Lecture 2: Fundamentals 2/3: Navier-Stokes Equation + Basics of Discretization

Size: px
Start display at page:

Download "Lecture 2: Fundamentals 2/3: Navier-Stokes Equation + Basics of Discretization"

Transcription

1 Lecture 2: Fundamentals 2/3: Navier-Stokes Equation Basics of Discretization V.Vuorinen Aalto University School of Engineering CFD Course, Spring 2018 January 15th 2018, Otaniemi

2 Overview First glimpse to OpenFOAM Navier-Stokes equation Finite difference discretization of NS-eqn About homework 1

3 Part 1: First Glimpse to OpenFOAM: No More Engineers Who Just Click Buttons

4 OpenFOAM (Open Source Field Operation and Manipulation) is a free software for CFD simulations with popularity comparable to the commercial code Ansys Fluent

5 CFD: From Geometry Model to Post-Processing 3) Flow model (governing eqs) - Navier-Stokes? - inflow/outflow/wall boundary conditions - initial conditions 2) 3d volume mesh - fill the space with small volume elements 1) Surface model CAD software Example: The MotorBike tutorial from the OpenFOAM code showing usage of SnappyHexMesh cell-splitting utility 4) CFD simulation - turbulence approach (RANS/LES/DNS) - numerical methods (linear solvers, discretization, timestep etc) - the flow model influences the above 5) Post-processing - visualization (e.g. velocity vectors) - numeric quantities (e.g. Cd) - time-averaged quantities and time series - statistical analysis

6 Overview of OpenFOAM CFD Code Structure (Source: OpenFOAM User's Manual)

7 Overview of OpenFOAM CFD Code Structure (Source: OpenFOAM User's Manual) lity: i t u ple m a y Ex t i c ti vor and m m o the c rsion e v own r u o n g. y w. e O s : ple ent m d a u x t E ms a o F ico lvers o s ible e s h s t e pr m ple: m o m c a a n o i x h F E Mes : the pimple k e l c p o bl Exam oam or F ico nd a m com

8 Simulation Input: Rough Overview of OpenFOAM Lid Driven Cavity Case Folder Structure Give velocity and /0/ U p controldict /cavity/ /system/ fvschemes fvsolution blockmeshdict /constant/ /polymesh/ pressure BC's and IC's here Give simulation duration, timestep, print-out interval etc here Give time/space discretization and interpolation schemes Give e.g. linear solver settings here Simple block-structured meshes can be generated in text file format Created mesh storage transportproperties Viscosity...

9 Info<< "\nstarting time loop\n" << endl; while (runtime.loop()) { Info<< "Time = "<<runtime.timename()<< nl <<endl; Example: Top-level OpenFOAM icofoam incompressible solver code syntax taken from file icofoam.c #include "CourantNo.H" // Momentum predictor fvvectormatrix UEqn ( fvm::ddt(u) fvm::div(phi, U) -fvm::laplacian(nu,u) );... if (piso.momentumpredictor()) { solve(ueqn == -fvc::grad(p));} // --- PISO loop while (piso.correct()) { volscalarfield rau(1.0/ueqn.a()); volvectorfield HbyA("HbyA", U); HbyA = rau*ueqn.h(); surfacescalarfield phihbya ( "phihbya", (fvc::interpolate(hbya) & mesh.sf()) No fvc::interpolate(rau)*fvc::ddtcorr(u, phi) more engineers who just click buttons you can read the code ); lines above and relate them to CFD theory tell how simulation methods affect simulation quality Discuss in the class room what the bold faced lines could mean. Which lines can you understand, which not?

10 Part 2: Navier-Stokes Equation

11 Incompressible fluid flows can be described by NavierStokes equation Note: Typically incompressible refers to liquid or low speed gas (Mach number < 0.3) ϕ1 ( u ϕ1)= (ν 1 ϕ1 ) ϕ2 ( u ϕ2)= ( ν2 ϕ2) Navier-Stokes equation u uu=- p ν Δ u Continuity equation u=0 ρ=constant

12 Navier-Stokes Equation (Conservation of Momentum) Pressure gradient: ensures mass conservation u uu=- p ν Δ u Velocity vector changes in time in a given position Velocity changes in space because of molecular diffusivity 2nd derivatives Velocity changes in space because of velocity field itself 1st derivatives ν=kinematic viscosity, [ν]=m2/s u=fluid velocity

13 Recap of Notation and Opening Up the Differential Operators The gradient is a vector operator: = i j k x y z Used short-hand notation for multiplying vectors uu If we define u as 3 by 1 vector then how can we multiply two vectors? The used short-hand can be understood as matrix product u u=u ut In the present notation uu defines a 3 by 3 matrix, also called, tensor u u=[u i u j ] 3 3 Row index Column index

14 Recap of Notation Divergence of a vector is a scalar: u1 u2 u3 u= x y z Divergence of a tensor is a vector: uu=c Thus: we can think that taking divergence reduces the dimensionality of the object.

