Lecture 27: Generalized Coordinates and Lagrange s Equations of Motion

Size: px
Start display at page:

Download "Lecture 27: Generalized Coordinates and Lagrange s Equations of Motion"

Transcription

1 Lecture 27: Generalize Coorinates an Lagrange s Equations of Motion Calculating T an V in terms of generalize coorinates. Example: Penulum attache to a movable support 6 Cartesian Coorinates: (X, Y, Z) an (x, y, z). 4 Holonomic constrains: { Z 0 ; Y 0 z 0 ; [(x X) 2 + (y Y ) 2 ] r 2 0 two generalize coorinates! Choose X an θ. (Note: we can change θ without changing X; therefore θ an X are inepenent). T 1 2 Mẋ m(ẋ2 + ẏ 2 ) V mgy x X + r sin θ y r cos θ X X ẋ Ẋ + r θ cos θ ẏ +r θ sin θ Ẋ Ẋ T 1 2 mẋ m [ (Ẋ + r θ cos θ) 2 + (r θ sin θ) 2 ] 1 2 mẋ2 + 1 [Ẋ2 2 m + 2Ẋr θ ] cos θ + r 2 θ2 cos 2 θ + r 2 θ2 sin 2 θ Page 1

2 T 1(M + 2 m)ẋ2 + [r 1m 2 2 θ2 + 2rẊ θ ] cos θ V mgr cos θ Notice how 2rẊ θ cos θ correspons to a cross term. This plays an important role, an it is ifficult to get it correctly without starting from Cartesian coorinates. In aition, note that V only epens on θ an is inepenent of X! This has important consequences as we will see later. In general, if there are N particles each with cartesian coorinates (x i, y i, z i ), i 1,..., N an m holonomic constraints, we can reuce the system to n 3N m generalize coorinates (# of egrees of freeom). We specify these as q (q 1, q 2,..., q n ) We have x i x i ( q) y i y i ( q) z i z i ( q) ẋ i n x i j1 q j q j ẋ i ( q, q) ẏ i n y i j1 q j q j ẏ i ( q, q) ż i n z i j1 q j q j ż i ( q, q) Lagrange s Equations of Motion for a Conservative System Hamilton s principle: t2 δj δ L(q i, q i ) t 1 t2 t 1 i t2 t 1 δl 0 [ (δq i ) + ] (δ q i ) 0 q i q i Page 2

3 We integrate the secon term by parts. Let u q i an v ( q i) : δ( q i ) (δq i) t2 t 1 ( q i ) q i (δq i ) q i t t2 2 t 1 t 1 ( q i ) (δq i ) an since we have that δj t2 t 1 i (δq i ) t 2 0 q i t 1 [ ( )] (δq i ) 0 q i q i (δq i ) is completely arbitrary; the only requirement is that the enpoints are fixe. Consequently, the only way δj can vanish, given the infinite varieties of (δq) i is that each component variable, i.e,: 0 i 1,..., n q i q i (Conservative, subject only to holonomic constraints). n Lagrangian equations of motion for n egrees of freeom. Applications (i): Fin suitable set of inepenent general coorinates q i (ii): Fin Cartesian coorinates as one of general coorinates: x i ( q), y i ( q), z i ( q) (iii): Fin T an V as a function of q, q i ; Fin L( q, q) T V (iv): Use q i ( L q i ) 0 to fin the equations of motion. Page 3

4 Example 1: Harmonic Oscillator L(x, ẋ) T V 1 2 mẋ2 1 2 kx2 kx } x mẋ ẋ q i ( ) L q i 0 kx (mẋ 0) kx mẍ 0 kx mẍ Example 2: Particle in a Central Force Fiel x r cos θ ẋ ṙ cos θ r θ sin θ y r sin θ ẏ ṙ sin θ + r θ cos θ z 0 ż 0 Page 4

5 T 1 2 m(ẋ2 + ẏ 2 ) 1 2 [ ṙ 2 cos 2 θ 2rṙ θ sin θ cos θ + r 2 θ2 sin 2 θ + ṙ 2 sin 2 θ + 2rṙ θ ] sin θ cos θ + r 2 θ2 cos 2 θ 1 2 m[r2 θ2 + ṙ 2 ], an V V (r) an hence we have Two equations of motion: L 1 2 m[r2 θ2 + ṙ 2 ] V (r) (i): For r (ii): For θ r 0 ṙ θ θ 0 m θ 2 r V r (mṙ) 0 0 (mr2 θ) 0 m r V r + mr θ 2 (mr2 θ) 0 Note that V/ r is the central force an mr θ 2 is the centrifugal force. Note: Conservation law becomes automatic! we get a constant of motion for each q i that oes not appear explicitly in L. Page 5

