Flow boiling implementation with OpenFoam

Size: px
Start display at page:

Download "Flow boiling implementation with OpenFoam"

Transcription

1 Flow boiling implementation with OpenFoam Qingming Liu KTH,Department of Energy

2 contents Introduction Background Physical and mathmatic models Implementation on OpenFoam Transport model Solvers Boundary conditions

3 Introduction Set up the bubbly flow case in OpenFOAM. Implementing myinterfoamdiabatic based on interfoam which using VOF method for simulation of two phase isothermal flow by adding energy equation as well as implementing an heat flux boundary condition. To study the flow pattern and temperature of elongated bubble flow in micro-channels(with diameter 1.7mm). Future plan:adding source terms to the U,T equations.

4 Background MEMS(micro electronic and mechanic systems) fuel cells cooling of micro-electronic chips compact heat exchangers

5 Macro scale Flow boiling in a uniformly heated circular tube ( Collier & Thome, 1994, p.170)

6 Bubbly flow slug flow(elongated bubble) Transition skewed flow liquid ring flow frothy annular flow Transition annular flow rivulet flow

7 α t+u α=0 ; Mathmatical models

8 Discription of problem

9 Openfoam OpenFOAM interfoam InterFoam +Energy equation +Cp,K, Libraries TransportModels myinterfoamdiabatic Utilities Swak4Foam mytransportmodels myinterfoamdiabatic

10 transportmodels/incompressibletwophaseproperti es/twophasemixture.h const dimensionedscalar& Pr1() const return Pr1_; } Add specific heat capacity,prandlt number,thermal conductivities for each phase dimensionedscalar cp1_; dimensionedscalar cp2_; dimensionedscalar Pr1_; dimensionedscalar Pr2_; Const tmp<surfacescalarfield> kappaf() const dimensionedscalar& Pr2() const return Pr2_; }; const dimensionedscalar& cp1() const return cp1_; } const dimensionedscalar& cp2() const return cp2_; };

11 twophasemixture.c cp1_(numodel1_- >viscosityproperties().lookup("cp" )), cp2_(numodel2_- >viscosityproperties().lookup("cp" )), Pr1_(nuModel1_- >viscosityproperties().lookup("pr" )), Pr2_(nuModel2_- >viscosityproperties().lookup("pr" )), tmp<surfacescalarfield> twophasemixture::kappaf() const surfacescalarfield alpha1f = min(max(fvc::interpolate(alpha 1_), scalar(0)), scalar(1)); return tmp<surfacescalarfield> ( new surfacescalarfield ( "kappaf", alpha1f*rho1_*cp1_*(1/pr1_)*fv c::interpolate(numodel1_- >nu()) + (scalar(1) - alpha1f)*rho2_*cp2_*(1/pr2_)*f vc::interpolate(numodel2_- >nu()) ) ); }

12 Read function twophasemixture.c bool twophasemixture::read() if (transportmodel::read()) if ( numodel1_().read(subdict(phase1name_)) && numodel2_().read(subdict(phase2name_)) ) numodel1_- >viscosityproperties().lookup("rho") >> rho1_; numodel2_- >viscosityproperties().lookup("rho") >> rho2_; numodel1_- >viscosityproperties().lookup("cp") >> cp1_; numodel2_- >viscosityproperties().lookup("cp") >> cp2_; numodel1_- >viscosityproperties().lookup("pr") >> Pr1_; numodel2_- >viscosityproperties().lookup("pr") >> Pr2_; complied the lib to $FOAM_USER_LIBBIN modifying the Make/files: LIB = $ (FOAM_USER_LIBBIN)/ libmyincompressiblet ransportmodels

13 Solver: myinterfoamdiabatic alphaeqnsubcycle.h Add specific heat capacity,prandlt number,thermal conductivities for each phase CreateFields.H: const dimensionedscalar& cp1 = twophaseproperties.cp1(); const dimensionedscalar& cp2 = twophaseproperties.cp2(); Info<< "Reading / calculating rho*cp\n" << endl; volscalarfield rhocp ( IOobject ( "rho*cp", runtime.timename(), mesh, IOobject::NO_READ, IOobject::NO_WRITE ), alpha*rho1*cp1 + (scalar(1) - alpha)*rho2*cp2, alpha.boundaryfield().types() ); rhocp.oldtime(); Info<< "Reading / calculating rho*phi*cp\n" << endl; surfacescalarfield rhophicpf ( IOobject ( "rho*phi*cpf", runtime.timename(), mesh, IOobject::NO_READ, IOobject::NO_WRITE ), rhophi*cp1

14 create TEqn.H solver surfacescalarfield kappaf = twophaseproperties.kappaf(); fvscalarmatrix TEqn ( fvm::ddt(rhocp, T) + fvm::div(rhophicpf, T) - fvm::laplacian(kappaf, T) ); Teqn.solve(); InterFoam.C Add: #include "Teqn.H" Modifying Make/files EXE = $ (FOAM_USER_APPBIN)/myinterFo amdiabatic

15 Make Modifying Make/options EXE_INC = \ -I$(LIB_SRC)/transportModels \ -I$ (WM_PROJECT_USER_DIR)/src/transpor tmodels/incompressible/lninclude \ -I$ (LIB_SRC)/transportModels/interfaceProp erties/lninclude \ -I$ (LIB_SRC)/turbulenceModels/incompressi ble/turbulencemodel \ -I$(LIB_SRC)/finiteVolume/lnInclude EXE_LIBS = \ -L$(FOAM_USER_LIBBIN) \ -linterfaceproperties \ -lmyincompressibletransportmodels \ -lincompressibleturbulencemodel \ -lincompressiblerasmodels \ -lincompressiblelesmodels \ -lfinitevolume

