Solving a non-linear partial differential equation for the simulation of tumour oxygenation

Size: px
Start display at page:

Download "Solving a non-linear partial differential equation for the simulation of tumour oxygenation"

Transcription

1 Solving a non-linear partial differential equation for the simulation of tumour oxygenation Julian Köllermeier, Lisa Kusch, Thorsten Lajewski MathCCES, RWTH Aachen Talk at Karolinska Institute, J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

2 About Us CES- Computational Engineering Science mathematics computer science mechanical engineering project thesis mandatory in 6th semester J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

3 Task Theoretical modelling based on Dasu et al. Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia, PMB 48, 2003 design specialised software focusing on reduced memory consumption possible inclusion of more detailed models extension to third dimension J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

4 Outline 1 Introduction 2 Theoretical Modelling Tissue Generation Mathematical Modelling Discretisation Numerics 3 Software Presentation 4 Results Validation Acute and Chronic Hypoxia Memory Requirements Application Example 5 Conclusion J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

5 Introduction Introduction J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

6 Introduction Tumour Oxygenation tumour micro-structure non-regular vascular structure poor blood supply hypoxia chronic hypoxia (diffusion limited) acute hypoxia (perfusion limited) importance for radiotherapy radiosensitivity depends on oxygenation J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

7 Introduction Tumour Oxygenation tumour micro-structure non-regular vascular structure poor blood supply hypoxia chronic hypoxia (diffusion limited) acute hypoxia (perfusion limited) importance for radiotherapy radiosensitivity depends on oxygenation J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

8 Introduction Tumour Oxygenation tumour micro-structure non-regular vascular structure poor blood supply hypoxia chronic hypoxia (diffusion limited) acute hypoxia (perfusion limited) importance for radiotherapy radiosensitivity depends on oxygenation J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

9 Introduction Tumour Oxygenation tumour micro-structure non-regular vascular structure poor blood supply hypoxia chronic hypoxia (diffusion limited) acute hypoxia (perfusion limited) importance for radiotherapy radiosensitivity depends on oxygenation J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

10 Introduction Challenges measurement methods poor resolution small area influence oxygenation theoretical modelling commercial software not specialised high memory consumption only small domains design specialised software J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

11 Introduction Challenges measurement methods poor resolution small area influence oxygenation theoretical modelling commercial software not specialised high memory consumption only small domains design specialised software J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

12 Introduction Challenges measurement methods poor resolution small area influence oxygenation theoretical modelling commercial software not specialised high memory consumption only small domains design specialised software J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

13 Introduction Challenges measurement methods poor resolution small area influence oxygenation theoretical modelling commercial software not specialised high memory consumption only small domains design specialised software J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

14 Theoretical Modelling Theoretical Modelling J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

15 Theoretical Modelling Tissue Generation Domain Description properties two-dimensional, rectangular domain discoid blood vessels J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

16 Theoretical Modelling Tissue Generation Distribution Properties vessel distribution normal distribution of intervascular distances characterised by mean µ and variance σ 2 Example 1 scattered grid 2 dart throwing J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

17 Theoretical Modelling Tissue Generation Scattered Grid place vessels on equidistant grid for each vessel do choose normally distributed distance choose uniformly distributed angle move vessel according to distance and angle end for J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

18 Theoretical Modelling Tissue Generation Dart Throwing while vessel fits in domain do choose normally distributed distance choose random coordinates place vessel at coordinates check distance end while J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

19 Theoretical Modelling Tissue Generation Vessel Data Format few vessels easy to manipulate data structure 1 x-coordinate 2 y-coordinate 3 radius 4 pressure J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

20 Theoretical Modelling Mathematical Modelling The Problem Equation variable D p + q(p) = 0 Laplacian: p = 2 p x + 2 p 2 y 2 p Consumption: q(p) = q max p + k partial oxygen pressure p,[p] = mmhg parameters diffusion coefficient D = µm 2 s maximum consumption rate q max = 15 mmhg s consumption at half pressure k = 2.5mmHg J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

21 Theoretical Modelling Mathematical Modelling The Problem Equation variable D p + q(p) = 0 Laplacian: p = 2 p x + 2 p 2 y 2 p Consumption: q(p) = q max p + k partial oxygen pressure p,[p] = mmhg parameters diffusion coefficient D = µm 2 s maximum consumption rate q max = 15 mmhg s consumption at half pressure k = 2.5mmHg J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

22 Theoretical Modelling Mathematical Modelling The Problem Equation variable D p + q(p) = 0 Laplacian: p = 2 p x + 2 p 2 y 2 p Consumption: q(p) = q max p + k partial oxygen pressure p,[p] = mmhg parameters diffusion coefficient D = µm 2 s maximum consumption rate q max = 15 mmhg s consumption at half pressure k = 2.5mmHg J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

23 Theoretical Modelling Mathematical Modelling The Problem Equation variable D p + q(p) = 0 Laplacian: p = 2 p x + 2 p 2 y 2 p Consumption: q(p) = q max p + k partial oxygen pressure p,[p] = mmhg parameters diffusion coefficient D = µm 2 s maximum consumption rate q max = 15 mmhg s consumption at half pressure k = 2.5mmHg J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