6 Example 3: Atwoo s Machine Pulley has moment of inertia I; hence we have two Cartesian coorinates plus the constraint x 1 + πa + x 2 l (l is the length of the cor). Use x x 1 as coorinate: T 1 2 m 1ẋ I (ẋ a ) m 2ẋ 2 Note that (ẋ/a) 2 θ 2. We also have that V m 1 gx 1 m 2 gx 2 m 1 gx m 2 g(l πa x) V (m 1 m 2 )gx m 2 g(l πa) Hence L 1 2 (m 1 + m 2 )ẋ ( ) I ẋ 2 + (m a 2 1 m 2 )gx + m 2 g(l πa) Now ẋ x (m 1 + m 2 + Ia 2 ) ẍ (m 1 m 2 )g ( ) m 1 m 2 ẍ g m 1 + m 2 + I a 2 We see here that a massive pulley reuces acceleration. Page 6

7 Example 4: The Double Atwoo Machine (neglect pulley raii) Let x i enote the istance to the mass m i from the upper pulley an let x p enote the istance to the pulley which moves (the lower pulley). Let l be the length of the upper rope an l be the length of the lower rope. Note that x 1 x x 2 (l x) + x x 3 (l x) + (l x ) We thus have the following constraints: x 1 + x p l (x 2 x p ) + (x 3 x p ) l x 2 + x 3 2(l x 1 ) l Now T 1 2 m 1ẋ m 2( ẋ + ẋ ) m 3( ẋ ẋ ) 2 V m 1 gx m 2 g(l x + x ) m 3 g(l x + l x ) Page 7

8 L T V 1 2 m 1ẋ m 2(ẋ 2 2ẋ ẋ + ẋ 2 ) m 3(ẋ 2 + 2ẋẋ + ẋ 2 ) +(m 1 m 2 m 3 )gx + (m 2 m 3 )gx + constant (i) ẋ x (m 1 + m 2 + m 3 )ẍ + (m 3 m 2 )ẍ (m 1 m 2 m 3 )g (ii) ( ) ( ) ẋ x (m 2 + m 3 )ẍ + (m 3 m 2 )ẍ (m 2 m 3 )g We obtain the accelerations by solving this system of two equations an two unknowns (ẍ an ẍ ) ẍ g [ ] (m3 m 2 ) 2 + (m 2 + m 3 )(m 1 m 2 m 3 ) (m 3 m 2 ) 2 (m 2 + m 3 )(m 1 + m 2 + m 3 ) In the homework, be wary of the ouble-ouble Atwoo machine (m 1 is replace by a pulley which itself hols two masses). Page 8

9 Example 5: Particle Sliing on a movable incline plane Let V be the velocity of the incline plane an v be the velocity of the block. Then where ê θ (cos θ, sin θ). We thus have V îẋ v îẋ + ê θ ẋ T 1 2 MV mv2 1 2 Mẋ m(îẋ + ê θ ẋ ) Mẋ m [ (ẋ + cos θẋ ) 2 + (sin θẋ ) 2] 1 2 Mẋ m [ ẋ cos θẋẋ + cos 2 θẋ 2 + sin 2 θẋ 2] an 1 2 Mẋ m [ ẋ cos θẋẋ + ẋ 2] V mg[l sin θ x sin θ] (constant) mg sin θx where L is the length of the plane. Hence L T V 1 2 (M + m)ẋ2 + m cos θẋẋ mẋ 2 + mg sin θx Page 9

10 Equations of Motion: (i) ẋ x ((M + m)ẋ + m cos θẋ ) 0 (since L is inepenent of x). Note that conservation of momentum comes out automatically. (ii) ( ) ( ) ẋ x (m cos θẋ + mẋ ) mg sin θ We now have two equations an two unknowns: { (M + m)ẍ + m cos θẍ 0 cos θẍ + ẍ g sin θ Solving for ẍ an ẍ yiels ẍ g sin θ 1 m m+m cos2 θ ẍ g sin θ cos θ cos2 θ m+m m Page 10

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1

Assignment 1. g i (x 1,..., x n ) dx i = 0. i=1 Assignment 1 Golstein 1.4 The equations of motion for the rolling isk are special cases of general linear ifferential equations of constraint of the form g i (x 1,..., x n x i = 0. i=1 A constraint conition

More information

G j dq i + G j. q i. = a jt. and

G j dq i + G j. q i. = a jt. and Lagrange Multipliers Wenesay, 8 September 011 Sometimes it is convenient to use reunant coorinates, an to effect the variation of the action consistent with the constraints via the metho of Lagrange unetermine

More information

and from it produce the action integral whose variation we set to zero:

and from it produce the action integral whose variation we set to zero: Lagrange Multipliers Monay, 6 September 01 Sometimes it is convenient to use reunant coorinates, an to effect the variation of the action consistent with the constraints via the metho of Lagrange unetermine

More information

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

Lecture 2 Lagrangian formulation of classical mechanics Mechanics Lecture Lagrangian formulation of classical mechanics 70.00 Mechanics Principle of stationary action MATH-GA To specify a motion uniquely in classical mechanics, it suffices to give, at some time t 0,

More information

The Principle of Least Action

The Principle of Least Action Chapter 7. The Principle of Least Action 7.1 Force Methos vs. Energy Methos We have so far stuie two istinct ways of analyzing physics problems: force methos, basically consisting of the application of

