Physics 8, Fall 2013, Homework #5. Due at start of class on Friday, October 4, 2013

Size: px
Start display at page:

Download "Physics 8, Fall 2013, Homework #5. Due at start of class on Friday, October 4, 2013"

Transcription

1 Physics 8, Fall 2013, Homework #5. Due at start of class on Friday, October 4, 2013 Problems marked with (*) must include your own drawing or graph representing the problem and at least one complete sentence describing your reasoning. (Chapter 7 problem) 1. The observation deck of the Washington Monument is 152 m above the ground. (a) How much source energy, in joules, will a 75 kg person need to consume to replenish the energy he or she expends in climbing the 825 stairs up to the observation deck? (b) Express your answer to part (a) in dietary Calories. A dietary Calorie is 4180 J (which is 1000 chemical calories). (Chapter 8 problems) 2*. You want to hang a potted plant from the ceiling of an elevator that has a maximum acceleration of 4.0 m/s 2. (a) If you hang the plant with fishing line that supports a maximum tension of 45 N (i.e. its tensile strength is 45 N), what is the maximum inertia the plant can have if the line is not to break? (b) What combination of slowing down, speeding up, going up, and going down will cause the most tension? (Explain.) 3. You are climbing a rope straight up toward the ceiling. (a) What are the magnitude and direction of the force you must exert on the rope in order to accelerate upward at 1.50 m/s 2, assuming your inertia is 60.0 kg? (b) If the maximum tension the rope can support (a.k.a. its tensile strength) is 1225 N, what is the maximum inertia the rope can support at this acceleration? Assume that the inertia of the rope is so small that the graviational force on the rope itself can be ignored. 4. Estimate the spring constant of your car springs. (Experiment: sit on one fender.) 5*. A modified Atwood machine is shown below. Each of the three blocks has the same inertia m. One end of the vertical spring, which has spring constant k, is attached to the single block, and the other end of the spring is phys008/hw05.tex page 1 of :28

2 fixed to the floor. The positions of the blocks are adjusted until the spring is at its equilibrium length. The blocks are then released from rest. What is the acceleration of the two blocks on the right after they have fallen a distance D? 6. A 1700 kg truck and a 1200 kg car are parked with their rear bumpers nearly touching each other in a level parking lot. Both vehicles have their brakes off so that they are free to roll. A woman sitting on the rear bumper of the truck exerts a constant horizontal force on the rear bumper of the car with her feet, and the car accelerates at 1.1 m/s 2. (a) What are the magnitude and acceleration of the center of mass of the car+truck system? (b) What are the forces (magnitude and direction) exerted on each vehicle by the woman? (c) What are the magnitude and direction of the acceleration of the truck? (d) What are the magnitude and direction of the acceleration of the car? Ignore any friction between tires and parking lot surface. 7*. A tugboat pulls two barges (connected in series, like a train) down a river. The barge connected to the tugboat, carrying coal, has inertia kg. The other barge, carrying pig iron, has inertia kg. The frictional force between the coal barge and the water is N, and that between the pig-iron barge and the water is N. The common acceleration of all three boats is m/s 2. Even though the ropes are huge, the gravitational force exerted on them is negligible, as are their inertias. (a) What is the tension in the rope conecting the tugboat to the coal barge? (b) What is the tension in the rope connecting the two barges? (c) Repeat parts (a) and (b) for the case in which the order of the barges is reversed. phys008/hw05.tex page 2 of :28

3 8*. A red 10.0 kg cart is connected to a 20.0 kg cart by a relaxed spring of spring constant 60.0 N/m. The 20.0 kg cart is resting against another 10.0 kg cart, this one blue. All are on a low-friction track. You push the red 10.0 kg cart to the right, in the direction of the 20.0 kg cart, with a constant force of 10.0 N. (a) What is the acceleration of the center-of-mass of the three-cart system? (b) What is the acceleration of each cart the instant you begin to push? (c) What is the acceleration of each cart when the spring is compressed m? (d) What is the vector sum of forces (sometimes called the net force, though not in our textbook) on each cart in part (c)? (Chapter 8 conceptual questions. These questions require no calculations. Just think about them and write your answer as either (a) a sentence, or (b) a few words and a quick drawing whichever is more appropriate for the problem. Very short answers are fine, as long as your reasoning is clear. You will probably learn a lot by discussing these questions with your fellow students.) 9. A worker pushes boxes in a factory. In each case decide which force has the greater magnitude the force exerted by the worker on the box or the force exerted by the box on the worker. (a) The box is heavy and does not move no matter how hard she pushes. (b) Some contents are removed, and now when pushed the box slides across the floor at constant speed. (c) The worker pushes harder, and the box accelerates. 10. A pitcher has thrown a fastball toward home plate. (a) When it is halfway to the plate, does the ball still feel the pitcher s push? Explain your answer. (b) What forces does the ball feel, if any? 11. You push on a refrigerator, but it does not move. Explain how this can be. 12. You are in a stationary elevator, so that the contact force exerted by the floor on you is equal in magnitude to the force of gravity acting on you. When the elevator starts downward, which force changes? What happens to its magnitude? 13. When you are standing motionless on the ground, your feet are exerting phys008/hw05.tex page 3 of :28