16 Utilities Swak4Foam svn checkout

17 Set up Case Mesh fluent3dmeshtofoam

18 Set up the case:add Cp and Prandlt number constant/transportproperties add Cp and Prandlt number phase1 phase2 transportmodel Newtonian; transportmodel Newtonian; nu nu [ ] 0.75e-06; rho rho [ ] ; Pr Pr [ ] 0.9; cp cp [ ] ; nu nu [ ] 3.57e-06; rho rho [ ] ; Pr Pr [ ] 0.87; cp cp [ ] ;

19 system/controdict, fvschemes add new finite divergence schemes for Temperature divschemes application myinterfoamdiabatic; to use the new libraries libs("libmyincompressible TransportModels.so"); } div(rho*phi,u) Gauss limitedlinearv 1; div(phi,alpha) Gauss vanleer; div(rhophicpf, T) Gauss upwind; div(phirb,alpha) Gauss interfacecompression; add new finite volume solution methods for Temperature T solver BICCG; preconditioner DILU; tolerance 1e-7; reltol 0;}

20 Temperature boundary conditions vi 0/T dimensions [ ]; internalfield uniform 300; boundaryfield inlet type fixedvalue; value uniform 300; outlet type pressureinletoutlettemperature; } phi value phi; $internalfield; } wall type fixedvalue; value uniform 300;

21 Set up the constant heat flux wall set boundary condtions constant heat flux wall gradient(t)=q/k =15000/81.626=183, outlet type } zerogradient; vi 0/T wall type fixedgradient; value uniform ; } set the gravity in the constant/g dimensions [ ]; value ( ); constant/turbulenceproperties

22 Initialize the phase (bubble) funkysetfields (swak4foam) funkysetfields -field alphagas -expression 1 -time 0 -keeppatches -condition "pow(pos().x,2) + pow(pos().y,2) < pow(0.0075,2) && pos().z>0.12"

23 Run in parallel decomposate DecomposePar numberofsubdomains 4; method simplecoeffs simple; n ( ); delta 0.001;

24 Run case System/ControDict application interfoam; startfrom latesttime; starttime 0; stopat endtime; endtime 0.02; deltat 2e-4; writecontrol adjustableruntime; writeinterval 0.001; purgewrite 0; writeformat writeprecision 6; writecompression uncompressed; timeformat timeprecision 6; runtimemodifiable adjusttimestep maxco 0.5; ascii; general; yes; on; maxalphaco 0.5; maxdeltat 1;

25

3D Dam break Free surface flow

3D Dam break Free surface flow Dam break free surface flow Gravity Obstacle Box with open top Water column Physical and numerical side of the problem: In this case we are going to use the volume of fluid (VOF) method. This method solves

More information

Dam break free surface flow

Dam break free surface flow Dam break free surface flow Physical and numerical side of the problem: In this case we are going to use the VOF method. This method solves the incompressible Navier-Stokes equations plus an additional

More information

CFD with OpenSource software A course at Chalmers University of Technology Taught by HÅKAN NILSSON. Project work: intersettlingfoam

CFD with OpenSource software A course at Chalmers University of Technology Taught by HÅKAN NILSSON. Project work: intersettlingfoam Taught by HÅKAN NILSSON Project work: intersettlingfoa Developed for OpenFOAM-2.2.0 Author: Pedra Rain Deceber, 2013 2/21/2014 1 Presentation Outline: The objective of this presentation Introduction to

More information

Tutorial Eleven Reaction

Tutorial Eleven Reaction Reaction 4 th edition, Jan. 2018 This offering is not approved or endorsed by ESI Group, ESI-OpenCFD or the OpenFOAM Foundation, the producer of the OpenFOAM software and owner of the OpenFOAM trademark.

More information

Open FOAM Tutorial. reactingfoam. Simple Gas Phase Reaction. Chalmers University of Technology Andreas Lundström

Open FOAM Tutorial. reactingfoam. Simple Gas Phase Reaction. Chalmers University of Technology Andreas Lundström Open FOAM Tutorial reactingfoam Simple Gas Phase Reaction Chalmers University of Technology Andreas Lundström April 7, 2008 reactingfoam tutorial 2 1 Introduction This tutorial is intended as a first introduction

More information

Viscoelastic Fluid Simulation with OpenFOAM

Viscoelastic Fluid Simulation with OpenFOAM Viscoelastic Fluid Simulation with OpenFOAM Joan Marco Rimmek and Adrià Barja Romero Universitat Politècnica de Catalunya. BarcelonaTECH. (Dated: May 31, 2017) Viscoelastic fluids do not behave like newtonian

More information

CFD with OpenSource software

CFD with OpenSource software CFD with OpenSource software A course at Chalmers University of Technology Taught by HÅKAN NILSSON Project work: intersettlingfoam Developed for OpenFOAM-2.2.0 Author: Pedram Ramin Peer reviewed by: Olivier

More information

The implementation of Two-equation SGS turbulence model and Wall damping function

The implementation of Two-equation SGS turbulence model and Wall damping function The implementation of Two-equation SGS turbulence model and Wall damping function Yeru Shang Thermo-fluid Mechanics Research Centre, The University of Sussex, Brighton, UK 2017-11-21 Yeru Shang The implementation

More information

viscousheatingsolver Martin Becker

viscousheatingsolver Martin Becker viscousheatingsolver Adding temperature transport and viscous heating to simplefoam Solver and Test Case Martin Becker martin_becker@dhcae-tools.de 11/09/2012 Abstract The modifications of the simplefoam