24 Theoretical Modelling Mathematical Modelling Discretisation of Laplacian p i,j p i 1,j p i,j 1 + 4p i,j p i,j+1 p i+1,j h 2 = h p i,j commercial software central finite differences five-point stencil for Laplacian second order accuracy J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

25 Theoretical Modelling Discretisation Vessel Discretisation translate continuous into discrete information equidistant grid constant pressure inside vessels (Dirichlet boundaries) determine vessel points use efficient data structure 3 different discretisation methods J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

26 Theoretical Modelling Discretisation Vessel Discretisation translate continuous into discrete information equidistant grid constant pressure inside vessels (Dirichlet boundaries) determine vessel points use efficient data structure 3 different discretisation methods J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

27 Theoretical Modelling Discretisation Vessel Discretisation translate continuous into discrete information equidistant grid constant pressure inside vessels (Dirichlet boundaries) determine vessel points use efficient data structure 3 different discretisation methods J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

28 Theoretical Modelling Discretisation Discretisation Methods method 1 only points inside the vessel method 2 points inside and adjacent points method 3 points inside and close to the vessel boundary J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

29 Theoretical Modelling Discretisation Vessel Points Data Format requirements many vessel points efficient data format needed consecutive data access for calculations = store information rowwise data structure 1 leftmost vessel point 2 number of vessel 3 rightmost vessel point J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

30 Theoretical Modelling Discretisation Vessel Points Data Format requirements many vessel points efficient data format needed consecutive data access for calculations = store information rowwise data structure 1 leftmost vessel point 2 number of vessel 3 rightmost vessel point J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

31 Theoretical Modelling Discretisation Vessel Points Data Format memory consumption increases linearly with resolution while number of vessel points increases quadratically J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

32 Theoretical Modelling Discretisation Vessel Points Data Format memory consumption increases linearly with resolution while number of vessel points increases quadratically J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

33 Theoretical Modelling Discretisation Structure of the matrix p i,j p i 1,j p i,j 1 + 4p i,j p i,j+1 p i+1,j h 2 = h p i,j results in a sparse symmetric positive definite matrix typical Laplacian matrix except for vessel boundary points J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

34 Theoretical Modelling Numerics Non-linear System it is q(p) = 0 for all vessel points f(p) := D Ap + q(p) D b = 0. = use Newton s algorithm (quadratic order of convergence) application of Newton s algorithm leads to a linear system of equations f (p k )y k+1 = f(p k ) with f (p) = D A + q (p) for each iteration k J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

35 Theoretical Modelling Numerics Non-linear System it is q(p) = 0 for all vessel points f(p) := D Ap + q(p) D b = 0. = use Newton s algorithm (quadratic order of convergence) application of Newton s algorithm leads to a linear system of equations f (p k )y k+1 = f(p k ) with f (p) = D A + q (p) for each iteration k J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

36 Theoretical Modelling Numerics Linear System requirements exploit matrix structure direct evaluation of matrix operations = use iterative methods like Conjugate Gradient or Conjugate Residual implementation details solvers exchangeable J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

37 Theoretical Modelling Numerics Linear System requirements exploit matrix structure direct evaluation of matrix operations = use iterative methods like Conjugate Gradient or Conjugate Residual implementation details solvers exchangeable J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

38 Software Presentation Software Presentation... and now a short example... J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

39 Results Results J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

40 Results Validation Exact Solution of Simplified Problem assumptions no consumption (linear problem) only one vessel in the center of quadratic domain = compare different discretisation methods J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

41 Results Validation Comparison Between Discretisation Methods results error occurs near vessel boundary method 3 gives best results J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

42 Results Validation Comparison Between Discretisation Methods results error occurs near vessel boundary method 3 gives best results J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

43 Results Validation Comparison Between Discretisation Methods (2) results method 3 gives best results linear order of convergence J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

44 Results Validation Comparison Between Discretisation Methods (2) results method 3 gives best results linear order of convergence J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

45 Results Acute and Chronic Hypoxia Modelling Chronic Hypoxia D = 2000 mmhg D = 1000 mmhg J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

46 Results Acute and Chronic Hypoxia Modelling Acute Hypoxia 25 % deleted 40 % deleted J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

47 Results Acute and Chronic Hypoxia Modelling Acute Hypoxia (2) smaller diameter smaller partial pressure J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

48 Results Memory Requirements Memory Measurements results discretisation memory increases linearly solver memory increases quadratically = almost no dependency on number of vessels J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

49 Results Application Example Large Domain Simulation J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

50 Conclusion Conclusion J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

51 Conclusion achievements new software developed resolved memory consumption problem simulation of real tumours possible outlook extension to third dimension parallelisation of code implementation of other numerical methods J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

52 Conclusion achievements new software developed resolved memory consumption problem simulation of real tumours possible outlook extension to third dimension parallelisation of code implementation of other numerical methods J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

53 Conclusion Thank you for your attention! J. Köllermeier, L. Kusch, T. Lajewski (RWTH) Virtual Tumour / 35

Solving a non-linear partial differential equation for the simulation of tumour oxygenation