15 Index Notation and Einstein Summation Convention Einstein summation convention: if index appears twice, sum over the index Divergence of vector: u= ui 3 ui =Σ i=1 xi xi Divergence of tensor: ui u j ui u j uu= =u j u xj xj i xj uj ui =u u i xj ui uj =0 xj (incompressibility) Divergence of gradient of vector is a vector (why?): (ν u)=ν u=ν Δ u ν u=δ u=ν 2 ui x 2 ν 2 ui y 2 ν 2 ui z 2

16 Navier-Stokes in Index Notation Note that component i of velocity is the transported quantity 2 ui ui u j ui p =ν 2 xj xi xj Note that the j velocities convect the i velocity component i i Note: NS is essentially the CD equation form ϕ ϕ u j 2 ϕ =ν 2 x j xj

17 The Navier-Stokes Equation ϕ ( u ϕ)= ( ν ϕ) u uu=- pν Δ u u=0 NS-eqs vector form ρ=constant NS-eqs all terms opened u u u uv uw p 2 u 2 u 2 u =ν 2 ν 2 ν 2 x y z x x y z Note: we embed density into pressure because it is assumed to be a constant v v u vv vw p 2 v 2 v 2 v =ν 2 ν 2 ν 2 x y z y x y z w w u wv ww p w w w =ν 2 ν ν 2 2 x y z z x y z Note: because the flow is divergence-free (incompressible) u uu=- p ν Δ u equivalence u u u=- p ν Δ u

18 Part 3: Lid Driven Cavity Note: Related to Homework 1

19 Example: the Lid driven cavity benchmark case At the moving lid the flow velocity matches the lid velocity u=( U, 0) At static walls we use the no-slip boundary condition Reynolds number Ud Re= ν u uu=- pν Δ u u=0 At static walls we use the zero-gradient boundary condition for pressure p n=0 u=( 0,0) But how do we get velocity and pressure?!

20 The grid and the simple grid generation of this structured grid Snapshot from the OpenFOAM mesh generation dictionary cavity/system/blockmeshdict converttometers 0.1; vertices ( (0 0 0) (1 0 0) (1 1 0) (0 1 0) ( ) ( ) ( ) ( ) ); blocks ( hex ( ) ( ) simplegrading (1 1 1) );...

21 Comparison of lid-driven cavity simulation with literature data Simulation by V. Vuorinen using OpenFOAM

22 Part 4: The very 1st basic idea of numerical solution of NS-equation Note: This is a brief first look and we will go more into detail later on.

23 Basic idea of numerical solution of NS-eqs The projection method (Hirsch Ch. 12) Step 1: find velocity increment in each grid point Step 2: find new velocity which must be divergence free i, j u n1 * Δ un=δ u n P u uu=- pν Δ u u =PD C Cell (i,j) Δu =P n D n C n Δt Δ u=δ t (D n C n P n ) u n1=un Δ un i, j un

24 Comments: - convection and diffusion terms can be easily calculated with carefully chosen finite difference methods on each timestep - pressure correction method is needed in order to find pressure - in incompressible flows pressure can not be expressed with a simple equation of state but finding pressure requires solution of linear system of Eqs - you will use pressure correction method called PISO (Pressure Implicit Splitting of Operators) which is the standard approach in OpenFOAM - the pressure correction approach we teach in the lectures is called projection method which is most typically used in modern LES/DNS simulations - Projection method is simple to learn and PISO essentially does the same job: pressure is needed to keep velocity field divergence free (incompressible)

25 Thank you for your attention!

Rhie-Chow interpolation in OpenFOAM 1

Rhie-Chow interpolation in OpenFOAM 1 Rhie-Chow interpolation in OpenFOAM 1 Fabian Peng Kärrholm Department of Applied Mechanics Chalmers Univesity of Technology Göteborg, Sweden, 2006 1 Appendix from Numerical Modelling of Diesel Spray Injection

More information

Magnetic induction and electric potential solvers for incompressible MHD flows

Magnetic induction and electric potential solvers for incompressible MHD flows Magnetic induction and electric potential solvers for incompressible MHD flows Alessandro Tassone DIAEE - Nuclear Section, Sapienza Università di Roma, Rome, Italy 05/12/2016 Alessandro Tassone CMHD Solvers

More information

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations Today's Lecture 2D grid colocated arrangement staggered arrangement Exercise: Make a Fortran program which solves a system of linear equations using an iterative method SIMPLE algorithm Pressure-velocity

More information

Solving PDEs with OpenFOAM

Solving PDEs with OpenFOAM Solving PDEs with OpenFOAM ThePDEswewishtosolveinvolvederivativesoftensorfieldswith respect to time and space ThePDEsmustbediscretizedintimeandspacebeforewesolve them WewillstartbyhavingalookatalgebraoftensorsinOpenFOAM

More information

OpenFOAM selected solver

OpenFOAM selected solver OpenFOAM selected solver Roberto Pieri - SCS Italy 16-18 June 2014 Introduction to Navier-Stokes equations and RANS Turbulence modelling Numeric discretization Navier-Stokes equations Convective term {}}{