More information

On Air Bubbles Sliding through a Thermal Boundary Layer

On Air Bubbles Sliding through a Thermal Boundary Layer On Air Bubbles Sliding through a Thermal Boundary Layer A comparative study of Predicions by OpenFoam and Fluent s VOF Schemes Dr Yan Delauré and Abdulaleem Albadawi School of Mechanical Engineering, Dublin

More information

An Overview of CFD Tools and Comparison of a 2D Testcase

An Overview of CFD Tools and Comparison of a 2D Testcase An Overview of CFD Tools and Comparison of a 2D Testcase CES Seminar Project Thesis presented by Moritz Begall 296113 Advisor: Alexandra Krieger, Ph.D. Aachen, 01.09.2015 Abstract This report presents

More information

Presentation for the course «CFD with OpenSource Software» Alexey Vdovin Chalmers University of Technology

Presentation for the course «CFD with OpenSource Software» Alexey Vdovin Chalmers University of Technology Presentation for the course «CFD with OpenSource Software» Alexey Vdovin Chalmers University of Technology Agenda(1) Introduction Addition of the radiation heat transfer to the solver Radiation models

More information

Adding electric conduction and Joule heating to chtmultiregionfoam Niklas Järvstråt

Adding electric conduction and Joule heating to chtmultiregionfoam Niklas Järvstråt Adding electric conduction and Joule heating to chtmultiregionfoam Niklas Järvstråt Physical equations: Thermal conduction (with Joule heating and passive transport included) Thermal conduction is standard

More information

Transient flow simulations

Transient flow simulations Transient flow simulations Lecture 4 March 8, 2016 March 8, 2016 1 / 20 Table of Contents 1 Stationary and transient 2 Block structured meshes 3 Steps of the analysis through an example 4 Mesh refining

More information

How to implement your own turbulence model(1/3)

How to implement your own turbulence model(1/3) How to implement your own turbulence model(1/3) The implementations of the turbulence models are located in $FOAM_SRC/turbulenceModels Copythesourceoftheturbulencemodelthatismostsimilartowhatyouwanttodo.Inthis

More information

Numerical solving of non-linear Schrödinger equation

Numerical solving of non-linear Schrödinger equation Numerical solving of non-linear Schrödinger equation March 14, 2011 1 Initial objective On first stage, it was shown that OpenFOAM could be used in principle for solving nonlinear Schrödinger equation.

More information

Adding electric conduction and Joule heating to chtmultiregionfoam Niklas Järvstråt

Adding electric conduction and Joule heating to chtmultiregionfoam Niklas Järvstråt CFD with open source software, assignment 3: Adding electric conduction and Joule heating to chtmultiregionfoam Niklas Järvstråt Reviewed by Arash Eslamdoost 1 Table of contents 1.Physical background and

More information

A solver for Boussinesq shallow water equations

A solver for Boussinesq shallow water equations A solver for Boussinesq shallow water equations Dimitrios Koukounas Department of Mechanics and Maritime sciences Chalmers University of Technology, Gothenburg, Sweden 2017-11-23 Dimitrios Koukounas Beamer

More information

Radiation heat transfer in OpenFoam

Radiation heat transfer in OpenFoam Final Assignment for the course «CFD with OpenSource Software» Radiation heat transfer in OpenFoam Student: Alexey Vdovin, 850408-3737, vdovin@student.chalmers.se Göteborg, Chalmers University of Technology,

More information

Coupling of VOF-Based Solver with LPT for Simulation of Cavitating Flows

Coupling of VOF-Based Solver with LPT for Simulation of Cavitating Flows Coupling of VOF-Based Solver with LPT for Simulation of Cavitating Flows Ebrahim Ghahramani Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden 2017-09-25 Ebrahim Ghahramani

More information

OpenFOAM Course Final Assignment: Tutorial for Natural Convection Boundary Layer

OpenFOAM Course Final Assignment: Tutorial for Natural Convection Boundary Layer OpenFOAM Course Final Assignment: Tutorial for Natural Convection Boundary Layer Abolfazl Shiri 751028-2051 1 Introduction The aim of this project is to simulate the natural convection boundary layer along

More information

Implementing Vortex Lattice Representation of Propeller Sections

Implementing Vortex Lattice Representation of Propeller Sections CFD with OpenSource Software 2014 Implementing Vortex Lattice Representation of Propeller Sections Developed for OpenFOAM-2.3.x Surya Kiran Peravali Chalmers University of Technology, Gothenburg, Sweden.

More information

How to implement your own turbulence model (1/3)

How to implement your own turbulence model (1/3) How to implement your own turbulence model 1/3) The implementations of the turbulence models are located in $FOAM_SRC/turbulenceModels Copy the source of the turbulence model that is most similar to what

More information

Simplified flow around a propeller for the course CFD with OpenSource Software

Simplified flow around a propeller for the course CFD with OpenSource Software Simplified flow around a propeller for the course CFD with OpenSource Software Gonzalo Montero Applied Mechanics/Fluid Dynamics, Chalmers University of Technology, Gothenburg, Sweden 2015-12-08 Gonzalo

More information

Modifying buoyantpimplefoam for the Simulation of Solid-Liquid Phase Change with Temperature-dependent Thermophysical Properties

Modifying buoyantpimplefoam for the Simulation of Solid-Liquid Phase Change with Temperature-dependent Thermophysical Properties Cite as: Hummel, D.: Modifying buoyantpimplefoam for the Simulation of Solid-Liquid Phase Change with Temperature-dependent Thermophysical Properties. In Proceedings of CFD with OpenSource Software, 2017,

More information

Description of poroussimplefoam and adding the Brinkmann model to the porous models Developed for OpenFOAM-2.2.x