Solving a non-linear partial differential equation for the simulation of tumour oxygenation Solving a non-linear partial differential equation for the simulation of tumour oxygenation Julian Köllermeier, Lisa Kusch, Thorsten Lajewski MathCCES, RWTH Aachen Lunch Talk, 26.05.2011 J. Köllermeier,

More information

Solving a non-linear partial differential equation for the simulation of tumour oxygenation

Solving a non-linear partial differential equation for the simulation of tumour oxygenation Solving a non-linear partial differential equation for the simulation of tumour oxygenation Julian Köllermeier, Lisa Kusch, Thorsten Lajewski Contents Contents 3 1 Introduction 5 2 Application 7 2.1 Tumour

More information

SOLVING ELLIPTIC PDES

SOLVING ELLIPTIC PDES university-logo SOLVING ELLIPTIC PDES School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 POISSON S EQUATION Equation and Boundary Conditions Solving the Model Problem 3 THE LINEAR ALGEBRA PROBLEM

More information

A Hybrid Method for the Wave Equation. beilina

A Hybrid Method for the Wave Equation.   beilina A Hybrid Method for the Wave Equation http://www.math.unibas.ch/ beilina 1 The mathematical model The model problem is the wave equation 2 u t 2 = (a 2 u) + f, x Ω R 3, t > 0, (1) u(x, 0) = 0, x Ω, (2)

More information

Modelling Drug Delivery and Tumour Growth

Modelling Drug Delivery and Tumour Growth Modelling Drug Delivery and Tumour Growth Matthew Hubbard and Christian Groh, Pamela Jones, Brian Sleeman, Steven Smye, Christopher Twelves (Leeds) Paul Loadman, Nagaraja Periasamy, Roger Phillips (Bradford)

More information

Linear Solvers. Andrew Hazel

Linear Solvers. Andrew Hazel Linear Solvers Andrew Hazel Introduction Thus far we have talked about the formulation and discretisation of physical problems...... and stopped when we got to a discrete linear system of equations. Introduction

More information

Lecture 17: Iterative Methods and Sparse Linear Algebra

Lecture 17: Iterative Methods and Sparse Linear Algebra Lecture 17: Iterative Methods and Sparse Linear Algebra David Bindel 25 Mar 2014 Logistics HW 3 extended to Wednesday after break HW 4 should come out Monday after break Still need project description

More information

Scientific Computing II

Scientific Computing II Technische Universität München ST 008 Institut für Informatik Dr. Miriam Mehl Scientific Computing II Final Exam, July, 008 Iterative Solvers (3 pts + 4 extra pts, 60 min) a) Steepest Descent and Conjugate

More information

Hierarchical Parallel Solution of Stochastic Systems

Hierarchical Parallel Solution of Stochastic Systems Hierarchical Parallel Solution of Stochastic Systems Second M.I.T. Conference on Computational Fluid and Solid Mechanics Contents: Simple Model of Stochastic Flow Stochastic Galerkin Scheme Resulting Equations

More information

Exercise 2: Partial Differential Equations

Exercise 2: Partial Differential Equations Exercise : Partial Differential Equations J F Ider Chitham Astrophysics Group, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 TL Accepted March Received March ; in original

More information

NIMEQ: MHD Equilibrium Solver for NIMROD

NIMEQ: MHD Equilibrium Solver for NIMROD NIMEQ: MHD Equilibrium Solver for NIMOD E.C.Howell, C..Sovinec University of Wisconsin-Madison 5 th Annual Meeting of Division of Plasma Physics Dallas, Texas, Nov. 17-Nov. 1,8 1 Abstract A Grad-Shafranov

More information

Application of Wavelets to N body Particle In Cell Simulations

Application of Wavelets to N body Particle In Cell Simulations Application of Wavelets to N body Particle In Cell Simulations Balša Terzić (NIU) Northern Illinois University, Department of Physics April 7, 2006 Motivation Gaining insight into the dynamics of multi

More information

Image Reconstruction And Poisson s equation

Image Reconstruction And Poisson s equation Chapter 1, p. 1/58 Image Reconstruction And Poisson s equation School of Engineering Sciences Parallel s for Large-Scale Problems I Chapter 1, p. 2/58 Outline 1 2 3 4 Chapter 1, p. 3/58 Question What have

More information

FPGA Implementation of a Predictive Controller

FPGA Implementation of a Predictive Controller FPGA Implementation of a Predictive Controller SIAM Conference on Optimization 2011, Darmstadt, Germany Minisymposium on embedded optimization Juan L. Jerez, George A. Constantinides and Eric C. Kerrigan

More information

Numerical solution of the 2-D Poisson equation on an irregular domain with Robin boundary conditions

Numerical solution of the 2-D Poisson equation on an irregular domain with Robin boundary conditions Numerical solution of the 2-D Poisson equation on an irregular domain with Robin boundary conditions Z. Jomaa C. Macaskill August 8, 28 Abstract We describe a 2-D finite difference algorithm for inverting

More information

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

J.I. Aliaga 1 M. Bollhöfer 2 A.F. Martín 1 E.S. Quintana-Ortí 1. March, 2009

J.I. Aliaga 1 M. Bollhöfer 2 A.F. Martín 1 E.S. Quintana-Ortí 1. March, 2009 Parallel Preconditioning of Linear Systems based on ILUPACK for Multithreaded Architectures J.I. Aliaga M. Bollhöfer 2 A.F. Martín E.S. Quintana-Ortí Deparment of Computer Science and Engineering, Univ.