More information

CFD with OpenSource software

CFD with OpenSource software CFD with OpenSource software A course at Chalmers University of Technology Taught by HÅKAN NILSSON Project work: intersettlingfoam Developed for OpenFOAM-2.2.0 Author: Pedram Ramin Peer reviewed by: Olivier

More information

An Overview of CFD Tools and Comparison of a 2D Testcase

An Overview of CFD Tools and Comparison of a 2D Testcase An Overview of CFD Tools and Comparison of a 2D Testcase CES Seminar Project Thesis presented by Moritz Begall 296113 Advisor: Alexandra Krieger, Ph.D. Aachen, 01.09.2015 Abstract This report presents

More information

Numerical solving of non-linear Schrödinger equation

Numerical solving of non-linear Schrödinger equation Numerical solving of non-linear Schrödinger equation March 14, 2011 1 Initial objective On first stage, it was shown that OpenFOAM could be used in principle for solving nonlinear Schrödinger equation.

More information

ME 144: Heat Transfer Introduction to Convection. J. M. Meyers

ME 144: Heat Transfer Introduction to Convection. J. M. Meyers ME 144: Heat Transfer Introduction to Convection Introductory Remarks Convection heat transfer differs from diffusion heat transfer in that a bulk fluid motion is present which augments the overall heat

More information

The Simulation of Wraparound Fins Aerodynamic Characteristics

The Simulation of Wraparound Fins Aerodynamic Characteristics The Simulation of Wraparound Fins Aerodynamic Characteristics Institute of Launch Dynamics Nanjing University of Science and Technology Nanjing Xiaolingwei 00 P. R. China laithabbass@yahoo.com Abstract:

More information

Porous Media in OpenFOAM

Porous Media in OpenFOAM Chalmers Spring 2009 Porous Media in OpenFOAM Haukur Elvar Hafsteinsson Introduction This tutorial gives a detailed description of how to do simulations with porous media in OpenFOAM-1.5. The porous media

More information

Homework 4 in 5C1212; Part A: Incompressible Navier- Stokes, Finite Volume Methods

Homework 4 in 5C1212; Part A: Incompressible Navier- Stokes, Finite Volume Methods Homework 4 in 5C11; Part A: Incompressible Navier- Stokes, Finite Volume Methods Consider the incompressible Navier Stokes in two dimensions u x + v y = 0 u t + (u ) x + (uv) y + p x = 1 Re u + f (1) v

More information

Lecture 1: Newton s Cooling Law, Fourier s Law and Heat Conduction

Lecture 1: Newton s Cooling Law, Fourier s Law and Heat Conduction Lecture 1: Newton s Cooling Law, Fourier s Law and Heat Conduction V.Vuorinen Aalto University School of Engineering Heat and Mass Transfer Course, Autumn 2016 October 31 st 2017, Otaniemi ville.vuorinen@aalto.fi

More information

High-level programming in OpenFOAM and a first glance at C++

High-level programming in OpenFOAM and a first glance at C++ High-level programming in OpenFOAM and a first glance at C++ Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 1 Solving PDEs with OpenFOAM The PDEs we wish to solve involve derivatives of tensor

More information

A numerical study of heat transfer and fluid flow over an in-line tube bank

A numerical study of heat transfer and fluid flow over an in-line tube bank Fluid Structure Interaction VI 295 A numerical study of heat transfer and fluid flow over an in-line tube bank Z. S. Abdel-Rehim Mechanical Engineering Department, National Research Center, Egypt Abstract

More information

High-level programming in OpenFOAM and a first glance at C++

High-level programming in OpenFOAM and a first glance at C++ High-level programming in OpenFOAM and a first glance at C++ Håkan Nilsson, Chalmers / Mechanics and Maritime Sciences / Fluid Dynamics 1 Solving PDEs with OpenFOAM The PDEs we wish to solve involve derivatives

More information

Coupled calculations in OpenFOAM -

Coupled calculations in OpenFOAM - Coupled calculations in OpenFOAM - Multiphysics handling, structures and solvers, Gothenburg Region OpenFOAM User Group Meeting Klas Jareteg Chalmers University of Technology November 14, 2012 Outline

More information

CFD with OpenSource software A course at Chalmers University of Technology Taught by HÅKAN NILSSON. Project work: intersettlingfoam

CFD with OpenSource software A course at Chalmers University of Technology Taught by HÅKAN NILSSON. Project work: intersettlingfoam Taught by HÅKAN NILSSON Project work: intersettlingfoa Developed for OpenFOAM-2.2.0 Author: Pedra Rain Deceber, 2013 2/21/2014 1 Presentation Outline: The objective of this presentation Introduction to

More information

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions R. S. Sellers MAE 5440, Computational Fluid Dynamics Utah State University, Department of Mechanical and Aerospace Engineering

