity with several singular perturbations El M. Ganapolskii, Zoya E. Eremenko O.Ya.

More information

RESISTIVE BALLOONING MODES AND THE SECOND REGION OF STABILITY

RESISTIVE BALLOONING MODES AND THE SECOND REGION OF STABILITY Plasma Physics and Controlled Fusion, Vol. 29, No. 6, pp. 719 to 121, 1987 Printed in Great Britain 0741-3335/87$3.00+.OO 1OP Publishing Ltd. and Pergamon Journals Ltd. RESISTIVE BALLOONING MODES AND THE

More information

Bursty Transport in Tokamaks with Internal Transport Barriers

Bursty Transport in Tokamaks with Internal Transport Barriers Bursty Transport in Tokamaks with Internal Transport Barriers S. Benkadda 1), O. Agullo 1), P. Beyer 1), N. Bian 1), P. H. Diamond 3), C. Figarella 1), X. Garbet 2), P. Ghendrih 2), V. Grandgirard 1),

More information

Tokamak/Helical Configurations Related to LHD and CHS-qa

Tokamak/Helical Configurations Related to LHD and CHS-qa 9TH WORKSHOP ON MHD STABILITY CONTROL: "CONTROL OF MHD STABILITY: BACK TO THE BASICS" NOVEMBER 21-23, 2004, PRINCETON PLASMA PHYSICS LABORATORY Tokamak/Helical Configurations Related to LHD and CHS-qa

More information

Active MHD Control Needs in Helical Configurations

Active MHD Control Needs in Helical Configurations Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2, A. Reiman 1, and the W7-AS Team and NBI-Group. 1 Princeton Plasma

More information

SMR/ Summer College on Plasma Physics. 30 July - 24 August, Introduction to Magnetic Island Theory.

SMR/ Summer College on Plasma Physics. 30 July - 24 August, Introduction to Magnetic Island Theory. SMR/1856-1 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 Introduction to Magnetic Island Theory. R. Fitzpatrick Inst. for Fusion Studies University of Texas at Austin USA Introduction

More information

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization. 23 August - 3 September, 2010

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization. 23 August - 3 September, 2010 16-5 Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization 3 August - 3 September, 010 INTRODUCTORY Anderson Localization - Introduction Boris ALTSHULER Columbia

More information

Size Scaling and Nondiffusive Features of Electron Heat Transport in Multi-Scale Turbulence

Size Scaling and Nondiffusive Features of Electron Heat Transport in Multi-Scale Turbulence Size Scaling and Nondiffusive Features of Electron Heat Transport in Multi-Scale Turbulence Z. Lin 1, Y. Xiao 1, W. J. Deng 1, I. Holod 1, C. Kamath, S. Klasky 3, Z. X. Wang 1, and H. S. Zhang 4,1 1 University

More information

Optimal design of 2-D and 3-D shaping for linear ITG stability*

Optimal design of 2-D and 3-D shaping for linear ITG stability* Optimal design of 2-D and 3-D shaping for linear ITG stability* Mordechai N. Rorvig1, in collaboration with Chris C. Hegna1, Harry E. Mynick2, Pavlos Xanthopoulos3, and M. J. Pueschel1 1 University of

More information

Stellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK

Stellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK Stellarators Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 6 th February 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously... Toroidal devices

More information

Stabilization of sawteeth in tokamaks with toroidal flows

Stabilization of sawteeth in tokamaks with toroidal flows PHYSICS OF PLASMAS VOLUME 9, NUMBER 7 JULY 2002 Stabilization of sawteeth in tokamaks with toroidal flows Robert G. Kleva and Parvez N. Guzdar Institute for Plasma Research, University of Maryland, College

More information

What we ve learned so far about the Stability of Plasma Confined by a Laboratory Dipole Magnet

What we ve learned so far about the Stability of Plasma Confined by a Laboratory Dipole Magnet What we ve learned so far about the Stability of Plasma Confined by a Laboratory Dipole Magnet M. E. Mauel and the CTX and LDX Experimental Teams Annual Meeting of the Division of Plasma Physics Philadelphia,

More information

Disordered Quantum Systems

Disordered Quantum Systems Disordered Quantum Systems Boris Altshuler Physics Department, Columbia University and NEC Laboratories America Collaboration: Igor Aleiner, Columbia University Part 1: Introduction Part 2: BCS + disorder