More information

Finite Difference Methods (FDMs) 1

Finite Difference Methods (FDMs) 1 Finite Difference Methods (FDMs) 1 1 st - order Approxima9on Recall Taylor series expansion: Forward difference: Backward difference: Central difference: 2 nd - order Approxima9on Forward difference: Backward

More information

Numerical Analysis Comprehensive Exam Questions

Numerical Analysis Comprehensive Exam Questions Numerical Analysis Comprehensive Exam Questions 1. Let f(x) = (x α) m g(x) where m is an integer and g(x) C (R), g(α). Write down the Newton s method for finding the root α of f(x), and study the order

More information

Parallel Programming in C with MPI and OpenMP

Parallel Programming in C with MPI and OpenMP Parallel Programming in C with MPI and OpenMP Michael J. Quinn Chapter 13 Finite Difference Methods Outline n Ordinary and partial differential equations n Finite difference methods n Vibrating string

More information

Inverse problems in tumor growth modelling

Inverse problems in tumor growth modelling MC2 Damiano Lombardi Angelo Iollo Thierry Colin Olivier Saut Marseille, 18-09-09 Outline 1) Introduction: phenomenological model for tumor growth models 2) Models based on mixture theory: a simplified

More information

1. Method 1: bisection. The bisection methods starts from two points a 0 and b 0 such that

1. Method 1: bisection. The bisection methods starts from two points a 0 and b 0 such that Chapter 4 Nonlinear equations 4.1 Root finding Consider the problem of solving any nonlinear relation g(x) = h(x) in the real variable x. We rephrase this problem as one of finding the zero (root) of a

More information

Divergence Formulation of Source Term

Divergence Formulation of Source Term Preprint accepted for publication in Journal of Computational Physics, 2012 http://dx.doi.org/10.1016/j.jcp.2012.05.032 Divergence Formulation of Source Term Hiroaki Nishikawa National Institute of Aerospace,

More information

A Coupling Tool for Parallel Molecular Dynamics Continuum Simulations

A Coupling Tool for Parallel Molecular Dynamics Continuum Simulations A Coupling Tool for Parallel Molecular Dynamics Continuum Simulations ISPDC 2012 Philipp Neumann and Nikola Tchipev 29.06.2012 ISPDC 2012, 29.06.2012 1 Contents Motivation The Macro Micro Coupling Tool

More information

HIGH ACCURACY NUMERICAL METHODS FOR THE SOLUTION OF NON-LINEAR BOUNDARY VALUE PROBLEMS

HIGH ACCURACY NUMERICAL METHODS FOR THE SOLUTION OF NON-LINEAR BOUNDARY VALUE PROBLEMS ABSTRACT Of The Thesis Entitled HIGH ACCURACY NUMERICAL METHODS FOR THE SOLUTION OF NON-LINEAR BOUNDARY VALUE PROBLEMS Submitted To The University of Delhi In Partial Fulfillment For The Award of The Degree

More information

Modelling and implementation of algorithms in applied mathematics using MPI

Modelling and implementation of algorithms in applied mathematics using MPI Modelling and implementation of algorithms in applied mathematics using MPI Lecture 3: Linear Systems: Simple Iterative Methods and their parallelization, Programming MPI G. Rapin Brazil March 2011 Outline

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 16-02 The Induced Dimension Reduction method applied to convection-diffusion-reaction problems R. Astudillo and M. B. van Gijzen ISSN 1389-6520 Reports of the Delft

More information

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends

AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends AMS 529: Finite Element Methods: Fundamentals, Applications, and New Trends Lecture 3: Finite Elements in 2-D Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Finite Element Methods 1 / 18 Outline 1 Boundary

More information

Mathematical Model. M. Umar Qureshi, Mitchel J. Colebank, and Mette S. Olufsen

Mathematical Model. M. Umar Qureshi, Mitchel J. Colebank, and Mette S. Olufsen Mathematical Model M. Umar Qureshi, Mitchel J. Colebank, and Mette S. Olufsen Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695 Friday 7 th September, 2018 The 1D

More information

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers Applied and Computational Mathematics 2017; 6(4): 202-207 http://www.sciencepublishinggroup.com/j/acm doi: 10.11648/j.acm.20170604.18 ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) A Robust Preconditioned

More information

Altered Jacobian Newton Iterative Method for Nonlinear Elliptic Problems

Altered Jacobian Newton Iterative Method for Nonlinear Elliptic Problems Altered Jacobian Newton Iterative Method for Nonlinear Elliptic Problems Sanjay K Khattri Abstract We present an Altered Jacobian Newton Iterative Method for solving nonlinear elliptic problems Effectiveness

More information

A MULTIGRID ALGORITHM FOR. Richard E. Ewing and Jian Shen. Institute for Scientic Computation. Texas A&M University. College Station, Texas SUMMARY