More information

Large Scale Fluid-Structure Interaction by coupling OpenFOAM with external codes

Large Scale Fluid-Structure Interaction by coupling OpenFOAM with external codes Large Scale Fluid-Structure Interaction by coupling OpenFOAM with external codes Thomas Gallinger * Alexander Kupzok Roland Wüchner Kai-Uwe Bletzinger Lehrstuhl für Statik Technische Universität München

More information

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Jingwei Zhu May 14, 2014 Instructor: Surya Pratap Vanka 1 Project Description The objective of

More information

Transient flow simulations

Transient flow simulations Transient flow simulations Lecture 4 March 8, 2016 March 8, 2016 1 / 20 Table of Contents 1 Stationary and transient 2 Block structured meshes 3 Steps of the analysis through an example 4 Mesh refining

More information

Description of poroussimplefoam and adding the Brinkmann model to the porous models Developed for OpenFOAM-2.2.x

Description of poroussimplefoam and adding the Brinkmann model to the porous models Developed for OpenFOAM-2.2.x CFD with OpenSource Software A course at Chalmers University of Technology Taught by Hakan Nilsson Project work: Description of poroussimplefoam and adding the Brinkmann model to the porous models Developed

More information

Introduction. Haukur Elvar Hafsteinsson. OpenFOAM - Porous Media 1. The Governing Equations. The Class. The solver. Porous media as a flow control

Introduction. Haukur Elvar Hafsteinsson. OpenFOAM - Porous Media 1. The Governing Equations. The Class. The solver. Porous media as a flow control Introduction The Governing Equations The Class The solver Porous media as a flow control Porous media in cylindrical coordinates Available at the course home page: http://www.tfd.chalmers.se/ hani/kurser/os_cfd_2008/

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

OpenFOAM Course Final Assignment: Tutorial for Natural Convection Boundary Layer

OpenFOAM Course Final Assignment: Tutorial for Natural Convection Boundary Layer OpenFOAM Course Final Assignment: Tutorial for Natural Convection Boundary Layer Abolfazl Shiri 751028-2051 1 Introduction The aim of this project is to simulate the natural convection boundary layer along

More information

Week 6 Notes, Math 865, Tanveer

Week 6 Notes, Math 865, Tanveer Week 6 Notes, Math 865, Tanveer. Energy Methods for Euler and Navier-Stokes Equation We will consider this week basic energy estimates. These are estimates on the L 2 spatial norms of the solution u(x,

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

SOE3213/4: CFD Lecture 1

SOE3213/4: CFD Lecture 1 What is CFD SOE3213/4: CFD Lecture 1 3d 3d Computational Fluid Dynamics { use of computers to study uid dynamics. Solve the Navier-Stokes Equations (NSE) : r:u = 0 Du Dt = rp + r 2 u + F 4 s for 4 unknowns,

More information

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion http://www.nd.edu/~gtryggva/cfd-course/ http://www.nd.edu/~gtryggva/cfd-course/ Computational Fluid Dynamics Lecture 4 January 30, 2017 The Equations Governing Fluid Motion Grétar Tryggvason Outline Derivation

More information

Basic concepts in viscous flow

Basic concepts in viscous flow Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Adapted from Chapter 1 of Cambridge Texts in Applied Mathematics 1 The fluid dynamic equations Navier-Stokes equations Dimensionless

More information

Solving PDEs with OpenFOAM

Solving PDEs with OpenFOAM Solving PDEs with OpenFOAM ThePDEswewishtosolveinvolvederivativesoftensorfieldswith respect to time and space The PDEs must be discretized in time and space before we solve them We will start by having

More information

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

More information

Differential relations for fluid flow

Differential relations for fluid flow Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE

TABLE OF CONTENTS CHAPTER TITLE PAGE v TABLE OF CONTENTS CHAPTER TITLE PAGE TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF APPENDICES v viii ix xii xiv CHAPTER 1 INTRODUCTION 1.1 Introduction 1 1.2 Literature Review

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

A Simple Turbulence Closure Model

A Simple Turbulence Closure Model A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: Mean velocity: Turbulent velocity: Gradient operator: Advection operator: V =

More information

viscousheatingsolver Martin Becker

viscousheatingsolver Martin Becker viscousheatingsolver Adding temperature transport and viscous heating to simplefoam Solver and Test Case Martin Becker martin_becker@dhcae-tools.de 11/09/2012 Abstract The modifications of the simplefoam

More information

A Simple Turbulence Closure Model. Atmospheric Sciences 6150

A Simple Turbulence Closure Model. Atmospheric Sciences 6150 A Simple Turbulence Closure Model Atmospheric Sciences 6150 1 Cartesian Tensor Notation Reynolds decomposition of velocity: V = V + v V = U i + u i Mean velocity: V = Ui + V j + W k =(U, V, W ) U i =(U

More information

Large-eddy simulations for wind turbine blade: rotational augmentation and dynamic stall

Large-eddy simulations for wind turbine blade: rotational augmentation and dynamic stall Large-eddy simulations for wind turbine blade: rotational augmentation and dynamic stall Y. Kim, I.P. Castro, and Z.T. Xie Introduction Wind turbines operate in the atmospheric boundary layer and their