More information

Extension of High-Beta Plasma Operation to Low Collisional Regime

Extension of High-Beta Plasma Operation to Low Collisional Regime EX/4-4 Extension of High-Beta Plasma Operation to Low Collisional Regime Satoru Sakakibara On behalf of LHD Experiment Group National Institute for Fusion Science SOKENDAI (The Graduate University for

More information

MHD. Jeff Freidberg MIT

MHD. Jeff Freidberg MIT MHD Jeff Freidberg MIT 1 What is MHD MHD stands for magnetohydrodynamics MHD is a simple, self-consistent fluid description of a fusion plasma Its main application involves the macroscopic equilibrium

More information

1 Intro to RMT (Gene)

1 Intro to RMT (Gene) M705 Spring 2013 Summary for Week 2 1 Intro to RMT (Gene) (Also see the Anderson - Guionnet - Zeitouni book, pp.6-11(?) ) We start with two independent families of R.V.s, {Z i,j } 1 i

More information

Friday Morning. 9! 5 Nonlinear Periodic Waves in Plasma E. R. TRACY, College of William and Mary.

Friday Morning. 9! 5 Nonlinear Periodic Waves in Plasma E. R. TRACY, College of William and Mary. not Friday Morning 9! 3 2F: A Generalized Energy Principle for Determining Linear and Nonlinear Stability.* P. L MORRISON,* * Institutefor Fusion Studies, The University of Texas at Austin. A generalization

More information

High-m Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows

High-m Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows TH/P3-3 High-m Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows A. Bierwage 1), S. Benkadda 2), M. Wakatani 1), S. Hamaguchi 3), Q. Yu

More information

Quantum Invariants: Topographical Map of Quantized Actions

Quantum Invariants: Topographical Map of Quantized Actions University of Rhode Island DigitalCommons@URI Physics Faculty Publications Physics 1990 Quantum Invariants: Topographical Map of Quantized Actions Niraj Srivastava University of Rhode Island Gerhard Müller

More information

The role of stochastization in fast MHD phenomena on ASDEX Upgrade

The role of stochastization in fast MHD phenomena on ASDEX Upgrade 1 EX/P9-10 The role of stochastization in fast MHD phenomena on ASDEX Upgrade V. Igochine 1), O.Dumbrajs 2,3), H. Zohm 1), G. Papp 4), G. Por 4), G. Pokol 4), ASDEX Upgrade team 1) 1) MPI für Plasmaphysik,

More information

Accurate representation of velocity space using truncated Hermite expansions.

Accurate representation of velocity space using truncated Hermite expansions. Accurate representation of velocity space using truncated Hermite expansions. Joseph Parker Oxford Centre for Collaborative Applied Mathematics Mathematical Institute, University of Oxford Wolfgang Pauli

More information

Spectral Fluctuations in A=32 Nuclei Using the Framework of the Nuclear Shell Model

Spectral Fluctuations in A=32 Nuclei Using the Framework of the Nuclear Shell Model American Journal of Physics and Applications 2017; 5(): 5-40 http://www.sciencepublishinggroup.com/j/ajpa doi: 10.11648/j.ajpa.2017050.11 ISSN: 20-4286 (Print); ISSN: 20-408 (Online) Spectral Fluctuations

More information

Analytic Benchmarking of the 2DX eigenvalue code

Analytic Benchmarking of the 2DX eigenvalue code Analytic Benchmarking of the 2DX eigenvalue code D. A. Baver, J. R. Myra Lodestar Research Corporation M. Umansky Lawrence Livermore National Laboratory Analytic benchmarking of the 2DX eigenvalue code

More information

arxiv: v2 [cond-mat.stat-mech] 30 Mar 2012

arxiv: v2 [cond-mat.stat-mech] 30 Mar 2012 Quantum chaos: An introduction via chains of interacting spins 1/2 Aviva Gubin and Lea F. Santos Department of Physics, Yeshiva University, 245 Lexington Avenue, New York, NY 10016, USA arxiv:1106.5557v2

More information

A new type of PT-symmetric random matrix ensembles

A new type of PT-symmetric random matrix ensembles A new type of PT-symmetric random matrix ensembles Eva-Maria Graefe Department of Mathematics, Imperial College London, UK joint work with Steve Mudute-Ndumbe and Matthew Taylor Department of Mathematics,