A MULTIGRID ALGORITHM FOR. Richard E. Ewing and Jian Shen. Institute for Scientic Computation. Texas A&M University. College Station, Texas SUMMARY A MULTIGRID ALGORITHM FOR THE CELL-CENTERED FINITE DIFFERENCE SCHEME Richard E. Ewing and Jian Shen Institute for Scientic Computation Texas A&M University College Station, Texas SUMMARY In this article,

More information

Preconditioned CG-Solvers and Finite Element Grids

Preconditioned CG-Solvers and Finite Element Grids Preconditioned CG-Solvers and Finite Element Grids R. Bauer and S. Selberherr Institute for Microelectronics, Technical University of Vienna Gusshausstrasse 27-29, A-1040 Vienna, Austria Phone +43/1/58801-3854,

More information

Fast solvers for steady incompressible flow

Fast solvers for steady incompressible flow ICFD 25 p.1/21 Fast solvers for steady incompressible flow Andy Wathen Oxford University wathen@comlab.ox.ac.uk http://web.comlab.ox.ac.uk/~wathen/ Joint work with: Howard Elman (University of Maryland,

More information

SPARSE SOLVERS POISSON EQUATION. Margreet Nool. November 9, 2015 FOR THE. CWI, Multiscale Dynamics

SPARSE SOLVERS POISSON EQUATION. Margreet Nool. November 9, 2015 FOR THE. CWI, Multiscale Dynamics SPARSE SOLVERS FOR THE POISSON EQUATION Margreet Nool CWI, Multiscale Dynamics November 9, 2015 OUTLINE OF THIS TALK 1 FISHPACK, LAPACK, PARDISO 2 SYSTEM OVERVIEW OF CARTESIUS 3 POISSON EQUATION 4 SOLVERS

More information

Lecture 18 Classical Iterative Methods

Lecture 18 Classical Iterative Methods Lecture 18 Classical Iterative Methods MIT 18.335J / 6.337J Introduction to Numerical Methods Per-Olof Persson November 14, 2006 1 Iterative Methods for Linear Systems Direct methods for solving Ax = b,

More information

6. Iterative Methods for Linear Systems. The stepwise approach to the solution...

6. Iterative Methods for Linear Systems. The stepwise approach to the solution... 6 Iterative Methods for Linear Systems The stepwise approach to the solution Miriam Mehl: 6 Iterative Methods for Linear Systems The stepwise approach to the solution, January 18, 2013 1 61 Large Sparse

More information

7.4 The Saddle Point Stokes Problem

7.4 The Saddle Point Stokes Problem 346 CHAPTER 7. APPLIED FOURIER ANALYSIS 7.4 The Saddle Point Stokes Problem So far the matrix C has been diagonal no trouble to invert. This section jumps to a fluid flow problem that is still linear (simpler

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Jason E. Hicken Aerospace Design Lab Department of Aeronautics & Astronautics Stanford University 14 July 2011 Lecture Objectives describe when CG can be used to solve Ax

More information

Final Examination. CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Spring 2016), Stanford University

Final Examination. CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Spring 2016), Stanford University Final Examination CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Spring 2016), Stanford University The exam runs for 3 hours. The exam contains seven problems. You must complete the

More information

Efficient Implementation of Large Scale Lyapunov and Riccati Equation Solvers

Efficient Implementation of Large Scale Lyapunov and Riccati Equation Solvers Efficient Implementation of Large Scale Lyapunov and Riccati Equation Solvers Jens Saak joint work with Peter Benner (MiIT) Professur Mathematik in Industrie und Technik (MiIT) Fakultät für Mathematik

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

Part I. Discrete Models. Part I: Discrete Models. Scientific Computing I. Motivation: Heat Transfer. A Wiremesh Model (2) A Wiremesh Model

Part I. Discrete Models. Part I: Discrete Models. Scientific Computing I. Motivation: Heat Transfer. A Wiremesh Model (2) A Wiremesh Model Part I: iscrete Models Scientific Computing I Module 5: Heat Transfer iscrete and Continuous Models Tobias Neckel Winter 04/05 Motivation: Heat Transfer Wiremesh Model A Finite Volume Model Time ependent

More information

Algorithms for Scientific Computing

Algorithms for Scientific Computing Algorithms for Scientific Computing Finite Element Methods Michael Bader Technical University of Munich Summer 2016 Part I Looking Back: Discrete Models for Heat Transfer and the Poisson Equation Modelling

More information

Non-linear least squares

Non-linear least squares Non-linear least squares Concept of non-linear least squares We have extensively studied linear least squares or linear regression. We see that there is a unique regression line that can be determined

More information

Exploiting hyper-sparsity when computing preconditioners for conjugate gradients in interior point methods

Exploiting hyper-sparsity when computing preconditioners for conjugate gradients in interior point methods Exploiting hyper-sparsity when computing preconditioners for conjugate gradients in interior point methods Julian Hall, Ghussoun Al-Jeiroudi and Jacek Gondzio School of Mathematics University of Edinburgh

More information

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 Introduction Almost all numerical methods for solving PDEs will at some point be reduced to solving A

More information

Biology Combined Chemistry Combined Physics Combined. Content Hours Content Hours Content Hours