More information

A Meshless Radial Basis Function Method for Fluid Flow with Heat Transfer

A Meshless Radial Basis Function Method for Fluid Flow with Heat Transfer Copyright c 2008 ICCES ICCES, vol.6, no.1, pp.13-18 A Meshless Radial Basis Function Method for Fluid Flow with Heat Transfer K agamani Devi 1,D.W.Pepper 2 Summary Over the past few years, efforts have

More information

2. FLUID-FLOW EQUATIONS SPRING 2019

2. FLUID-FLOW EQUATIONS SPRING 2019 2. FLUID-FLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Non-conservative differential equations 2.4 Non-dimensionalisation Summary Examples 2.1 Introduction Fluid

More information

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

n i,j+1/2 q i,j * qi+1,j * S i+1/2,j

n i,j+1/2 q i,j * qi+1,j * S i+1/2,j Helsinki University of Technology CFD-group/ The Laboratory of Applied Thermodynamics MEMO No CFD/TERMO-5-97 DATE: December 9,997 TITLE A comparison of complete vs. simplied viscous terms in boundary layer

More information

Computational Fluid Dynamics Overview, Scope and Relevance

Computational Fluid Dynamics Overview, Scope and Relevance Computational Fluid Dynamics Overview, Scope and Relevance P. R. Naren School of Chemical & Biotechnology SASTRA University Thanjavur 613401 E-mail: prnaren@scbt.sastra.edu at Faculty Development Program

More information

SIMULATION OF FLUID-STRUCTURAL INTERACTION

SIMULATION OF FLUID-STRUCTURAL INTERACTION SIMULATION OF FLUID-STRUCTURAL INTERACTION USING OPENFOAM Hua-Dong Yao Department of Applied Mechanics, Chalmers University of Technology Sep 15, 2014 Hua-Dong Yao Simulation of FSI using OpenFOAM Sep

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request.

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request. UNIVERSITY OF EAST ANGLIA School of Mathematics Spring Semester Examination 2004 FLUID DYNAMICS Time allowed: 3 hours Attempt Question 1 and FOUR other questions. Candidates must show on each answer book

More information

Supporting information to

Supporting information to Supporting information to Cylindrical Water Triboelectric Nanogenerator via Controlling Geometrical Shape of Anodized Aluminum for Enhanced Electrostatic Induction Sukyung Lee, a, Jihoon Chung, a, Dae

More information

JMBC Computational Fluid Dynamics I Exercises by A.E.P. Veldman

JMBC Computational Fluid Dynamics I Exercises by A.E.P. Veldman JMBC Computational Fluid Dynamics I Exercises by A.E.P. Veldman The exercises will be carried out on PC s in the practicum rooms. Several (Matlab and Fortran) files are required. How these can be obtained

More information

Viscoelastic Fluid Simulation with OpenFOAM

Viscoelastic Fluid Simulation with OpenFOAM Viscoelastic Fluid Simulation with OpenFOAM Joan Marco Rimmek and Adrià Barja Romero Universitat Politècnica de Catalunya. BarcelonaTECH. (Dated: May 31, 2017) Viscoelastic fluids do not behave like newtonian

More information

A solver for Boussinesq shallow water equations

A solver for Boussinesq shallow water equations A solver for Boussinesq shallow water equations Dimitrios Koukounas Department of Mechanics and Maritime sciences Chalmers University of Technology, Gothenburg, Sweden 2017-11-23 Dimitrios Koukounas Beamer

More information

An Overview of Fluid Animation. Christopher Batty March 11, 2014

An Overview of Fluid Animation. Christopher Batty March 11, 2014 An Overview of Fluid Animation Christopher Batty March 11, 2014 What distinguishes fluids? What distinguishes fluids? No preferred shape. Always flows when force is applied. Deforms to fit its container.

More information

A Study on Numerical Solution to the Incompressible Navier-Stokes Equation

A Study on Numerical Solution to the Incompressible Navier-Stokes Equation A Study on Numerical Solution to the Incompressible Navier-Stokes Equation Zipeng Zhao May 2014 1 Introduction 1.1 Motivation One of the most important applications of finite differences lies in the field

More information

Study of Forced and Free convection in Lid driven cavity problem

Study of Forced and Free convection in Lid driven cavity problem MIT Study of Forced and Free convection in Lid driven cavity problem 18.086 Project report Divya Panchanathan 5-11-2014 Aim To solve the Navier-stokes momentum equations for a lid driven cavity problem

More information

3. FORMS OF GOVERNING EQUATIONS IN CFD

3. FORMS OF GOVERNING EQUATIONS IN CFD 3. FORMS OF GOVERNING EQUATIONS IN CFD 3.1. Governing and model equations in CFD Fluid flows are governed by the Navier-Stokes equations (N-S), which simpler, inviscid, form is the Euler equations. For

More information

International Engineering Research Journal Comparative Study of Sloshing Phenomenon in a Tank Using CFD