More information

Lagrangian and Hamiltonian Dynamics

Lagrangian and Hamiltonian Dynamics Lagrangian an Hamiltonian Dynamics Volker Perlick (Lancaster University) Lecture 1 The Passage from Newtonian to Lagrangian Dynamics (Cockcroft Institute, 22 February 2010) Subjects covere Lecture 2: Discussion

More information

Forces of Constraint & Lagrange Multipliers

Forces of Constraint & Lagrange Multipliers Lectures 30 April 21, 2006 Written or last updated: April 21, 2006 P442 Analytical Mechanics - II Forces of Constraint & Lagrange Multipliers c Alex R. Dzierba Generalized Coordinates Revisited Consider

More information

Derivation Of Lagrange's Equation Of Motion For Nonholonomic Constraints Using Lagrange s Multiplier

Derivation Of Lagrange's Equation Of Motion For Nonholonomic Constraints Using Lagrange s Multiplier Derivation Of Lagrange's Equation Of Motion For Nonholonomic Constraints Using Lagrange s Multiplier We consier a path ABC in x, y, x., y.,t space which a system traverse from time to time. Now we consier

More information

Chapter 10 Notes: Lagrangian Mechanics

Chapter 10 Notes: Lagrangian Mechanics Chapter 10 Notes: Lagrangian Mechanics Thus far we have solved problems by using Newton s Laws (a vector approach) or energy conservation (a scalar approach.) In this chapter we approach the subject in

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics.G. Simpson, Ph.. epartment of Physical Sciences an Engineering Prince George s Community College ecember 5, 007 Introuction In this course we have been stuying classical

More information

Physics 106a, Caltech 16 October, Lecture 5: Hamilton s Principle with Constraints. Examples

Physics 106a, Caltech 16 October, Lecture 5: Hamilton s Principle with Constraints. Examples Physics 106a, Caltech 16 October, 2018 Lecture 5: Hamilton s Principle with Constraints We have been avoiding forces of constraint, because in many cases they are uninteresting, and the constraints can

More information

Calculus of Variations

Calculus of Variations 16.323 Lecture 5 Calculus of Variations Calculus of Variations Most books cover this material well, but Kirk Chapter 4 oes a particularly nice job. x(t) x* x*+ αδx (1) x*- αδx (1) αδx (1) αδx (1) t f t

More information

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 3 : INTRODUCTION TO CLASSICAL MECHANICS 1. Angular velocity and

More information

Lecture 4. Alexey Boyarsky. October 6, 2015

Lecture 4. Alexey Boyarsky. October 6, 2015 Lecture 4 Alexey Boyarsky October 6, 2015 1 Conservation laws and symmetries 1.1 Ignorable Coordinates During the motion of a mechanical system, the 2s quantities q i and q i, (i = 1, 2,..., s) which specify

More information

Chapter 2 Lagrangian Modeling

Chapter 2 Lagrangian Modeling Chapter 2 Lagrangian Moeling The basic laws of physics are use to moel every system whether it is electrical, mechanical, hyraulic, or any other energy omain. In mechanics, Newton s laws of motion provie

More information

HW3 Physics 311 Mechanics

HW3 Physics 311 Mechanics HW3 Physics 311 Mechanics FA L L 2 0 1 5 P H Y S I C S D E PA R T M E N T U N I V E R S I T Y O F W I S C O N S I N, M A D I S O N I N S T R U C T O R : P R O F E S S O R S T E F A N W E S T E R H O F

More information

THERE ARE BASICALLY TWO approaches to conservative mechanics, due principally

THERE ARE BASICALLY TWO approaches to conservative mechanics, due principally CHAPTER 2 LAGRANGE S EQUATIONS THERE ARE BASICALLY TWO approaches to conservative mechanics, ue principally to Lagrange an Hamilton respectively Each has avantages over the other, although the Lagrangian

More information

Lagrangian Dynamics: Derivations of Lagrange s Equations

Lagrangian Dynamics: Derivations of Lagrange s Equations Constraints and Degrees of Freedom 1.003J/1.053J Dynamics and Control I, Spring 007 Professor Thomas Peacock 4/9/007 Lecture 15 Lagrangian Dynamics: Derivations of Lagrange s Equations Constraints and

More information

Goldstein Chapter 1 Exercises

Goldstein Chapter 1 Exercises Golstein Chapter 1 Exercises Michael Goo July 17, 2004 1 Exercises 11. Consier a uniform thin isk that rolls without slipping on a horizontal plane. A horizontal force is applie to the center of the isk

More information

Calculus of variations - Lecture 11

Calculus of variations - Lecture 11 Calculus of variations - Lecture 11 1 Introuction It is easiest to formulate the problem with a specific example. The classical problem of the brachistochrone (1696 Johann Bernoulli) is the search to fin

More information

Classical Mechanics Comprehensive Exam Solution

Classical Mechanics Comprehensive Exam Solution Classical Mechanics Comprehensive Exam Solution January 31, 011, 1:00 pm 5:pm Solve the following six problems. In the following problems, e x, e y, and e z are unit vectors in the x, y, and z directions,

More information

Class Notes for Advanced Dynamics (MEAM535)

Class Notes for Advanced Dynamics (MEAM535) Class Notes f Avance Dynamics MEAM535 Michael A. Carchii December 9, 9 Equilibrium Points, Small Perturbations Linear Stability Analysis The following notes were initially base aroun the text entitle:

More information

G4003 Advanced Mechanics 1. We already saw that if q is a cyclic variable, the associated conjugate momentum is conserved, L = const.