Biology Combined Chemistry Combined Physics Combined. Content Hours Content Hours Content Hours Biology Combined Chemistry Combined Physics Combined Content Hours Content Hours Content Hours Half Term.7.. Communities Competition Ecosystems Interdependence ASSESSED HOMEWORK (Communities).7.. Abiotic

More information

A Stable Spectral Difference Method for Triangles

A Stable Spectral Difference Method for Triangles A Stable Spectral Difference Method for Triangles Aravind Balan 1, Georg May 1, and Joachim Schöberl 2 1 AICES Graduate School, RWTH Aachen, Germany 2 Institute for Analysis and Scientific Computing, Vienna

More information

- Part 4 - Multicore and Manycore Technology: Chances and Challenges. Vincent Heuveline

- Part 4 - Multicore and Manycore Technology: Chances and Challenges. Vincent Heuveline - Part 4 - Multicore and Manycore Technology: Chances and Challenges Vincent Heuveline 1 Numerical Simulation of Tropical Cyclones Goal oriented adaptivity for tropical cyclones ~10⁴km ~1500km ~100km 2

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 24: Preconditioning and Multigrid Solver Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 5 Preconditioning Motivation:

More information

Some notes about PDEs. -Bill Green Nov. 2015

Some notes about PDEs. -Bill Green Nov. 2015 Some notes about PDEs -Bill Green Nov. 2015 Partial differential equations (PDEs) are all BVPs, with the same issues about specifying boundary conditions etc. Because they are multi-dimensional, they can

More information

3D Space Charge Routines: The Software Package MOEVE and FFT Compared

3D Space Charge Routines: The Software Package MOEVE and FFT Compared 3D Space Charge Routines: The Software Package MOEVE and FFT Compared Gisela Pöplau DESY, Hamburg, December 4, 2007 Overview Algorithms for 3D space charge calculations Properties of FFT and iterative

More information

Regression. Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning)

Regression. Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning) Linear Regression Regression Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning) Example: Height, Gender, Weight Shoe Size Audio features

More information

Introduction to PDEs and Numerical Methods: Exam 1

Introduction to PDEs and Numerical Methods: Exam 1 Prof Dr Thomas Sonar, Institute of Analysis Winter Semester 2003/4 17122003 Introduction to PDEs and Numerical Methods: Exam 1 To obtain full points explain your solutions thoroughly and self-consistently

More information

Regression. Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning)

Regression. Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning) Linear Regression Regression Goal: Learn a mapping from observations (features) to continuous labels given a training set (supervised learning) Example: Height, Gender, Weight Shoe Size Audio features

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

Lecture 7 Unconstrained nonlinear programming

Lecture 7 Unconstrained nonlinear programming Lecture 7 Unconstrained nonlinear programming Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University,

More information

SMO vs PDCO for SVM: Sequential Minimal Optimization vs Primal-Dual interior method for Convex Objectives for Support Vector Machines

SMO vs PDCO for SVM: Sequential Minimal Optimization vs Primal-Dual interior method for Convex Objectives for Support Vector Machines vs for SVM: Sequential Minimal Optimization vs Primal-Dual interior method for Convex Objectives for Support Vector Machines Ding Ma Michael Saunders Working paper, January 5 Introduction In machine learning,

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Neckel Winter 2013/2014 Module 8: An Introduction to Finite Element Methods, Winter 2013/2014 1 Part I: Introduction to

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 34: Improving the Condition Number of the Interpolation Matrix Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu

More information

Final Examination. CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Fall 2013), Stanford University

Final Examination. CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Fall 2013), Stanford University Final Examination CS 205A: Mathematical Methods for Robotics, Vision, and Graphics (Fall 2013), Stanford University The exam runs for 3 hours. The exam contains eight problems. You must complete the first

More information

Particle In Cell Beam Dynamics Simulations With a Wavelet based Poisson Solver

Particle In Cell Beam Dynamics Simulations With a Wavelet based Poisson Solver Particle In Cell Beam Dynamics Simulations With a Wavelet based Poisson Solver Balša Terzić Beam Physics and Astrophysics Group, Department of Physics Northern Illinois University in collaboration with

More information

Review: From problem to parallel algorithm

Review: From problem to parallel algorithm Review: From problem to parallel algorithm Mathematical formulations of interesting problems abound Poisson s equation Sources: Electrostatics, gravity, fluid flow, image processing (!) Numerical solution:

More information

Implementation of Implicit Solution Techniques for Non-equilibrium Hypersonic Flows

Implementation of Implicit Solution Techniques for Non-equilibrium Hypersonic Flows Short Training Program Report Implementation of Implicit Solution Techniques for Non-equilibrium Hypersonic Flows Julian Koellermeier RWTH Aachen University Supervisor: Advisor: Prof. Thierry Magin von

More information

Statistical Geometry Processing Winter Semester 2011/2012

Statistical Geometry Processing Winter Semester 2011/2012 Statistical Geometry Processing Winter Semester 2011/2012 Linear Algebra, Function Spaces & Inverse Problems Vector and Function Spaces 3 Vectors vectors are arrows in space classically: 2 or 3 dim. Euclidian

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

Technology Computer Aided Design (TCAD) Laboratory. Lecture 2, A simulation primer