International Engineering Research Journal Comparative Study of Sloshing Phenomenon in a Tank Using CFD International Engineering Research Journal Comparative Study of Sloshing Phenomenon in a Tank Using CFD Vilas P. Ingle, Dattatraya Nalawade and Mahesh Jagadale ϯ PG Student, Mechanical Engineering Department,

More information

The behaviour of high Reynolds flows in a driven cavity

The behaviour of high Reynolds flows in a driven cavity The behaviour of high Reynolds flows in a driven cavity Charles-Henri BRUNEAU and Mazen SAAD Mathématiques Appliquées de Bordeaux, Université Bordeaux 1 CNRS UMR 5466, INRIA team MC 351 cours de la Libération,

More information

CFD in Heat Transfer Equipment Professor Bengt Sunden Division of Heat Transfer Department of Energy Sciences Lund University

CFD in Heat Transfer Equipment Professor Bengt Sunden Division of Heat Transfer Department of Energy Sciences Lund University CFD in Heat Transfer Equipment Professor Bengt Sunden Division of Heat Transfer Department of Energy Sciences Lund University email: bengt.sunden@energy.lth.se CFD? CFD = Computational Fluid Dynamics;

More information

VALIDATION OF REYNOLDS AVERAGED MODEL AND LARGE EDDY SIMULATION IN ACTUAL FLOOR HEATING ROOM. Hiroki Ono 1 and Koji Sakai 1

VALIDATION OF REYNOLDS AVERAGED MODEL AND LARGE EDDY SIMULATION IN ACTUAL FLOOR HEATING ROOM. Hiroki Ono 1 and Koji Sakai 1 Proceedings of Building Simulation 11: VALDATON OF RYNOLDS AVRAD MODL AND LAR DDY SMULATON N ACTUAL FLOOR HATN ROOM Hiroki Ono 1 and Koji Sakai 1 1 School of Science and Technology, Meiji University, Kawasaki,

More information

LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS

LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS The 6th ASME-JSME Thermal Engineering Joint Conference March 6-, 3 TED-AJ3-3 LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS Akihiko Mitsuishi, Yosuke Hasegawa,

More information

Simplified flow around a propeller for the course CFD with OpenSource Software

Simplified flow around a propeller for the course CFD with OpenSource Software Simplified flow around a propeller for the course CFD with OpenSource Software Gonzalo Montero Applied Mechanics/Fluid Dynamics, Chalmers University of Technology, Gothenburg, Sweden 2015-12-08 Gonzalo

More information

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics Diffusion / Parabolic Equations Summary of PDEs (so far...) Hyperbolic Think: advection Real, finite speed(s) at which information propagates carries changes in the solution Second-order explicit methods

More information

Due Tuesday, November 23 nd, 12:00 midnight

Due Tuesday, November 23 nd, 12:00 midnight Due Tuesday, November 23 nd, 12:00 midnight This challenging but very rewarding homework is considering the finite element analysis of advection-diffusion and incompressible fluid flow problems. Problem

More information

α 2 )(k x ũ(t, η) + k z W (t, η)

α 2 )(k x ũ(t, η) + k z W (t, η) 1 3D Poiseuille Flow Over the next two lectures we will be going over the stabilization of the 3-D Poiseuille flow. For those of you who havent had fluids, that means we have a channel of fluid that is

More information

1 Introduction to Governing Equations 2 1a Methodology... 2

1 Introduction to Governing Equations 2 1a Methodology... 2 Contents 1 Introduction to Governing Equations 2 1a Methodology............................ 2 2 Equation of State 2 2a Mean and Turbulent Parts...................... 3 2b Reynolds Averaging.........................

More information

NUMERICAL SIMULATION ON RECTANGULAR CONVERGENT AND DIVERGENT RIBBED CHANNELS

NUMERICAL SIMULATION ON RECTANGULAR CONVERGENT AND DIVERGENT RIBBED CHANNELS NUMERICAL SIMULATION ON RECTANGULAR CONVERGENT AND DIVERGENT RIBBED CHANNELS K. Sivakumar 1, E. Natarajan and N. Kulasekharan 3 1 Valliammai Engineering College, Chennai, India Institute of Energy Studies,

More information

Implementing Vortex Lattice Representation of Propeller Sections

Implementing Vortex Lattice Representation of Propeller Sections CFD with OpenSource Software 2014 Implementing Vortex Lattice Representation of Propeller Sections Developed for OpenFOAM-2.3.x Surya Kiran Peravali Chalmers University of Technology, Gothenburg, Sweden.