G4003 Advanced Mechanics 1. We already saw that if q is a cyclic variable, the associated conjugate momentum is conserved, L = const. G4003 Avance Mechanics 1 The Noether theorem We alreay saw that if q is a cyclic variable, the associate conjugate momentum is conserve, q = 0 p q = const. (1) This is the simplest incarnation of Noether

More information

M2A2 Problem Sheet 3 - Hamiltonian Mechanics

M2A2 Problem Sheet 3 - Hamiltonian Mechanics MA Problem Sheet 3 - Hamiltonian Mechanics. The particle in a cone. A particle slides under gravity, inside a smooth circular cone with a vertical axis, z = k x + y. Write down its Lagrangian in a) Cartesian,

More information

Assignment 2. Tyler Shendruk October 8, Hamilton s Principle - Lagrangian and Hamiltonian dynamics.

Assignment 2. Tyler Shendruk October 8, Hamilton s Principle - Lagrangian and Hamiltonian dynamics. Assignent Tyler Shendruk October 8, 010 1 Marion and Thornton Chapter 7 Hailton s Principle - Lagrangian and Hailtonian dynaics. 1.1 Proble 7.9 y z x l θ α Figure 1: A disk rolling down an incline plane.

More information

Variation Principle in Mechanics

Variation Principle in Mechanics Section 2 Variation Principle in Mechanics Hamilton s Principle: Every mechanical system is characterized by a Lagrangian, L(q i, q i, t) or L(q, q, t) in brief, and the motion of he system is such that

More information

Physics 5153 Classical Mechanics. Canonical Transformations-1

Physics 5153 Classical Mechanics. Canonical Transformations-1 1 Introduction Physics 5153 Classical Mechanics Canonical Transformations The choice of generalized coordinates used to describe a physical system is completely arbitrary, but the Lagrangian is invariant

More information

Constraints. Noninertial coordinate systems

Constraints. Noninertial coordinate systems Chapter 8 Constraints. Noninertial codinate systems 8.1 Constraints Oftentimes we encounter problems with constraints. F example, f a ball rolling on a flo without slipping, there is a constraint linking

More information

Classical Mechanics and Electrodynamics

Classical Mechanics and Electrodynamics Classical Mechanics and Electrodynamics Lecture notes FYS 3120 Jon Magne Leinaas Department of Physics, University of Oslo 2 Preface FYS 3120 is a course in classical theoretical physics, which covers

More information

Solution Set Two. 1 Problem #1: Projectile Motion Cartesian Coordinates Polar Coordinates... 3

Solution Set Two. 1 Problem #1: Projectile Motion Cartesian Coordinates Polar Coordinates... 3 : Solution Set Two Northwestern University, Classical Mechanics Classical Mechanics, Third Ed.- Goldstein October 7, 2015 Contents 1 Problem #1: Projectile Motion. 2 1.1 Cartesian Coordinates....................................

More information

Question 1: A particle starts at rest and moves along a cycloid whose equation is. 2ay y a

Question 1: A particle starts at rest and moves along a cycloid whose equation is. 2ay y a Stephen Martin PHYS 10 Homework #1 Question 1: A particle starts at rest and moves along a cycloid whose equation is [ ( ) a y x = ± a cos 1 + ] ay y a There is a gravitational field of strength g in the

More information

15. Hamiltonian Mechanics

15. Hamiltonian Mechanics University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 2015 15. Hamiltonian Mechanics Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

Classical Mechanics and Electrodynamics

Classical Mechanics and Electrodynamics Classical Mechanics and Electrodynamics Lecture notes FYS 3120 Jon Magne Leinaas Department of Physics, University of Oslo December 2009 2 Preface These notes are prepared for the physics course FYS 3120,

More information

1 Heisenberg Representation

1 Heisenberg Representation 1 Heisenberg Representation What we have been ealing with so far is calle the Schröinger representation. In this representation, operators are constants an all the time epenence is carrie by the states.

More information

Advanced Dynamics. - Lecture 4 Lagrange Equations. Paolo Tiso Spring Semester 2017 ETH Zürich

Advanced Dynamics. - Lecture 4 Lagrange Equations. Paolo Tiso Spring Semester 2017 ETH Zürich Advanced Dynamics - Lecture 4 Lagrange Equations Paolo Tiso Spring Semester 2017 ETH Zürich LECTURE OBJECTIVES 1. Derive the Lagrange equations of a system of particles; 2. Show that the equation of motion

More information

Theoretical Dynamics September 16, Homework 2. Taking the point of support as the origin and the axes as shown, the coordinates are

Theoretical Dynamics September 16, Homework 2. Taking the point of support as the origin and the axes as shown, the coordinates are Teoretical Dynaics Septeber 16, 2010 Instructor: Dr. Toas Coen Hoework 2 Subitte by: Vivek Saxena 1 Golstein 1.22 Taking te point of support as te origin an te axes as sown, te coorinates are x 1, y 1

More information

Marion and Thornton. Tyler Shendruk October 1, Hamilton s Principle - Lagrangian and Hamiltonian dynamics.