Technology Computer Aided Design (TCAD) Laboratory. Lecture 2, A simulation primer Technology Computer Aided Design (TCAD) Laboratory Lecture 2, A simulation primer [Source: Synopsys] Giovanni Betti Beneventi E-mail: gbbeneventi@arces.unibo.it ; giobettibeneventi@gmail.com Office: Engineering

More information

A Higher-Order Finite Volume Method for Non-Conservative Equations on 2D Unstructured Quadrilateral Grids

A Higher-Order Finite Volume Method for Non-Conservative Equations on 2D Unstructured Quadrilateral Grids Diese Arbeit wurde vorgelegt am Lehrstuhl für Mathematik (MathCCES) A Higher-Order Finite Volume Method for Non-Conservative Equations on 2D Unstructured Quadrilateral Grids CES Seminar Computational Engineering

More information

An element by element algorithm for pipe network analysis

An element by element algorithm for pipe network analysis An element by element algorithm for pipe network analysis M.H. Afshar* and A. Afshar^ Imam Higher Education Center, Tehran, Iran * University ofscience and Technology, Tehran, Iran Email: mahabnet@dci.rian.com

More information

Matrix Assembly in FEA

Matrix Assembly in FEA Matrix Assembly in FEA 1 In Chapter 2, we spoke about how the global matrix equations are assembled in the finite element method. We now want to revisit that discussion and add some details. For example,

More information

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning Convex Optimization Lecture 15 - Gradient Descent in Machine Learning Instructor: Yuanzhang Xiao University of Hawaii at Manoa Fall 2017 1 / 21 Today s Lecture 1 Motivation 2 Subgradient Method 3 Stochastic

More information

1. Fast Iterative Solvers of SLE

1. Fast Iterative Solvers of SLE 1. Fast Iterative Solvers of crucial drawback of solvers discussed so far: they become slower if we discretize more accurate! now: look for possible remedies relaxation: explicit application of the multigrid

More information

Phase-Field Modeling of Technical Alloy Systems Problems and Solutions

Phase-Field Modeling of Technical Alloy Systems Problems and Solutions Thermo-Calc User Meeting, Sept 8-9 2011, Aachen Phase-Field Modeling of Technical Alloy Systems Problems and Solutions B. Böttger ACCESS e.v., RWTH Aachen University, Germany Outline 1. Introduction 2.

More information

Lec10p1, ORF363/COS323

Lec10p1, ORF363/COS323 Lec10 Page 1 Lec10p1, ORF363/COS323 This lecture: Conjugate direction methods Conjugate directions Conjugate Gram-Schmidt The conjugate gradient (CG) algorithm Solving linear systems Leontief input-output

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725 Consider Last time: proximal Newton method min x g(x) + h(x) where g, h convex, g twice differentiable, and h simple. Proximal

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 20 1 / 20 Overview

More information

Explicit Jump Immersed Interface Method: Documentation for 2D Poisson Code

Explicit Jump Immersed Interface Method: Documentation for 2D Poisson Code Eplicit Jump Immersed Interface Method: Documentation for 2D Poisson Code V. Rutka A. Wiegmann November 25, 2005 Abstract The Eplicit Jump Immersed Interface method is a powerful tool to solve elliptic

More information

LibMesh Experience and Usage

LibMesh Experience and Usage LibMesh Experience and Usage John W. Peterson peterson@cfdlab.ae.utexas.edu and Roy H. Stogner roystgnr@cfdlab.ae.utexas.edu Univ. of Texas at Austin September 9, 2008 1 Introduction 2 Weighted Residuals

More information

Domain decomposition for the Jacobi-Davidson method: practical strategies

Domain decomposition for the Jacobi-Davidson method: practical strategies Chapter 4 Domain decomposition for the Jacobi-Davidson method: practical strategies Abstract The Jacobi-Davidson method is an iterative method for the computation of solutions of large eigenvalue problems.

More information

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems Index A-conjugate directions, 83 A-stability, 171 A( )-stability, 171 absolute error, 243 absolute stability, 149 for systems of equations, 154 absorbing boundary conditions, 228 Adams Bashforth methods,

More information

Numerical Analysis of Differential Equations Numerical Solution of Elliptic Boundary Value

Numerical Analysis of Differential Equations Numerical Solution of Elliptic Boundary Value Numerical Analysis of Differential Equations 188 5 Numerical Solution of Elliptic Boundary Value Problems 5 Numerical Solution of Elliptic Boundary Value Problems TU Bergakademie Freiberg, SS 2012 Numerical

More information

Lab 1: Iterative Methods for Solving Linear Systems

Lab 1: Iterative Methods for Solving Linear Systems Lab 1: Iterative Methods for Solving Linear Systems January 22, 2017 Introduction Many real world applications require the solution to very large and sparse linear systems where direct methods such as

More information

FINITE-VOLUME SOLUTION OF DIFFUSION EQUATION AND APPLICATION TO MODEL PROBLEMS

FINITE-VOLUME SOLUTION OF DIFFUSION EQUATION AND APPLICATION TO MODEL PROBLEMS IJRET: International Journal of Research in Engineering and Technology eissn: 39-63 pissn: 3-738 FINITE-VOLUME SOLUTION OF DIFFUSION EQUATION AND APPLICATION TO MODEL PROBLEMS Asish Mitra Reviewer: Heat