More information

Spatial discretization scheme for incompressible viscous flows

Spatial discretization scheme for incompressible viscous flows Spatial discretization scheme for incompressible viscous flows N. Kumar Supervisors: J.H.M. ten Thije Boonkkamp and B. Koren CASA-day 2015 1/29 Challenges in CFD Accuracy a primary concern with all CFD

More information

Fluid Animation. Christopher Batty November 17, 2011

Fluid Animation. Christopher Batty November 17, 2011 Fluid Animation Christopher Batty November 17, 2011 What distinguishes fluids? What distinguishes fluids? No preferred shape Always flows when force is applied Deforms to fit its container Internal forces

More information

Computation Fluid Dynamics Prof. Dr. Suman Chakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Computation Fluid Dynamics Prof. Dr. Suman Chakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Computation Fluid Dynamics Prof. Dr. Suman Chakraborty Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. # 40 What is there in implementing a CFD Code So far, we

More information

DNS of the Taylor-Green vortex at Re=1600

DNS of the Taylor-Green vortex at Re=1600 DNS of the Taylor-Green vortex at Re=1600 Koen Hillewaert, Cenaero Corentin Carton de Wiart, NASA Ames koen.hillewaert@cenaero.be, corentin.carton@cenaero.be Introduction This problem is aimed at testing

More information

Stratified scavenging in two-stroke engines using OpenFOAM

Stratified scavenging in two-stroke engines using OpenFOAM Stratified scavenging in two-stroke engines using OpenFOAM Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 1 Acknowledgements I would like to thank Associate Professor Håkan Nilsson at the

More information

Description and validation of the rotordisksource class for propeller performance estimation

Description and validation of the rotordisksource class for propeller performance estimation Description and validation of the rotordisksource class for propeller performance estimation Alexandre Capitao Patrao Department of Mechanics and Maritime Sciences Division of Fluid Dynamics Chalmers University

More information

Description of AdjointShapeOptimizationFoam and how to implement new cost functions

Description of AdjointShapeOptimizationFoam and how to implement new cost functions Description of AdjointShapeOptimizationFoam and how to implement new cost functions A project work in the course CFD with OpenSource software, taught by Håkan Nilsson. Chalmers University of Technology,

More information

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: April, 2016

International Journal of Modern Trends in Engineering and Research   e-issn No.: , Date: April, 2016 International Journal of Modern Trends in Engineering and Research www.ijmter.com e-issn No.:2349-9745, Date: 28-30 April, 2016 Study of Sloshing Phenomenon in an Automotive Irregular Shaped Fuel Tank

More information

Tutorial 11. Use of User-Defined Scalars and User-Defined Memories for Modeling Ohmic Heating

Tutorial 11. Use of User-Defined Scalars and User-Defined Memories for Modeling Ohmic Heating Tutorial 11. Use of User-Defined Scalars and User-Defined Memories for Modeling Ohmic Heating Introduction The purpose of this tutorial is to illustrate the use of user-defined scalars (UDS) and user defined

More information

SOE3213/4: CFD Lecture 3

SOE3213/4: CFD Lecture 3 CFD { SOE323/4: CFD Lecture 3 @u x @t @u y @t @u z @t r:u = 0 () + r:(uu x ) = + r:(uu y ) = + r:(uu z ) = @x @y @z + r 2 u x (2) + r 2 u y (3) + r 2 u z (4) Transport equation form, with source @x Two

More information

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract nd Workshop on CFD Uncertainty Analysis - Lisbon, 19th and 0th October 006 AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION Alfredo Iranzo 1, Jesús Valle, Ignacio Trejo 3, Jerónimo

More information

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Timo Heister, Texas A&M University 2013-02-28 SIAM CSE 2 Setting Stationary, incompressible flow problems

More information

Implementation of Turbulent Viscosity from EARSM for Two Equation Turbulence Model

Implementation of Turbulent Viscosity from EARSM for Two Equation Turbulence Model CFD with OpenSource software A course at Chalmers University of Technology Taught by Håkan Nilsson Project work: Implementation of Turbulent Viscosity from EARSM for Two Equation Turbulence Model Developed

More information

Hybrid LES RANS Method Based on an Explicit Algebraic Reynolds Stress Model

Hybrid LES RANS Method Based on an Explicit Algebraic Reynolds Stress Model Hybrid RANS Method Based on an Explicit Algebraic Reynolds Stress Model Benoit Jaffrézic, Michael Breuer and Antonio Delgado Institute of Fluid Mechanics, LSTM University of Nürnberg bjaffrez/breuer@lstm.uni-erlangen.de

More information

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling Turbulence Modeling Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark 1 Outline

More information

Heat Transfer Simulation by CFD from Fins of an Air Cooled Motorcycle Engine under Varying Climatic Conditions

Heat Transfer Simulation by CFD from Fins of an Air Cooled Motorcycle Engine under Varying Climatic Conditions , July 6-8, 2011, London, U.K. Heat Transfer Simulation by CFD from Fins of an Air Cooled Motorcycle Engine under Varying Climatic Conditions Pulkit Agarwal, Mayur Shrikhande and P. Srinivasan Abstract

More information

LES of turbulent shear flow and pressure driven flow on shallow continental shelves.