Marion and Thornton. Tyler Shendruk October 1, Hamilton s Principle - Lagrangian and Hamiltonian dynamics. Marion and Thornton Tyler Shendruk October 1, 2010 1 Marion and Thornton Chapter 7 Hamilton s Principle - Lagrangian and Hamiltonian dynamics. 1.1 Problem 6.4 s r z θ Figure 1: Geodesic on circular cylinder

More information

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Homeworks VIII and IX both center on Lagrangian mechanics and involve many of the same skills. Therefore,

More information

Physical Dynamics (PHY-304)

Physical Dynamics (PHY-304) Physical Dynamics (PHY-304) Gabriele Travaglini March 31, 2012 1 Review of Newtonian Mechanics 1.1 One particle Lectures 1-2. Frame, velocity, acceleration, number of degrees of freedom, generalised coordinates.

More information

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2

Physics 505 Electricity and Magnetism Fall 2003 Prof. G. Raithel. Problem Set 3. 2 (x x ) 2 + (y y ) 2 + (z + z ) 2 Physics 505 Electricity an Magnetism Fall 003 Prof. G. Raithel Problem Set 3 Problem.7 5 Points a): Green s function: Using cartesian coorinates x = (x, y, z), it is G(x, x ) = 1 (x x ) + (y y ) + (z z

More information

MCE 366 System Dynamics, Spring Problem Set 2. Solutions to Set 2

MCE 366 System Dynamics, Spring Problem Set 2. Solutions to Set 2 MCE 366 System Dynamics, Spring 2012 Problem Set 2 Reading: Chapter 2, Sections 2.3 and 2.4, Chapter 3, Sections 3.1 and 3.2 Problems: 2.22, 2.24, 2.26, 2.31, 3.4(a, b, d), 3.5 Solutions to Set 2 2.22

More information

Lagrangian and Hamiltonian Mechanics (Symon Chapter Nine)

Lagrangian and Hamiltonian Mechanics (Symon Chapter Nine) Lagrangian and Hamiltonian Mechanics (Symon Chapter Nine Physics A301 Spring 2005 Contents 1 Lagrangian Mechanics 3 1.1 Derivation of the Lagrange Equations...................... 3 1.1.1 Newton s Second

More information

is conserved, calculating E both at θ = 0 and θ = π/2 we find that this happens for a value ω = ω given by: 2g

is conserved, calculating E both at θ = 0 and θ = π/2 we find that this happens for a value ω = ω given by: 2g UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Suggested solutions, FYS 500 Classical Mechanics Theory 2016 fall Set 5 for 23. September 2016 Problem 27: A string can only support

More information

SOLUTIONS, PROBLEM SET 11

SOLUTIONS, PROBLEM SET 11 SOLUTIONS, PROBLEM SET 11 1 In this problem we investigate the Lagrangian formulation of dynamics in a rotating frame. Consider a frame of reference which we will consider to be inertial. Suppose that

More information

PHY6426/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT #1 due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov Rm.

PHY6426/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT #1 due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov Rm. PHY646/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT # due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov maslov@phys.ufl.edu 39-053 Rm. 4 Please help your instructor by doing your work neatly.. Goldstein,

More information

06. Lagrangian Mechanics II

06. Lagrangian Mechanics II University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 2015 06. Lagrangian Mechanics II Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

Classical Mechanics Review (Louisiana State University Qualifier Exam)

Classical Mechanics Review (Louisiana State University Qualifier Exam) Review Louisiana State University Qualifier Exam Jeff Kissel October 22, 2006 A particle of mass m. at rest initially, slides without friction on a wedge of angle θ and and mass M that can move without

More information

Two dimensional oscillator and central forces

Two dimensional oscillator and central forces Two dimensional oscillator and central forces September 4, 04 Hooke s law in two dimensions Consider a radial Hooke s law force in -dimensions, F = kr where the force is along the radial unit vector and

More information

Short Intro to Coordinate Transformation

Short Intro to Coordinate Transformation Short Intro to Coorinate Transformation 1 A Vector A vector can basically be seen as an arrow in space pointing in a specific irection with a specific length. The following problem arises: How o we represent

More information

COMPLETE ALL ROUGH WORKINGS IN THE ANSWER BOOK AND CROSS THROUGH ANY WORK WHICH IS NOT TO BE ASSESSED.