More information

StreamSVM Linear SVMs and Logistic Regression When Data Does Not Fit In Memory

StreamSVM Linear SVMs and Logistic Regression When Data Does Not Fit In Memory StreamSVM Linear SVMs and Logistic Regression When Data Does Not Fit In Memory S.V. N. (vishy) Vishwanathan Purdue University and Microsoft vishy@purdue.edu October 9, 2012 S.V. N. Vishwanathan (Purdue,

More information

Multigrid and Iterative Strategies for Optimal Control Problems

Multigrid and Iterative Strategies for Optimal Control Problems Multigrid and Iterative Strategies for Optimal Control Problems John Pearson 1, Stefan Takacs 1 1 Mathematical Institute, 24 29 St. Giles, Oxford, OX1 3LB e-mail: john.pearson@worc.ox.ac.uk, takacs@maths.ox.ac.uk

More information

Solving PDEs with CUDA Jonathan Cohen

Solving PDEs with CUDA Jonathan Cohen Solving PDEs with CUDA Jonathan Cohen jocohen@nvidia.com NVIDIA Research PDEs (Partial Differential Equations) Big topic Some common strategies Focus on one type of PDE in this talk Poisson Equation Linear

More information

Accurate Thermal Analysis Considering Nonlinear Thermal Conductivity

Accurate Thermal Analysis Considering Nonlinear Thermal Conductivity Accurate Thermal Analysis Considering Nonlinear Thermal Conductivity Anand Ramalingam 1 Frank Liu 2 Sani R. Nassif 2 David Z. Pan 1 1 Department of Electrical and Computer Engineering, The University of

More information

Interior-Point Methods as Inexact Newton Methods. Silvia Bonettini Università di Modena e Reggio Emilia Italy

Interior-Point Methods as Inexact Newton Methods. Silvia Bonettini Università di Modena e Reggio Emilia Italy InteriorPoint Methods as Inexact Newton Methods Silvia Bonettini Università di Modena e Reggio Emilia Italy Valeria Ruggiero Università di Ferrara Emanuele Galligani Università di Modena e Reggio Emilia

More information

LibMesh Experience and Usage

LibMesh Experience and Usage LibMesh Experience and Usage John W. Peterson peterson@cfdlab.ae.utexas.edu Univ. of Texas at Austin January 12, 2007 1 Introduction 2 Weighted Residuals 3 Poisson Equation 4 Other Examples 5 Essential

More information

A Mathematical Model for Tumor Growth and Angiogenesis

A Mathematical Model for Tumor Growth and Angiogenesis A Mathematical Model for Tumor Growth and Angiogenesis Wietse Boon July 11, 2011 1 Contents 1 Introduction 3 2 Angiogenesis 4 2.1 Discretization......................................... 5 2.2 Concentration

More information

An IDL Based Image Deconvolution Software Package

An IDL Based Image Deconvolution Software Package An IDL Based Image Deconvolution Software Package F. Városi and W. B. Landsman Hughes STX Co., Code 685, NASA/GSFC, Greenbelt, MD 20771 Abstract. Using the Interactive Data Language (IDL), we have implemented

More information

A Review of Preconditioning Techniques for Steady Incompressible Flow

A Review of Preconditioning Techniques for Steady Incompressible Flow Zeist 2009 p. 1/43 A Review of Preconditioning Techniques for Steady Incompressible Flow David Silvester School of Mathematics University of Manchester Zeist 2009 p. 2/43 PDEs Review : 1984 2005 Update

More information

Solution of the Two-Dimensional Steady State Heat Conduction using the Finite Volume Method

Solution of the Two-Dimensional Steady State Heat Conduction using the Finite Volume Method Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016 ICCFD9-0113 Solution of the Two-Dimensional Steady State Heat Conduction using the Finite Volume

More information

p 1 p 0 (p 1, f(p 1 )) (p 0, f(p 0 )) The geometric construction of p 2 for the se- cant method.

p 1 p 0 (p 1, f(p 1 )) (p 0, f(p 0 )) The geometric construction of p 2 for the se- cant method. 80 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0 y y = f(x) (p, 0) p 2 p 1 p 0 x (p 1, f(p 1 )) (p 0, f(p 0 )) The geometric construction of p 2 for the se- Figure 2.16 cant method. Secant Method The

More information

BOUNDARY VALUE PROBLEMS

BOUNDARY VALUE PROBLEMS BOUNDARY VALUE PROBLEMS School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 BOUNDARY VALUE PROBLEMS 3 NEWTONS SHOOTING METHOD 4 SUMMARY OUTLINE 1 REVIEW 2 BOUNDARY VALUE PROBLEMS 3 NEWTONS SHOOTING

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

Engage Education Foundation

Engage Education Foundation B Free Exam for 2006-15 VCE study design Engage Education Foundation Units 3 and 4 Specialist Maths: Exam 2 Practice Exam Solutions Stop! Don t look at these solutions until you have attempted the exam.

More information

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection 6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE Three Alternatives/Remedies for Gradient Projection Two-Metric Projection Methods Manifold Suboptimization Methods

More information