More information

HOW THE DEMO FUSION REACTOR SHOULD LOOK IF ITER FAILS. Paul Garabedian and Geoffrey McFadden

HOW THE DEMO FUSION REACTOR SHOULD LOOK IF ITER FAILS. Paul Garabedian and Geoffrey McFadden HOW THE DEMO FUSION REACTOR SHOULD LOOK IF ITER FAILS Paul Garabedian and Geoffrey McFadden 1. Summary Runs of the NSTAB equilibrium and stability code show there are many 3D solutions of the advanced

More information

TURBULENT TRANSPORT THEORY

TURBULENT TRANSPORT THEORY ASDEX Upgrade Max-Planck-Institut für Plasmaphysik TURBULENT TRANSPORT THEORY C. Angioni GYRO, J. Candy and R.E. Waltz, GA The problem of Transport Transport is the physics subject which studies the physical

More information

Issues of Perpendicular Conductivity and Electric Fields in Fusion Devices

Issues of Perpendicular Conductivity and Electric Fields in Fusion Devices Issues of Perpendicular Conductivity and Electric Fields in Fusion Devices Michael Tendler, Alfven Laboratory, Royal Institute of Technology, Stockholm, Sweden Plasma Turbulence Turbulence can be regarded

More information

Resistive Wall Mode Observation and Control in ITER-Relevant Plasmas

Resistive Wall Mode Observation and Control in ITER-Relevant Plasmas Resistive Wall Mode Observation and Control in ITER-Relevant Plasmas J. P. Levesque April 12, 2011 1 Outline Basic Resistive Wall Mode (RWM) model RWM stability, neglecting kinetic effects Sufficient for

More information

Magnetohydrodynamic stability of negative central magnetic shear, high pressure ( pol 1) toroidal equilibria

Magnetohydrodynamic stability of negative central magnetic shear, high pressure ( pol 1) toroidal equilibria Magnetohydrodynamic stability of negative central magnetic shear, high pressure ( pol 1) toroidal equilibria Robert G. Kleva Institute for Plasma Research, University of Maryland, College Park, Maryland

More information

Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow

Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow Home Search Collections Journals About Contact us My IOPscience Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow generation This article has been downloaded from IOPscience.

More information

Self-consistent particle tracking in a simulation of the entropy mode in a Z pinch

Self-consistent particle tracking in a simulation of the entropy mode in a Z pinch Self-consistent particle tracking in a simulation of the entropy mode in a Z pinch K. Gustafson, I. Broemstrup, D. del-castillo-negrete, W. Dorland and M. Barnes Department of Physics, CSCAMM, University

More information

QUANTUM CHAOS IN NUCLEAR PHYSICS

QUANTUM CHAOS IN NUCLEAR PHYSICS QUANTUM CHAOS IN NUCLEAR PHYSICS Investigation of quantum chaos in nuclear physics is strongly hampered by the absence of even the definition of quantum chaos, not to mention the numerical criterion of

More information

Quantum Chaos as a Practical Tool in Many-Body Physics

Quantum Chaos as a Practical Tool in Many-Body Physics Quantum Chaos as a Practical Tool in Many-Body Physics Vladimir Zelevinsky NSCL/ Michigan State University Supported by NSF Statistical Nuclear Physics SNP2008 Athens, Ohio July 8, 2008 THANKS B. Alex

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

Configuration Optimization of a Planar-Axis Stellarator with a Reduced Shafranov Shift )

Configuration Optimization of a Planar-Axis Stellarator with a Reduced Shafranov Shift ) Configuration Optimization of a Planar-Axis Stellarator with a Reduced Shafranov Shift ) Shoichi OKAMURA 1,2) 1) National Institute for Fusion Science, Toki 509-5292, Japan 2) Department of Fusion Science,

More information

Exploration of Configurational Space for Quasi-isodynamic Stellarators with Poloidally Closed Contours of the Magnetic Field Strength

Exploration of Configurational Space for Quasi-isodynamic Stellarators with Poloidally Closed Contours of the Magnetic Field Strength Exploration of Configurational Space for Quasi-isodynamic Stellarators with Poloidally Closed Contours of the Magnetic Field Strength V.R. Bovshuk 1, W.A. Cooper 2, M.I. Mikhailov 1, J. Nührenberg 3, V.D.