Description of poroussimplefoam and adding the Brinkmann model to the porous models Developed for OpenFOAM-2.2.x CFD with OpenSource Software A course at Chalmers University of Technology Taught by Hakan Nilsson Project work: Description of poroussimplefoam and adding the Brinkmann model to the porous models Developed

More information

Implementation of HLLC-AUSM low-mach scheme in a density-based compressible solver in FOAM-extend

Implementation of HLLC-AUSM low-mach scheme in a density-based compressible solver in FOAM-extend Implementation of HLLC-AUSM low-mach scheme in a density-based compressible solver in FOAM-extend Mohammad Hossein Arabnejad Mechanics and Maritime Sciences/Marine Technology, Chalmers University of Technology,

More information

Enhanced VOF-based CFD simulations of droplet impact. Konstantinos Vontas. Dr. Anastasios Georgoulas

Enhanced VOF-based CFD simulations of droplet impact. Konstantinos Vontas. Dr. Anastasios Georgoulas Enhanced VOF-based CFD simulations of droplet impact Dissertation Submitted by Konstantinos Vontas Under Supervision of Dr. Anastasios Georgoulas A dissertation submitted to the Department of Mechanical

More information

Solving PDEs with OpenFOAM

Solving PDEs with OpenFOAM Solving PDEs with OpenFOAM ThePDEswewishtosolveinvolvederivativesoftensorfieldswith respect to time and space The PDEs must be discretized in time and space before we solve them We will start by having

More information

Create a DES turbulence model from komegasst RANS model. 8 th OFWS training by D. Chrisk Revised by Y. Takagi Open CAE

Create a DES turbulence model from komegasst RANS model. 8 th OFWS training by D. Chrisk Revised by Y. Takagi Open CAE Create a DES turbulence model from komegasst RANS model 8 th OFWS training by D. Chrisk Revised by Y. Takagi Open CAE seminar@kansai, 2013.7.6 1 Turbulent flow simulapon DNS LES RANS Modeling No Subgrid

More information

Solving PDEs with OpenFOAM

Solving PDEs with OpenFOAM Solving PDEs with OpenFOAM ThePDEswewishtosolveinvolvederivativesoftensorfieldswith respect to time and space ThePDEsmustbediscretizedintimeandspacebeforewesolve them WewillstartbyhavingalookatalgebraoftensorsinOpenFOAM

More information

High-level programming in OpenFOAM and a first glance at C++

High-level programming in OpenFOAM and a first glance at C++ High-level programming in OpenFOAM and a first glance at C++ Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 1 Solving PDEs with OpenFOAM The PDEs we wish to solve involve derivatives of tensor

More information

High-level programming in OpenFOAM and a first glance at C++

High-level programming in OpenFOAM and a first glance at C++ High-level programming in OpenFOAM and a first glance at C++ Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 1 Solving PDEs with OpenFOAM The PDEs we wish to solve involve derivatives

More information

Implementation of Turbulent Viscosity from EARSM for Two Equation Turbulence Model

Implementation of Turbulent Viscosity from EARSM for Two Equation Turbulence Model CFD with OpenSource software A course at Chalmers University of Technology Taught by Håkan Nilsson Project work: Implementation of Turbulent Viscosity from EARSM for Two Equation Turbulence Model Developed

More information

Description and validation of the rotordisksource class for propeller performance estimation

Description and validation of the rotordisksource class for propeller performance estimation Description and validation of the rotordisksource class for propeller performance estimation Alexandre Capitao Patrao Department of Mechanics and Maritime Sciences Division of Fluid Dynamics Chalmers University

More information

CFD with OpenSource software. Implementation of HLLC-AUSM low-mach scheme in a density-based compressible solver in FOAM-extend

CFD with OpenSource software. Implementation of HLLC-AUSM low-mach scheme in a density-based compressible solver in FOAM-extend Cite as: Arabnejad, M. H.: Implementation of HLLC-AUSM low-mach scheme in a density-based compressible solver in FOAM-extend. In Proceedings of CFD with OpenSource Software, 2016, Edited by Nilsson. H.,

More information

Tutorial XiFoam. Applied Mechanics Department Chalmers University of Technology. CFD with OpenSource software, assignment 3

Tutorial XiFoam. Applied Mechanics Department Chalmers University of Technology. CFD with OpenSource software, assignment 3 Applied Mechanics Department Chalmers University of Technology CFD with OpenSource software, assignment 3 Tutorial XiFoam Version: OpenFOAM-1.7.x Author: Ehsan Yasari Peer reviewed by: Josef Runsten Jelena

More information

Lecture 2: Fundamentals 2/3: Navier-Stokes Equation + Basics of Discretization

Lecture 2: Fundamentals 2/3: Navier-Stokes Equation + Basics of Discretization Lecture 2: Fundamentals 2/3: Navier-Stokes Equation Basics of Discretization V.Vuorinen Aalto University School of Engineering CFD Course, Spring 2018 January 15th 2018, Otaniemi ville.vuorinen@aalto.fi

More information

Draft Tube calculations using OpenFOAM-1.5dev and validation with FLINDT data

Draft Tube calculations using OpenFOAM-1.5dev and validation with FLINDT data 6th OpenFOAM Workshop, June 13-16 2011, PennState University, USA Draft Tube calculations using OpenFOAM-1.5dev and validation with FLINDT data C. Devals, Y. Zhang and F.Guibault École Polytechnique de

More information

studies Maryse Page Hydro-Québec, Research Institute Håkan Nilsson Chalmers University of Technology Omar Bounous Chalmers University of Technology

studies Maryse Page Hydro-Québec, Research Institute Håkan Nilsson Chalmers University of Technology Omar Bounous Chalmers University of Technology OpenFOAM Turbomachinery Working Group: ERCOFTAC conical diffuser case-studies studies Maryse Page Hydro-Québec, Research Institute Olivier Petit Chalmers University of Technology Håkan Nilsson Chalmers