COMPLETE ALL ROUGH WORKINGS IN THE ANSWER BOOK AND CROSS THROUGH ANY WORK WHICH IS NOT TO BE ASSESSED. BSc/MSci EXAMINATION PHY-304 Time Allowed: Physical Dynamics 2 hours 30 minutes Date: 28 th May 2009 Time: 10:00 Instructions: Answer ALL questions in section A. Answer ONLY TWO questions from section

More information

Problem Set II Solutions

Problem Set II Solutions Physics 31600 R. Wal Classical Mechanics Autun, 2002 Proble Set II Solutions 1) Let L(q, q; t) be a Lagrangian [where, as in class, q stans for (q 1,..., q n )]. Suppose we introuce new coorinates (Q 1

More information

Physical Dynamics (SPA5304) Lecture Plan 2018

Physical Dynamics (SPA5304) Lecture Plan 2018 Physical Dynamics (SPA5304) Lecture Plan 2018 The numbers on the left margin are approximate lecture numbers. Items in gray are not covered this year 1 Advanced Review of Newtonian Mechanics 1.1 One Particle

More information

Phys 7221, Fall 2006: Homework # 5

Phys 7221, Fall 2006: Homework # 5 Phys 722, Fal006: Homewor # 5 Gabriela González October, 2006 Prob 3-: Collapse of an orbital system Consier two particles falling into each other ue to gravitational forces, starting from rest at a istance

More information

4.1 Important Notes on Notation

4.1 Important Notes on Notation Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the

More information

EE Homework 3 Due Date: 03 / 30 / Spring 2015

EE Homework 3 Due Date: 03 / 30 / Spring 2015 EE 476 - Homework 3 Due Date: 03 / 30 / 2015 Spring 2015 Exercise 1 (10 points). Consider the problem of two pulleys and a mass discussed in class. We solved a version of the problem where the mass was

More information

Lecture 13: Forces in the Lagrangian Approach

Lecture 13: Forces in the Lagrangian Approach Lecture 3: Forces in the Lagrangian Approach In regular Cartesian coordinates, the Lagrangian for a single particle is: 3 L = T U = m x ( ) l U xi l= Given this, we can readily interpret the physical significance

More information

Physics 6010, Fall 2016 Constraints and Lagrange Multipliers. Relevant Sections in Text:

Physics 6010, Fall 2016 Constraints and Lagrange Multipliers. Relevant Sections in Text: Physics 6010, Fall 2016 Constraints and Lagrange Multipliers. Relevant Sections in Text: 1.3 1.6 Constraints Often times we consider dynamical systems which are defined using some kind of restrictions

More information

ESM 3124 Intermediate Dynamics 2012, HW6 Solutions. (1 + f (x) 2 ) We can first write the constraint y = f(x) in the form of a constraint

ESM 3124 Intermediate Dynamics 2012, HW6 Solutions. (1 + f (x) 2 ) We can first write the constraint y = f(x) in the form of a constraint ESM 314 Intermediate Dynamics 01, HW6 Solutions Roller coaster. A bead of mass m can slide without friction, under the action of gravity, on a smooth rigid wire which has the form y = f(x). (a) Find the

More information

Tutorial Exercises: Incorporating constraints

Tutorial Exercises: Incorporating constraints Tutorial Exercises: Incorporating constraints 1. A siple pendulu of length l ass is suspended fro a pivot of ass M that is free to slide on a frictionless wire frae in the shape of a parabola y = ax. The

More information

From quantum to classical statistical mechanics. Polyatomic ideal gas.

From quantum to classical statistical mechanics. Polyatomic ideal gas. From quantum to classical statistical mechanics. Polyatomic ideal gas. Peter Košovan peter.kosovan@natur.cuni.cz Dept. of Physical and Macromolecular Chemistry Lecture 5, Statistical Thermodynamics, MC260P105,

More information

Physics 5153 Classical Mechanics. Solution by Quadrature-1

Physics 5153 Classical Mechanics. Solution by Quadrature-1 October 14, 003 11:47:49 1 Introduction Physics 5153 Classical Mechanics Solution by Quadrature In the previous lectures, we have reduced the number o eective degrees o reedom that are needed to solve

More information

Physics 351, Spring 2017, Homework #12. Due at start of class, Friday, April 14, 2017

Physics 351, Spring 2017, Homework #12. Due at start of class, Friday, April 14, 2017 Physics 351, Spring 2017, Homework #12. Due at start of class, Friday, April 14, 2017 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page at

More information

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as 2 MODELING Once the control target is identified, which includes the state variable to be controlled (ex. speed, position, temperature, flow rate, etc), and once the system drives are identified (ex. force,

More information

Physics 351, Spring 2015, Homework #5. Due at start of class, Friday, February 20, 2015 Course info is at positron.hep.upenn.

Physics 351, Spring 2015, Homework #5. Due at start of class, Friday, February 20, 2015 Course info is at positron.hep.upenn. Physics 351, Spring 2015, Homework #5. Due at start of class, Friday, February 20, 2015 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page

More information

Rotational motion problems

Rotational motion problems Rotational motion problems. (Massive pulley) Masses m and m 2 are connected by a string that runs over a pulley of radius R and moment of inertia I. Find the acceleration of the two masses, as well as

More information

221A Lecture Notes Notes on Classica Mechanics I

221A Lecture Notes Notes on Classica Mechanics I 1A Lecture Notes Notes on Classica Mechanics I 1 Precursor: Fermat s Principle in Geometric Optics In geometric optics, you talk about how light rays go. In homogeneous meiums, the light rays go straight.