4 a force on Earth. Why doesn t Earth move away from you? 14. You push on a crate, and it starts to move but you don t. Draw a freebody diagram for you and one for the crate. Then use the diagrams and Newton s third law of motion to explain why the crate moves but you don t. 15. A delivery person in an elevator is holding a package by an elastic cord. (Don t ask why.) (a) What happens to the length of the cord when the elevator accelerates upward? Draw the free-body diagram for the package in this case. (b) What happens to the cord s length when the elevator slows to a stop after its ascent? Draw the free-body diagram for the package in this case. 16. Walking beside a pasture, you and a fellow student see a farmer pulling a mule with a rope and getting nowhere. Your friend says, The force with which the mule is pulling on the rope has the same magnitude as the force with which the farmer is pulling on the rope, but the two forces point in opposite directions. Because the two forces cancel, the tension in the rope is zero. How do you respond? 17. The design strength of the couplings used in connecting railroad cars is determined by the maximum tension or compression that any coupling in a given train will likely feel. (a) If a locomotive is pulling ten cars and speeding up, in which coupling is the force greatest? (b) Is this force a tension force or a compression force? (c) If the locomotive is slowing the train down, which coupler feels the greatest force? (d) Is this force a tension force or a compression force? Remember online response at positron.hep.upenn.edu/wja/jitt XC1*. Optional/extra-credit. (From Chapter 8.) A 15 kg bunch of bananas is tied to a rope thrown over a tree limb (see figure below), and a 12 kg monkey wants to hide the bananas in the tree, away from other hungry animals. Monkeys don t take physics classes, but you can probably figure out a method to help your friend the monkey understand how to get all the bananas into the tree without having to eat any first. Ignore any friction phys008/hw05.tex page 4 of :28

5 between rope and branch, and assume that all the force the monkey exerts on the rope is transmitted undiminished to the bananas. Be quantitative! XC2*. Optional/extra-credit. (From Chapter 7.) A 2.2 kg instrument is mounted on a balloon by your scientific team for atmospheric studies. At the top of its flight, the instrument is released from the balloon and falls most of the way back to Earth before a parachute opens. You are told that the magnitude of the acceleration at any time t before the chute opens is given by a = ge t/τ, where g = 9.8 m/s 2, e is the base of natural logarithms, and τ is a time constant that depends on the shape of the instrument and in this case is 5.68 s. Your primary concern is how much the instrument heats up as it falls, due to air friction. At what rate, in joules per second, is energy dissipated before the parachute opens? Express your answer as a function of the time t, where t = 0 at release. (Hint: Someone looking over your shoulder gives you the helpful suggestion of integrating the acceleration to find the speed and displacement.) Remember online response at positron.hep.upenn.edu/wja/jitt phys008/hw05.tex page 5 of :28

Physics 8, Fall 2017, Homework #4. Due at start of class on Friday, September 29, 2017 (No penalty for turning it in Monday, 10/02, if you prefer.

Physics 8, Fall 2017, Homework #4. Due at start of class on Friday, September 29, 2017 (No penalty for turning it in Monday, 10/02, if you prefer. Physics 8, Fall 2017, Homework #4. Due at start of class on Friday, September 29, 2017 (No penalty for turning it in Monday, 10/02, if you prefer.) Problems marked with (*) must include your own drawing

More information

Physics 8 Wednesday, October 19, Troublesome questions for HW4 (5 or more people got 0 or 1 points on them): 1, 14, 15, 16, 17, 18, 19. Yikes!

Physics 8 Wednesday, October 19, Troublesome questions for HW4 (5 or more people got 0 or 1 points on them): 1, 14, 15, 16, 17, 18, 19. Yikes! Physics 8 Wednesday, October 19, 2011 Troublesome questions for HW4 (5 or more people got 0 or 1 points on them): 1, 14, 15, 16, 17, 18, 19. Yikes! Troublesome HW4 questions 1. Two objects of inertias

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Chapter 4 Force and Motion

Chapter 4 Force and Motion Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

More information

An Accelerating Hockey Puck

An Accelerating Hockey Puck Example 5.1 An Accelerating Hockey Puck A hockey puck having a mass of 0.30 kg slides on the frictionless, horizontal surface of an ice rink. Two hockey sticks strike the puck simultaneously, exerting