More information

Magnetic induction and electric potential solvers for incompressible MHD flows

Magnetic induction and electric potential solvers for incompressible MHD flows Magnetic induction and electric potential solvers for incompressible MHD flows Alessandro Tassone DIAEE - Nuclear Section, Sapienza Università di Roma, Rome, Italy 05/12/2016 Alessandro Tassone CMHD Solvers

More information

Description of reactingtwophaseeulerfoam solver with a focus on mass transfer modeling terms

Description of reactingtwophaseeulerfoam solver with a focus on mass transfer modeling terms Cite as: Phanindra.P.Thummala: reactingtwophaseeulerfoam description. In Proceedings of CFD with OpenSource Software, 2016, Edited by Nilsson. H., http://www.tfd.chalmers.se/~hani/kurser/os_cfd_2016 CFD

More information

Development of twophaseeulerfoam

Development of twophaseeulerfoam ISPRAS OPEN 2016 NUMERICAL STUDY OF SADDLE-SHAPED VOID FRACTION PROFILES EFFECT ON THERMAL HYDRAULIC PARAMETERS OF THE CHANNEL WITH TWO-PHASE FLOW USING OPENFOAM AND COMPARISON WITH EXPERIMENTS Varseev

More information

Porous Media in OpenFOAM

Porous Media in OpenFOAM Chalmers Spring 2009 Porous Media in OpenFOAM Haukur Elvar Hafsteinsson Introduction This tutorial gives a detailed description of how to do simulations with porous media in OpenFOAM-1.5. The porous media

More information

A Thorough Description Of How Wall Functions Are Implemented In OpenFOAM

A Thorough Description Of How Wall Functions Are Implemented In OpenFOAM Cite as: Fangqing Liu.: A Thorough Description Of How Wall Functions Are Implemented In OpenFOAM. In Proceedings of CFD with OpenSource Software, 2016, Edited by Nilsson. H., http://www.tfd.chalmers.se/~hani/kurser/os_cfd_2016

More information

Implementing Vortex Lattice representation of Propeller sections

Implementing Vortex Lattice representation of Propeller sections CFD with OpenSource software A course at Chalmers University of Technology Taught by Håkan Nilsson Project work: Implementing Vortex Lattice representation of Propeller sections Developed for OpenFOAM-2.3.x

More information

Rhie-Chow interpolation in OpenFOAM 1

Rhie-Chow interpolation in OpenFOAM 1 Rhie-Chow interpolation in OpenFOAM 1 Fabian Peng Kärrholm Department of Applied Mechanics Chalmers Univesity of Technology Göteborg, Sweden, 2006 1 Appendix from Numerical Modelling of Diesel Spray Injection

More information

PANS turbulence model implementation

PANS turbulence model implementation CFD with OpenSource Software A course at Chalmers University of Technology Taught by Håkan Nillson PANS turbulence model implementation Developed for OpenFOAM-2.3.x Author: Guglielmo Minelli Peer reviewed

More information

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

More information

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00786 NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A

More information

swak4foam Gentle introduction and new developments Bernhard F.W. Gschaider Jeju, Korea 11. June 2013

swak4foam Gentle introduction and new developments Bernhard F.W. Gschaider Jeju, Korea 11. June 2013 swak4foam Gentle introduction and new developments Bernhard F.W. Gschaider Jeju, Korea 11. June 2013 Bernhard F.W. Gschaider swak4foam 1/138 Outline Introduction About this presentation Before we start

More information

Micro-Scale CFD Modeling of Packed-Beds

Micro-Scale CFD Modeling of Packed-Beds Micro-Scale CFD Modeling of Packed-Beds Daniel P. Combest and Dr. P.A. Ramachandran and Dr. M.P. Dudukovic Chemical Reaction Engineering Laboratory (CREL) Department of Energy, Environmental, and Chemical

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE

TABLE OF CONTENTS CHAPTER TITLE PAGE v TABLE OF CONTENTS CHAPTER TITLE PAGE TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF APPENDICES v viii ix xii xiv CHAPTER 1 INTRODUCTION 1.1 Introduction 1 1.2 Literature Review

More information

Development of a one-dimensional boiling model: Part I A two-phase flow pattern map for a heavy hydrocarbon feedstock

Development of a one-dimensional boiling model: Part I A two-phase flow pattern map for a heavy hydrocarbon feedstock Development of a one-dimensional boiling model: Part I A two-phase flow pattern map for a heavy hydrocarbon feedstock Pieter Verhees, Abdul Akhras Rahman, Kevin M. Van Geem, Geraldine J. Heynderickx Laboratory

More information

Coolant. Circuits Chip

Coolant. Circuits Chip 1) A square isothermal chip is of width w=5 mm on a side and is mounted in a subtrate such that its side and back surfaces are well insulated, while the front surface is exposed to the flow of a coolant

More information

SIMULATION OF FLUID-STRUCTURAL INTERACTION

SIMULATION OF FLUID-STRUCTURAL INTERACTION SIMULATION OF FLUID-STRUCTURAL INTERACTION USING OPENFOAM Hua-Dong Yao Department of Applied Mechanics, Chalmers University of Technology Sep 15, 2014 Hua-Dong Yao Simulation of FSI using OpenFOAM Sep

More information

Nonlinear shape evolution of immiscible two-phase interface

Nonlinear shape evolution of immiscible two-phase interface Nonlinear shape evolution of immiscible two-phase interface Francesco Capuano 1,2,*, Gennaro Coppola 1, Luigi de Luca 1 1 Dipartimento di Ingegneria Industriale (DII), Università di Napoli Federico II,