More information

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012

Free rotation of a rigid body 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 Free rotation of a rigi boy 1 D. E. Soper 2 University of Oregon Physics 611, Theoretical Mechanics 5 November 2012 1 Introuction In this section, we escribe the motion of a rigi boy that is free to rotate

More information

PHYSICS 44 MECHANICS Homework Assignment II SOLUTION

PHYSICS 44 MECHANICS Homework Assignment II SOLUTION July 21, 23 PHYSICS 44 MECHANICS Homewk Assignment II SOLUTION Problem 1 AcartofmassM is placed on rails and attached to a wall with the help of a massless spring with constant k (as shown in the Figure

More information

Linear and quadratic approximation

Linear and quadratic approximation Linear an quaratic approximation November 11, 2013 Definition: Suppose f is a function that is ifferentiable on an interval I containing the point a. The linear approximation to f at a is the linear function

More information

Department of Physics University of Maryland College Park, Maryland. Fall 2005 Final Exam Dec. 16, u 2 dt )2, L = m u 2 d θ, ( d θ

Department of Physics University of Maryland College Park, Maryland. Fall 2005 Final Exam Dec. 16, u 2 dt )2, L = m u 2 d θ, ( d θ Department of Physics University of arylan College Park, arylan PHYSICS 4 Prof. S. J. Gates Fall 5 Final Exam Dec. 6, 5 This is a OPEN book examination. Rea the entire examination before you begin to work.

More information

The Particle-Field Hamiltonian

The Particle-Field Hamiltonian The Particle-Field Hamiltonian For a fundamental understanding of the interaction of a particle with the electromagnetic field we need to know the total energy of the system consisting of particle and

More information

PHYS 705: Classical Mechanics. Examples: Lagrange Equations and Constraints

PHYS 705: Classical Mechanics. Examples: Lagrange Equations and Constraints 1 PHYS 705: Classical Mechanics Examples: Lagrange Equations and Constraints x R Note: an object rolls because of friction but static friction does no work this is different from our previous case with

More information

HW 6 Mathematics 503, Mathematical Modeling, CSUF, June 24, 2007

HW 6 Mathematics 503, Mathematical Modeling, CSUF, June 24, 2007 HW 6 Mathematics 503, Mathematical Modeling, CSUF, June 24, 2007 Nasser M. Abbasi June 15, 2014 Contents 1 Problem 1 (section 3.5,#9, page 197 1 2 Problem 1 (section 3.5,#9, page 197 7 1 Problem 1 (section

More information

Physics 235 Chapter 7. Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics

Physics 235 Chapter 7. Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics Many interesting physics systems describe systems of particles on which many forces are acting. Some of these forces are immediately

More information

7 Pendulum. Part II: More complicated situations

7 Pendulum. Part II: More complicated situations MATH 35, by T. Lakoba, University of Vermont 60 7 Pendulum. Part II: More complicated situations In this Lecture, we will pursue two main goals. First, we will take a glimpse at a method of Classical Mechanics

More information

Physics 5153 Classical Mechanics. The Virial Theorem and The Poisson Bracket-1

Physics 5153 Classical Mechanics. The Virial Theorem and The Poisson Bracket-1 Physics 5153 Classical Mechanics The Virial Theorem an The Poisson Bracket 1 Introuction In this lecture we will consier two applications of the Hamiltonian. The first, the Virial Theorem, applies to systems

More information

Phys 7221 Homework # 8

Phys 7221 Homework # 8 Phys 71 Homework # 8 Gabriela González November 15, 6 Derivation 5-6: Torque free symmetric top In a torque free, symmetric top, with I x = I y = I, the angular velocity vector ω in body coordinates with

More information

P321(b), Assignement 1

P321(b), Assignement 1 P31(b), Assignement 1 1 Exercise 3.1 (Fetter and Walecka) a) The problem is that of a point mass rotating along a circle of radius a, rotating with a constant angular velocity Ω. Generally, 3 coordinates

More information

Analytical Dynamics: Lagrange s Equation and its Application A Brief Introduction

Analytical Dynamics: Lagrange s Equation and its Application A Brief Introduction Analytical Dynamics: Lagrange s Equation and its Application A Brief Introduction D. S. Stutts, Ph.D. Associate Professor of Mechanical Engineering Missouri University of Science and Technology Rolla,

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

Principles of Dynamics. Tom Charnock

Principles of Dynamics. Tom Charnock Principles of Dynamics Tom Charnock Contents 1 Coordinates, Vectors and Matrices 4 1.1 Cartesian Coordinates...................................... 4 1. Polar Coordinates........................................

More information

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Benjamin Hornberger 1/26/1 Phy 55, Classical Electrodynamics, Prof. Goldhaber Lecture notes from Oct. 26, 21 Lecture held by Prof. Weisberger

More information

Physics 115C Homework 4

Physics 115C Homework 4 Physics 115C Homework 4 Problem 1 a In the Heisenberg picture, the ynamical equation is the Heisenberg equation of motion: for any operator Q H, we have Q H = 1 t i [Q H,H]+ Q H t where the partial erivative

More information

Physics 351, Spring 2015, Final Exam.