LES of turbulent shear flow and pressure driven flow on shallow continental shelves. LES of turbulent shear flow and pressure driven flow on shallow continental shelves. Guillaume Martinat,CCPO - Old Dominion University Chester Grosch, CCPO - Old Dominion University Ying Xu, Michigan State

More information

Info. No lecture on Thursday in a week (March 17) PSet back tonight

Info. No lecture on Thursday in a week (March 17) PSet back tonight Lecture 0 8.086 Info No lecture on Thursday in a week (March 7) PSet back tonight Nonlinear transport & conservation laws What if transport becomes nonlinear? Remember: Nonlinear transport A first attempt

More information

Implementation of HLLC-AUSM low-mach scheme in a density-based compressible solver in FOAM-extend

Implementation of HLLC-AUSM low-mach scheme in a density-based compressible solver in FOAM-extend Implementation of HLLC-AUSM low-mach scheme in a density-based compressible solver in FOAM-extend Mohammad Hossein Arabnejad Mechanics and Maritime Sciences/Marine Technology, Chalmers University of Technology,

More information

Large-Eddy Simulation of Subsonic Jets

Large-Eddy Simulation of Subsonic Jets Journal of Physics: Conference Series Large-Eddy Simulation of Subsonic Jets To cite this article: Ville Vuorinen et al 2011 J. Phys.: Conf. Ser. 318 032052 View the article online for updates and enhancements.

More information

Numerical Modelling in Fortran: day 10. Paul Tackley, 2016

Numerical Modelling in Fortran: day 10. Paul Tackley, 2016 Numerical Modelling in Fortran: day 10 Paul Tackley, 2016 Today s Goals 1. Useful libraries and other software 2. Implicit time stepping 3. Projects: Agree on topic (by final lecture) (No lecture next

More information

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations Math 575-Lecture 13 In 1845, tokes extended Newton s original idea to find a constitutive law which relates the Cauchy stress tensor to the velocity gradient, and then derived a system of equations. The

More information

An evaluation of a conservative fourth order DNS code in turbulent channel flow

An evaluation of a conservative fourth order DNS code in turbulent channel flow Center for Turbulence Research Annual Research Briefs 2 2 An evaluation of a conservative fourth order DNS code in turbulent channel flow By Jessica Gullbrand. Motivation and objectives Direct numerical

More information

Dam break free surface flow

Dam break free surface flow Dam break free surface flow Physical and numerical side of the problem: In this case we are going to use the VOF method. This method solves the incompressible Navier-Stokes equations plus an additional

More information

FLOWS IN LIQUID FOAMS

FLOWS IN LIQUID FOAMS FLOWS IN LIQUID FOAMS A finite element approach A. SAUGEY, E. JANIAUD, W. DRENCKHAN, S. HUTZLER, D. WEAIRE Physics Department,, TRINITY COLLEGE DUBLIN Facing a problem of fluid flow in a physical system,

More information

( ) Notes. Fluid mechanics. Inviscid Euler model. Lagrangian viewpoint. " = " x,t,#, #

( ) Notes. Fluid mechanics. Inviscid Euler model. Lagrangian viewpoint.  =  x,t,#, # Notes Assignment 4 due today (when I check email tomorrow morning) Don t be afraid to make assumptions, approximate quantities, In particular, method for computing time step bound (look at max eigenvalue

More information

CFD Modelling with OpenFOAM

CFD Modelling with OpenFOAM CFD Modelling with OpenFOAM Hrvoje Jasak Faculty of Mechanical Engineering and Naval Architecture, Uni Zagreb, Croatia Wikki Ltd. United Kingdom Oxford University, 13 October 2017 CFD Modelling with OpenFOAM

More information

FVM for Fluid-Structure Interaction with Large Structural Displacements

FVM for Fluid-Structure Interaction with Large Structural Displacements FVM for Fluid-Structure Interaction with Large Structural Displacements Željko Tuković and Hrvoje Jasak Zeljko.Tukovic@fsb.hr, h.jasak@wikki.co.uk Faculty of Mechanical Engineering and Naval Architecture

More information

Adding electric conduction and Joule heating to chtmultiregionfoam Niklas Järvstråt

Adding electric conduction and Joule heating to chtmultiregionfoam Niklas Järvstråt Adding electric conduction and Joule heating to chtmultiregionfoam Niklas Järvstråt Physical equations: Thermal conduction (with Joule heating and passive transport included) Thermal conduction is standard

More information

1-4 M BH10A1600 Energy Technology Project Work INT 16-INT 17

1-4 M BH10A1600 Energy Technology Project Work INT 16-INT 17 SPRING SEMESTER 2017 NOTE! Period Study level ECTS cr Course number Course Suggest topic(s) in the online application 3-4 M1 5 BH70A0101 Advanced Modeling Tools For Transport Phenomena 3 M2 3 BH30A1801

More information

Implementation of 3D Incompressible N-S Equations. Mikhail Sekachev

Implementation of 3D Incompressible N-S Equations. Mikhail Sekachev Implementation of 3D Incompressible N-S Equations Mikhail Sekachev Navier-Stokes Equations The motion of a viscous incompressible fluid is governed by the Navier-Stokes equations u + t u = ( u ) 0 Quick

More information