More information

Multifarious Physics Analyses of the Core Plasma Properties in a Helical DEMO Reactor FFHR-d1

Multifarious Physics Analyses of the Core Plasma Properties in a Helical DEMO Reactor FFHR-d1 1 FTP/P7-34 Multifarious Physics Analyses of the Core Plasma Properties in a Helical DEMO Reactor FFHR-d1 J. Miyazawa 1, M. Yokoyama 1, Y. Suzuki 1, S. Satake 1, R. Seki 1, Y. Masaoka 2, S. Murakami 2,

More information

Plasma instabilities. Dr Ben Dudson, University of York 1 / 37

Plasma instabilities. Dr Ben Dudson, University of York 1 / 37 Plasma instabilities Dr Ben Dudson, University of York 1 / 37 Previously... Plasma configurations and equilibrium Linear machines, and Stellarators Ideal MHD and the Grad-Shafranov equation Collisional

More information

Quantum Chaos and Nonunitary Dynamics

Quantum Chaos and Nonunitary Dynamics Quantum Chaos and Nonunitary Dynamics Karol Życzkowski in collaboration with W. Bruzda, V. Cappellini, H.-J. Sommers, M. Smaczyński Phys. Lett. A 373, 320 (2009) Institute of Physics, Jagiellonian University,

More information

0 Magnetically Confined Plasma

0 Magnetically Confined Plasma 0 Magnetically Confined Plasma 0.1 Particle Motion in Prescribed Fields The equation of motion for species s (= e, i) is written as d v ( s m s dt = q s E + vs B). The motion in a constant magnetic field

More information

Part III. Flow and dissipation

Part III. Flow and dissipation Part III Flow and dissipation in this web service 1 Waves and instabilities of stationary plasmas 1.1 Laboratory and astrophysical plasmas 1.1.1 Grand vision: magnetized plasma on all scales In Chapter

More information

The fast-ion distribution function

The fast-ion distribution function The fast-ion distribution function Source Collisions Orbits RF Losses W. Heidbrink 3 MeV & 14.7 MeV protons Charge Exchange Reactivity σv Complex neutral beam sources are described by a few parameters

More information

From tokamaks to stellarators: understanding the role of 3D shaping

From tokamaks to stellarators: understanding the role of 3D shaping Under consideration for publication in J. Plasma Phys. From tokamaks to stellarators: understanding the role of 3D shaping Samuel A. Lazerson and John C. Schmitt 2 Princeton Plasma Physics Laboratory,

More information

Anastasios Anastasiadis Institute for Space Applications & Remote Sensing National Observatory of Athens GR Penteli, Greece

Anastasios Anastasiadis Institute for Space Applications & Remote Sensing National Observatory of Athens GR Penteli, Greece CELLULAR AUTOMATA MODELS: A SANDPILE MODEL APPLIED IN FUSION Anastasios Anastasiadis Institute for Space Applications & Remote Sensing National Observatory of Athens GR-15236 Penteli, Greece SUMMARY We

More information

Misleading signatures of quantum chaos

Misleading signatures of quantum chaos Misleading signatures of quantum chaos J. M. G. Gómez, R. A. Molina,* A. Relaño, and J. Retamosa Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid,

More information

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff Outline for Fundamentals of Statistical Physics Leo P. Kadanoff text: Statistical Physics, Statics, Dynamics, Renormalization Leo Kadanoff I also referred often to Wikipedia and found it accurate and helpful.

More information

Recent Developments in Theory for W7-X

Recent Developments in Theory for W7-X Recent Developments in Theory for W7-X J. NÜHRENBERG, M. DREVLAK, R. HATZKY, R. KLEIBER, A. KÖNIES, P. MERKEL, D. MONTICELLO +,C.NÜHRENBERG, A. REIMAN +,T.M.TRAN? Max-Planck-Institut für Plasmaphysik,

More information

Quantum Chaos. Dominique Delande. Laboratoire Kastler-Brossel Université Pierre et Marie Curie and Ecole Normale Supérieure Paris (European Union)

Quantum Chaos. Dominique Delande. Laboratoire Kastler-Brossel Université Pierre et Marie Curie and Ecole Normale Supérieure Paris (European Union) Quantum Chaos Dominique Delande Laboratoire Kastler-Brossel Université Pierre et Marie Curie and Ecole Normale Supérieure Paris (European Union) What is chaos? What is quantum chaos? Is it useful? Is quantum