Physics 351, Spring 2015, Final Exam. Physics 351, Spring 2015, Final Exam. This closed-book exam has (only) 25% weight in your course grade. You can use one sheet of your own hand-written notes. Please show your work on these pages. The back

More information

PHY 5246: Theoretical Dynamics, Fall September 28 th, 2015 Midterm Exam # 1

PHY 5246: Theoretical Dynamics, Fall September 28 th, 2015 Midterm Exam # 1 Name: SOLUTIONS PHY 5246: Theoretical Dynamics, Fall 2015 September 28 th, 2015 Mierm Exam # 1 Always remember to write full work for what you do. This will help your grade in case of incomplete or wrong

More information

The Ehrenfest Theorems

The Ehrenfest Theorems The Ehrenfest Theorems Robert Gilmore Classical Preliminaries A classical system with n egrees of freeom is escribe by n secon orer orinary ifferential equations on the configuration space (n inepenent

More information

the EL equation for the x coordinate is easily seen to be (exercise)

the EL equation for the x coordinate is easily seen to be (exercise) Physics 6010, Fall 2016 Relevant Sections in Text: 1.3 1.6 Examples After all this formalism it is a good idea to spend some time developing a number of illustrative examples. These examples represent

More information

for changing independent variables. Most simply for a function f(x) the Legendre transformation f(x) B(s) takes the form B(s) = xs f(x) with s = df

for changing independent variables. Most simply for a function f(x) the Legendre transformation f(x) B(s) takes the form B(s) = xs f(x) with s = df Physics 106a, Caltech 1 November, 2018 Lecture 10: Hamiltonian Mechanics I The Hamiltonian In the Hamiltonian formulation of dynamics each second order ODE given by the Euler- Lagrange equation in terms

More information

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top Physics 106a, Caltech 4 December, 2018 Lecture 18: Examples on Rigid Body Dynamics I go through a number of examples illustrating the methods of solving rigid body dynamics. In most cases, the problem

More information

MATHEMATICAL PHYSICS

MATHEMATICAL PHYSICS MATHEMATICAL PHYSICS Third Year SEMESTER 1 015 016 Classical Mechanics MP350 Prof. S. J. Hands, Prof. D. M. Heffernan, Dr. J.-I. Skullerud and Dr. M. Fremling Time allowed: 1 1 hours Answer two questions

More information

Physics 6010, Fall Relevant Sections in Text: Introduction

Physics 6010, Fall Relevant Sections in Text: Introduction Physics 6010, Fall 2016 Introduction. Configuration space. Equations of Motion. Velocity Phase Space. Relevant Sections in Text: 1.1 1.4 Introduction This course principally deals with the variational

More information

Homework 1. Due Thursday, January 21

Homework 1. Due Thursday, January 21 Homework 1. Due Thursday, January 21 Problem 1. Rising Snake A snake of length L and linear mass density ρ rises from the table. It s head is moving straight up with the constant velocity v. What force

More information

Classical mechanics of particles and fields

Classical mechanics of particles and fields Classical mechanics of particles and fields D.V. Skryabin Department of Physics, University of Bath PACS numbers: The concise and transparent exposition of many topics covered in this unit can be found

More information

1 Motion of a single particle - Linear momentum, work and energy principle

1 Motion of a single particle - Linear momentum, work and energy principle 1 Motion of a single particle - Linear momentum, work and energy principle 1.1 In-class problem A block of mass m slides down a frictionless incline (see Fig.). The block is released at height h above

More information

Partial Differential Equations

Partial Differential Equations Chapter Partial Differential Equations. Introuction Have solve orinary ifferential equations, i.e. ones where there is one inepenent an one epenent variable. Only orinary ifferentiation is therefore involve.

More information

Euler-Lagrange's equations in several variables

Euler-Lagrange's equations in several variables Euler-Lagrange's equations in several variables So far we have studied one variable and its derivative Let us now consider L2:1 More:1 Taylor: 226-227 (This proof is slightly more general than Taylor's.)

More information

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations Lecture XII Abstract We introuce the Laplace equation in spherical coorinates an apply the metho of separation of variables to solve it. This will generate three linear orinary secon orer ifferential equations:

More information

Hamiltonian. March 30, 2013

Hamiltonian. March 30, 2013 Hamiltonian March 3, 213 Contents 1 Variational problem as a constrained problem 1 1.1 Differential constaint......................... 1 1.2 Canonic form............................. 2 1.3 Hamiltonian..............................

More information

Assignment 2. Goldstein 2.3 Prove that the shortest distance between two points in space is a straight line.

Assignment 2. Goldstein 2.3 Prove that the shortest distance between two points in space is a straight line. Assignment Goldstein.3 Prove that the shortest distance between two points in space is a straight line. The distance between two points is given by the integral of the infinitesimal arclength: s = = =

More information

Lecture 8: Ch Sept 2018

Lecture 8: Ch Sept 2018 University of Alabama Department of Physics and Astronomy PH 301 / LeClair Fall 2018 Lecture 8: Ch. 4.5-7 12 Sept 2018 1 Time-dependent potential energy Sometimes we need to consider time-dependent forces,

More information