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Dynamics Multiple Choice Homework

Dynamics Multiple Choice Homework Dynamics Multiple Choice Homework PSI Physics Name 1. In the absence of a net force, a moving object will A. slow down and eventually stop B. stop immediately C. turn right D. move with constant velocity

More information

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time. 1. n object is launched across a room. How can a student determine the average horizontal velocity of the object using a meter stick and a calculator? The student can calculate the object s initial potential

More information

Physics 23 Exam 2 March 3, 2009

Physics 23 Exam 2 March 3, 2009 Use the following to answer question 1: A stationary 4-kg shell explodes into three pieces. Two of the fragments have a mass of 1 kg each and move along the paths shown with a speed of 10 m/s. The third

More information

Newton s Laws Student Success Sheets (SSS)

Newton s Laws Student Success Sheets (SSS) --- Newton s Laws unit student success sheets--- Page 1 Newton s Laws Student Success Sheets (SSS) HS-PS2-1 HS-PS2-2 NGSS Civic Memorial High School - Physics Concept # What we will be learning Mandatory

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER MIDTERM REVIEW AP Physics 1 McNutt Name: Date: Period: AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER 1.) A car starts from rest and uniformly accelerates

More information

AP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time.

AP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time. P Physics Review. Shown is the velocity versus time graph for an object that is moving in one dimension under the (perhaps intermittent) action of a single horizontal force. Velocity, m/s Time, s On the

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

PH201 Chapter 5 Solutions

PH201 Chapter 5 Solutions PH201 Chapter 5 Solutions 5.4. Set Up: For each object use coordinates where +y is upward. Each object has Call the objects 1 and 2, with and Solve: (a) The free-body diagrams for each object are shown

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

Chapter 5 The Force Vector

Chapter 5 The Force Vector Conceptual Physics/ PEP Name: Date: Chapter 5 The Force Vector Section Review 5.1 1. Indicate whether each of the following units of measurement are scalar or vector units: Speed _scalar time scalar mass

More information

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis The Laws of Motion The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis Models using Newton s Second Law Forces

More information

Physics 8 Monday, October 9, 2017

Physics 8 Monday, October 9, 2017 Physics 8 Monday, October 9, 2017 Pick up a HW #5 handout if you didn t already get one on Wednesday. It s due this Friday, 10/13. It contains some Ch9 (work) problems, some Ch10 (motion in a plane) problems,

More information

PHYS 101 Previous Exam Problems. Kinetic Energy and

PHYS 101 Previous Exam Problems. Kinetic Energy and PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

More information

Year 11 Physics Tutorial 84C2 Newton s Laws of Motion

Year 11 Physics Tutorial 84C2 Newton s Laws of Motion Year 11 Physics Tutorial 84C2 Newton s Laws of Motion Module Topic 8.4 Moving About 8.4.C Forces Name Date Set 1 Calculating net force 1 A trolley was moved to the right by a force applied to a cord attached

More information

CHAPTER 6 TEST REVIEW -- MARKSCHEME

CHAPTER 6 TEST REVIEW -- MARKSCHEME Force (N) AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM CHAPTER

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

Physics Midterm Review KEY

Physics Midterm Review KEY Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.-kilogram space vehicle is traveling along a straight line

More information

Physics 8 Monday, October 12, 2015

Physics 8 Monday, October 12, 2015 Physics 8 Monday, October 12, 2015 HW5 will be due Friday. (HW5 is just Ch9 and Ch10 problems.) You re reading Chapter 12 ( torque ) this week, even though in class we re just finishing Ch10 / starting

More information

Newton. Galileo THE LAW OF INERTIA REVIEW

Newton. Galileo THE LAW OF INERTIA REVIEW Galileo Newton THE LAW OF INERTIA REVIEW 1 MOTION IS RELATIVE We are moving 0 m/s and 30km/s Find the resultant velocities MOTION IS RELATIVE Position versus Time Graph. Explain how the car is moving.

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

A hockey puck slides on ice at constant velocity. What is the net force acting on the puck?

A hockey puck slides on ice at constant velocity. What is the net force acting on the puck? A hockey puck slides on ice at constant velocity. What is the net force acting on the puck? A. Something more than its weight B. Equal to its weight C. Something less than its weight but more than zero

More information

4 Study Guide. Forces in One Dimension Vocabulary Review

4 Study Guide. Forces in One Dimension Vocabulary Review Date Period Name CHAPTER 4 Study Guide Forces in One Dimension Vocabulary Review Write the term that correctly completes the statement. Use each term once. agent force Newton s second law apparent weight

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

Mass & Weight. weight a force acting on a body due to the gravitational attraction pulling that body to another. NOT constant.