More information

Capillary Blocking in Forced Convective Condensation in Horizontal Miniature Channels

Capillary Blocking in Forced Convective Condensation in Horizontal Miniature Channels Yuwen Zhang Mem. ASME A. Faghri Fellow ASME M. B. Shafii Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 Capillary Blocking in Forced Convective Condensation in Horizontal

More information

THE EFFECTS OF LONGITUDINAL RIBS ON ENTROPY GENERATION FOR LAMINAR FORCED CONVECTION IN A MICROCHANNEL

THE EFFECTS OF LONGITUDINAL RIBS ON ENTROPY GENERATION FOR LAMINAR FORCED CONVECTION IN A MICROCHANNEL THE EFFECTS OF LONGITUDINAL RIBS ON ENTROPY GENERATION FOR LAMINAR FORCED CONVECTION IN A MICROCHANNEL Nader POURMAHMOUD, Hosseinali SOLTANIPOUR *1,, Iraj MIRZAEE Department of Mechanical Engineering,

More information

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION A. K. Kansal, P. Suryanarayana, N. K. Maheshwari Reactor Engineering Division, Bhabha Atomic Research Centre,

More information

Three-dimensional Numerical Modeling of Water Flow in a Rock-Blasted Tunnel

Three-dimensional Numerical Modeling of Water Flow in a Rock-Blasted Tunnel Three-dimensional Numerical Modeling of Water Flow in a Rock-Blasted Tunnel Mari Vold July 2017 Abstract Climate change leads to more intense precipitation in Norway. NVE requires all bypass tunnels have

More information

Improvement of lagrangian approach for multiphase flow

Improvement of lagrangian approach for multiphase flow Matteo Nobile Improvement of lagrangian approach for multiphase flow 2014/12/1-2 1/40 Improvement of lagrangian approach for multiphase flow (Project for the course CFD with OpenSource Software, 2014 )

More information

InterPACKICNMM

InterPACKICNMM Proceedings of ASME 2015 International Technical Conference and Exhibition & on Packaging and Integration of Electronic and Photonic Microsystems InterPACK2015 July 6-9, 2015, San Francisco, USA InterPACKICNMM2015-48129

More information

THE EFFECT OF LIQUID FILM EVAPORATION ON FLOW BOILING HEAT TRANSFER IN A MICRO TUBE

THE EFFECT OF LIQUID FILM EVAPORATION ON FLOW BOILING HEAT TRANSFER IN A MICRO TUBE Proceedings of the International Heat Transfer Conference IHTC14 August 8-13, 2010, Washington, DC, USA IHTC14-22751 THE EFFECT OF LIQUID FILM EVAPORATION ON FLOW BOILING HEAT TRANSFER IN A MICRO TUBE

More information

Numerical Simulation of Core- Annular Flow in a Curved Pipe

Numerical Simulation of Core- Annular Flow in a Curved Pipe Numerical Simulation of Core- Annular Flow in a Curved Pipe Simulation of two phase flow with OpenFOAM Report Number:2625(MEAH:277) Master of Science Thesis Process and Energy Numerical Simulation of

More information

Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 41, No. 7, p (July 2004)

Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 41, No. 7, p (July 2004) Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 41, No. 7, p. 765 770 (July 2004) TECHNICAL REPORT Experimental and Operational Verification of the HTR-10 Once-Through Steam Generator (SG) Heat-transfer

More information

Heat transfer coefficient of near boiling single phase flow with propane in horizontal circular micro channel

Heat transfer coefficient of near boiling single phase flow with propane in horizontal circular micro channel IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Heat transfer coefficient of near boiling single phase flow with propane in horizontal circular micro channel To cite this article:

More information

A CRITICAL ASSESSMENT ON EVAPORATIVE COOLING PERFORMANCE OF MICRO FINNED MICRO GAP FOR HIGH HEAT FLUX APPLICATIONS

A CRITICAL ASSESSMENT ON EVAPORATIVE COOLING PERFORMANCE OF MICRO FINNED MICRO GAP FOR HIGH HEAT FLUX APPLICATIONS A CRITICAL ASSESSMENT ON EVAPORATIVE COOLING PERFORMANCE OF MICRO FINNED MICRO GAP FOR HIGH HEAT FLUX APPLICATIONS Shugata Ahmed 1, Ahmad Faris Ismail 1, Erwin Sulaeman 1 and Muhammad Hasibul Hasan 2 1

More information

Proper Orthogonal Decomposition of Pressure Fields in a Draft Tube Cone of the Francis (Tokke) Turbine Model

Proper Orthogonal Decomposition of Pressure Fields in a Draft Tube Cone of the Francis (Tokke) Turbine Model Journal of Physics: Conference Series OPEN ACCESS Proper Orthogonal Decomposition of Pressure Fields in a Draft Tube Cone of the Francis (Tokke) Turbine Model To cite this article: D Stefan and P Rudolf

More information

TWO-PHASE FLOW BOILING IN MICROCHANNELS FOR COOLING OF MICROELECTRONICS

TWO-PHASE FLOW BOILING IN MICROCHANNELS FOR COOLING OF MICROELECTRONICS 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics HEFAT2011 8 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 11 13 July 2011 Pointe Aux

More information

Simulation of evaporation and combustion of droplets using a VOF method

Simulation of evaporation and combustion of droplets using a VOF method Simulation of evaporation and combustion of droplets using a VOF method P. Keller, P.A. Nikrityuk, B. Meyer June 23, 2010 Motivation Mathematics Physics Validation & Test Cases Conclusions Motivation (1)

More information

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES B.M. Lingade a*, Elizabeth Raju b, A Borgohain a, N.K. Maheshwari a, P.K.Vijayan a a Reactor Engineering