More information

Controlling chaotic transport in Hamiltonian systems

Controlling chaotic transport in Hamiltonian systems Controlling chaotic transport in Hamiltonian systems Guido Ciraolo Facoltà di Ingegneria, Università di Firenze via S. Marta, I-50129 Firenze, Italy Cristel Chandre, Ricardo Lima, Michel Vittot CPT-CNRS,

More information

Energetic-Ion Driven Alfvén Eigenmodes in Large Helical Device Plasmas with Three-Dimensional Structure and Their Impact on Energetic Ion Transport

Energetic-Ion Driven Alfvén Eigenmodes in Large Helical Device Plasmas with Three-Dimensional Structure and Their Impact on Energetic Ion Transport Energetic-Ion Driven Alfvén Eigenmodes in Large Helical Device Plasmas with Three-Dimensional Structure and Their Impact on Energetic Ion Transport K. Toi, S. Yamamoto 1), N. Nakajima, S. Ohdachi, S. Sakakibara,

More information

Newton s Method and Localization

Newton s Method and Localization Newton s Method and Localization Workshop on Analytical Aspects of Mathematical Physics John Imbrie May 30, 2013 Overview Diagonalizing the Hamiltonian is a goal in quantum theory. I would like to discuss

More information

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation -

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation - 15TH WORKSHOP ON MHD STABILITY CONTROL: "US-Japan Workshop on 3D Magnetic Field Effects in MHD Control" U. Wisconsin, Madison, Nov 15-17, 17, 2010 LHD experiments relevant to Tokamak MHD control - Effect

More information

Time part of the equation can be separated by substituting independent equation

Time part of the equation can be separated by substituting independent equation Lecture 9 Schrödinger Equation in 3D and Angular Momentum Operator In this section we will construct 3D Schrödinger equation and we give some simple examples. In this course we will consider problems where

More information

Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor

Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor PHYSICS OF PLASMAS VOLUME 5, NUMBER FEBRUARY 1998 Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor C. Ren, a) J. D. Callen, T. A. Gianakon, and C. C. Hegna University

More information

Introduction to Plasma Physics

Introduction to Plasma Physics Introduction to Plasma Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 A simplistic view on a Fusion Power

More information

FRG Workshop in Cambridge MA, May

FRG Workshop in Cambridge MA, May FRG Workshop in Cambridge MA, May 18-19 2011 Programme Wednesday May 18 09:00 09:10 (welcoming) 09:10 09:50 Bachmann 09:55 10:35 Sims 10:55 11:35 Borovyk 11:40 12:20 Bravyi 14:10 14:50 Datta 14:55 15:35

More information

NPTEL

NPTEL NPTEL Syllabus Nonequilibrium Statistical Mechanics - Video course COURSE OUTLINE Thermal fluctuations, Langevin dynamics, Brownian motion and diffusion, Fokker-Planck equations, linear response theory,

More information

MHD instability driven by supra-thermal electrons in TJ-II stellarator

MHD instability driven by supra-thermal electrons in TJ-II stellarator MHD instability driven by supra-thermal electrons in TJ-II stellarator K. Nagaoka 1, S. Yamamoto 2, S. Ohshima 2, E. Ascasíbar 3, R. Jiménez-Gómez 3, C. Hidalgo 3, M.A. Pedrosa 3, M. Ochando 3, A.V. Melnikov

More information

Theory of Adiabatic Invariants A SOCRATES Lecture Course at the Physics Department, University of Marburg, Germany, February 2004

Theory of Adiabatic Invariants A SOCRATES Lecture Course at the Physics Department, University of Marburg, Germany, February 2004 Preprint CAMTP/03-8 August 2003 Theory of Adiabatic Invariants A SOCRATES Lecture Course at the Physics Department, University of Marburg, Germany, February 2004 Marko Robnik CAMTP - Center for Applied

More information

Natalia Tronko S.V.Nazarenko S. Galtier

Natalia Tronko S.V.Nazarenko S. Galtier IPP Garching, ESF Exploratory Workshop Natalia Tronko University of York, York Plasma Institute In collaboration with S.V.Nazarenko University of Warwick S. Galtier University of Paris XI Outline Motivations:

More information