More information

Numerical Investigation of The Convective Heat Transfer Enhancement in Coiled Tubes

Numerical Investigation of The Convective Heat Transfer Enhancement in Coiled Tubes Numerical Investigation of The Convective Heat Transfer Enhancement in Coiled Tubes Luca Cattani* 1 1 Department of Industrial Engineering - University of Parma Parco Area delle Scienze 181/A I-43124 Parma,

More information

Numerical Study on the Condensation Length of Binary Zeotropic Mixtures

Numerical Study on the Condensation Length of Binary Zeotropic Mixtures 1 Numerical Study on the Condensation Length of Binary Zeotropic Mixtures Han Deng, Maria Fernandino, Carlos A. Dorao 3rd Trondheim Gas Technology Conference 4 5 June, 2014 Trondheim, Norway 3rd Trondheim

More information

Analysis and Comparison of the Performance of Concurrent and Countercurrent Flow Heat Exchangers

Analysis and Comparison of the Performance of Concurrent and Countercurrent Flow Heat Exchangers Analysis and Comparison of the Performance of Concurrent and Countercurrent Flow Heat Exchangers by David Onarheim An Engineering Project Submitted to the Graduate Faculty of Rensselaer Polytechnic Institute

More information

HEAT TRANSFER ANALYSIS OF FLAT AND LOUVERED FIN-AND-TUBE HEAT EXCHANGERS USING CFD

HEAT TRANSFER ANALYSIS OF FLAT AND LOUVERED FIN-AND-TUBE HEAT EXCHANGERS USING CFD HEFAT2 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 3 June to 2 July 2 Pretoria, South Africa Paper number: CZ1 HEAT TRANSFER ANALYSIS OF FLAT AND LOUVERED FIN-AND-TUBE

More information

Simulating the combustion of gaseous fuels 6th OpenFoam Workshop Training Session. Dominik Christ

Simulating the combustion of gaseous fuels 6th OpenFoam Workshop Training Session. Dominik Christ Simulating the combustion of gaseous fuels 6th OpenFoam Workshop Training Session Dominik Christ This presentation shows how to use OpenFoam to simulate gas phase combustion Overview Theory Tutorial case

More information

TankExampleNov2016. Table of contents. Layout

TankExampleNov2016. Table of contents. Layout Table of contents Task... 2 Calculation of heat loss of storage tanks... 3 Properties ambient air Properties of air... 7 Heat transfer outside, roof Heat transfer in flow past a plane wall... 8 Properties

More information

EXPERIMENTAL ANALYSIS OF R-134a FLOW CONDENSATION IN A SMOOTH TUBE

EXPERIMENTAL ANALYSIS OF R-134a FLOW CONDENSATION IN A SMOOTH TUBE HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta EXPERIMENTAL ANALYSIS OF R-134a FLOW CONDENSATION IN A SMOOTH TUBE Bastos S., Fernández-Seara

More information

THE USE OF PB-BI EUTECTIC AS THE COOLANT OF AN ACCELERATOR DRIVEN SYSTEM. Joint research Centre of the European Commission Ispra, Italy.

THE USE OF PB-BI EUTECTIC AS THE COOLANT OF AN ACCELERATOR DRIVEN SYSTEM. Joint research Centre of the European Commission Ispra, Italy. THE USE OF PB-BI EUTECTIC AS THE COOLANT OF AN ACCELERATOR DRIVEN SYSTEM Alberto Peña 1, Fernando Legarda 1, Harmut Wider 2, Johan Karlsson 2 1 University of the Basque Country Nuclear Engineering and

More information

Comparison of heat transfer characteristics of liquid coolants in forced convection cooling in a micro heat sink

Comparison of heat transfer characteristics of liquid coolants in forced convection cooling in a micro heat sink Nivesh Agrawal et al. / IJAIR ISSN: 78-7844 Comparison of heat transfer characteristics of liquid coolants in forced convection cooling in a micro heat sink Mr.Nivesh Agrawal #1 Mr.Mahesh Dewangan * #1

More information

Computational investigations and grid refinement study of 3D transient flow in a cylindrical tank using OpenFOAM

Computational investigations and grid refinement study of 3D transient flow in a cylindrical tank using OpenFOAM IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Computational investigations and grid refinement study of D transient flow in a cylindrical tank using OpenFOAM To cite this article:

More information

Effect of Channel Size on Heat Transfer and Pressure Drop in Thin Slabs Minichannel Heat Exchanger

Effect of Channel Size on Heat Transfer and Pressure Drop in Thin Slabs Minichannel Heat Exchanger Avestia Publishing International Journal of Mechanical Engineering and Mechatronics Volume 2, Issue 1, Year 214 ISSN: 1929-2724 DOI: 1.11159/ijmem.214.4 Effect of Channel Size on Heat Transfer and Pressure

More information

Fundamental issues, mechanisms and models of flow boiling heat transfer in microscale channels

Fundamental issues, mechanisms and models of flow boiling heat transfer in microscale channels Fundamental issues, mechanisms and models of flow boiling heat transfer in microscale channels CHENG, Lixin and XIA, Guodong Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/14546/

More information

OPTIMUM GEOMETRY OF MEMS HEAT EXCHANGER FOR HEAT TRANSFER ENHANCEMENT

OPTIMUM GEOMETRY OF MEMS HEAT EXCHANGER FOR HEAT TRANSFER ENHANCEMENT OPTIMUM GEOMETRY OF MEMS HEAT EXCHANGER FOR HEAT TRANSFER ENHANCEMENT Nusrat J. Chhanda, Muhannad Mustafa and Maglub Al Nur Department of Mechanical Engineering, Bangladesh University of Engineering and

More information

International Communications in Heat and Mass Transfer

International Communications in Heat and Mass Transfer International Communications in Heat and Mass Transfer 39 (12) 82 86 Contents lists available at SciVerse ScienceDirect International Communications in Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ichmt

More information

Numerical Investigation on The Convective Heat Transfer Enhancement in Coiled Tubes

Numerical Investigation on The Convective Heat Transfer Enhancement in Coiled Tubes Numerical Investigation on The Convective Heat Transfer Enhancement in Coiled Tubes Luca Cattani Department of Industrial Engineering - University of Parma Excerpt from the Proceedings of the 2012 COMSOL

More information

This chapter focuses on the study of the numerical approximation of threedimensional

This chapter focuses on the study of the numerical approximation of threedimensional 6 CHAPTER 6: NUMERICAL OPTIMISATION OF CONJUGATE HEAT TRANSFER IN COOLING CHANNELS WITH DIFFERENT CROSS-SECTIONAL SHAPES 3, 4 6.1. INTRODUCTION This chapter focuses on the study of the numerical approximation

More information

HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID

HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID THERMAL SCIENCE: Year 2016, Vol. 20, No. 1, pp. 89-97 89 HEAT TRANSFER ENHANCEMENT WITH ELLIPTICAL TUBE UNDER TURBULENT FLOW TiO 2 -WATER NANOFLUID by Adnan M. HUSSEIN a*, Rosli Abu BAKAR b, Kumaran KADIRGAMA

More information

Experimental Study of Energy Efficiency of a Single Microtube

Experimental Study of Energy Efficiency of a Single Microtube Journal of Applied Fluid Mechanics, Vol. 9, Special Issue 2, pp. 253-258, 2016. Selected papers from the XIIth Franco - Quebec Inter-University Symposium on Thermal Systems -2015 Available online at www.jafmonline.net,

More information

Heat Transfer Modeling using ANSYS FLUENT

Heat Transfer Modeling using ANSYS FLUENT Lecture 1 - Introduction 14.5 Release Heat Transfer Modeling using ANSYS FLUENT 2013 ANSYS, Inc. March 28, 2013 1 Release 14.5 Outline Modes of Heat Transfer Basic Heat Transfer Phenomena Conduction Convection

More information

CFD-Simulations of a 4π-continuous-mode dilution refrigerator for the CB-ELSA experiment

CFD-Simulations of a 4π-continuous-mode dilution refrigerator for the CB-ELSA experiment CFD-Simulations of a 4π-continuous-mode dilution refrigerator for the CB-ELSA experiment M. Bornstein, H. Dutz, S. Goertz, S. Reeve, University of Bonn, Germany E-mail: runkel@physik.uni-bonn.de The polarized

More information

PARAMETRIC STUDIES FOR HEAT EXCHANGERS

PARAMETRIC STUDIES FOR HEAT EXCHANGERS Chapter 3 PARAMETRIC STUDIES FOR HEAT EXCHANGERS 3.1 INTRODUCTION This chapter discusses in detail the methodology considered for the thermal design of the heat exchangers: an evaporator, a suction line

More information

Simulation and validation of compressible flow in nozzle geometries and validation of OpenFOAM for this application

Simulation and validation of compressible flow in nozzle geometries and validation of OpenFOAM for this application Research Collection Master Thesis Simulation and validation of compressible flow in nozzle geometries and validation of OpenFOAM for this application Author(s): Wüthrich, Benjamin Publication Date: 2007

More information

Numerical modelling of direct contact condensation of steam in BWR pressure suppression pool system

Numerical modelling of direct contact condensation of steam in BWR pressure suppression pool system Numerical modelling of direct contact condensation of steam in BWR pressure suppression pool system Gitesh Patel, Vesa Tanskanen, Juhani Hyvärinen LUT School of Energy Systems/Nuclear Engineering, Lappeenranta

More information

A Two-Fluid/DQMOM Methodology For Condensation In Bubbly Flow

A Two-Fluid/DQMOM Methodology For Condensation In Bubbly Flow A Two-Fluid/DQMOM Methodology For Condensation In Bubbly Flow Gothenburg Region OpenFOAM User Group Meeting, November 11, 2015 Klas Jareteg Chalmers University of Technology Division of Nuclear Engineering,

More information

InterPACKICNMM

InterPACKICNMM Proceedings of the ASME 215 International Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems and ASME 215 International Conference on Nanochannels, Microchannels,

More information

Bejo Duka Ergys Rexhepi. Department of Physics, Faculty of Natural Sciences, UNIVERSITY OF TIRANA

Bejo Duka Ergys Rexhepi. Department of Physics, Faculty of Natural Sciences, UNIVERSITY OF TIRANA Bejo Duka Ergys Rexhepi Department of Physics, Faculty of Natural Sciences, UNIVERSITY OF TIRANA constant surface temperature received much attention because of the theoretical interest and the wide engineering

More information

Numerical Simulation of Hydrogen Gas Turbines using Flamelet Generated Manifolds technique on Open FOAM

Numerical Simulation of Hydrogen Gas Turbines using Flamelet Generated Manifolds technique on Open FOAM Numerical Simulation of Hydrogen Gas Turbines using Flamelet Generated Manifolds technique on Open FOAM Alessio Fancello (M.Sc.) Department of Mechanical Engineering Combustion Technology Technische Universiteit

More information

Stratified scavenging in two-stroke engines using OpenFOAM

Stratified scavenging in two-stroke engines using OpenFOAM Stratified scavenging in two-stroke engines using OpenFOAM Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 1 Acknowledgements I would like to thank Associate Professor Håkan Nilsson at the

More information