Mass & Weight. weight a force acting on a body due to the gravitational attraction pulling that body to another. NOT constant. Mass & Weight mass how much stuff a body has. Doesn t change. Is responsible for the inertial properties of a body. The greater the mass, the greater the force required to achieve some acceleration: Fnet

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

Reading Quiz. Chapter 5. Physics 111, Concordia College

Reading Quiz. Chapter 5. Physics 111, Concordia College Reading Quiz Chapter 5 1. The coefficient of static friction is A. smaller than the coefficient of kinetic friction. B. equal to the coefficient of kinetic friction. C. larger than the coefficient of kinetic

More information

Physics 8 Friday, September 22, 2017

Physics 8 Friday, September 22, 2017 Physics 8 Friday, September 22, 2017 HW #3 due today (but Monday is OK, if you prefer). It covers Chapters 4 (momentum) and 5 (energy). For Monday, read Ch9 (work). Mathematica is free (site license) for

More information

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion Forces and Newton s Laws of Motion What is a Force? In generic terms: a force is a push or a pull exerted on an object that could cause one of the following to occur: A linear acceleration of the object

More information

Lecture PowerPoints. Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli

Lecture PowerPoints. Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli Lecture PowerPoints Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided

More information

What Is a Force? Slide Pearson Education, Inc.

What Is a Force? Slide Pearson Education, Inc. What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Dynamics Notes 1 Newton s Laws

Dynamics Notes 1 Newton s Laws Dynamics Notes 1 Newton s Laws In 1665 Sir Isaac Newton formulated three laws that dictate the motion of objects. These three laws are universal and apply to all forces in the universe. Newton s 1 st Law:

More information

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive?

An object moves back and forth, as shown in the position-time graph. At which points is the velocity positive? 1 The slope of the tangent on a position-time graph equals the instantaneous velocity 2 The area under the curve on a velocity-time graph equals the: displacement from the original position to its position

More information

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life. Forces and Newton s Laws Reading Notes Name: Section 4-1: Force What is force? Give an example of a force you have experienced continuously all your life. Give an example of a situation where an object

More information

1 In the absence of a net force, a moving object will. slow down and eventually stop stop immediately turn right move with constant velocity turn left

1 In the absence of a net force, a moving object will. slow down and eventually stop stop immediately turn right move with constant velocity turn left Slide 1 / 51 1 In the absence of a net force, a moving object will slow down and eventually stop stop immediately turn right move with constant velocity turn left Slide 2 / 51 2 When a cat sleeps on a

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 4 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Show all workings for questions that involve multiple choice.

Show all workings for questions that involve multiple choice. Assignment 2 Unit 2 Newton s Laws (Outcomes 325-5, 325-8) Name: Multiple Choice: Show all workings for questions that involve multiple choice. 1 Which choice represents a NON-INERTIAL frame of reference?

More information

AP Physics 1 Multiple Choice Questions - Chapter 4

AP Physics 1 Multiple Choice Questions - Chapter 4 1 Which of ewton's Three Laws of Motion is best expressed by the equation F=ma? a ewton's First Law b ewton's Second Law c ewton's Third Law d one of the above 4.1 2 A person is running on a track. Which

More information

Physics 8 Wednesday, September 27, 2017

Physics 8 Wednesday, September 27, 2017 Physics 8 Wednesday, September 27, 2017 Remember HW #4 due this Friday (but Monday is OK, if you prefer). It covers Chapters 7 (interactions) and 8 (force). No HW problems next week. Homework study/help

More information

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box?

Which, if any, of the velocity versus time graphs below represent the movement of the sliding box? Review Packet Name: _ 1. A box is sliding to the right along a horizontal surface with a velocity of 2 m/s. There is friction between the box and the horizontal surface. The box is tied to a hanging stone

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

Old Exam. Question Chapter 7 072

Old Exam. Question Chapter 7 072 Old Exam. Question Chapter 7 072 Q1.Fig 1 shows a simple pendulum, consisting of a ball of mass M = 0.50 kg, attached to one end of a massless string of length L = 1.5 m. The other end is fixed. If the

More information

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,

More information

Newton s First Law and IRFs

Newton s First Law and IRFs Goals: Physics 207, Lecture 6, Sept. 22 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Solve 1D and 2D

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

More information

Concept of Force Challenge Problem Solutions

Concept of Force Challenge Problem Solutions Concept of Force Challenge Problem Solutions Problem 1: Force Applied to Two Blocks Two blocks sitting on a frictionless table are pushed from the left by a horizontal force F, as shown below. a) Draw

More information

Energy and Momentum Review Problems

Energy and Momentum Review Problems Energy and Momentum Review Problems NAME 1. In which one of the following situations is zero net work done? A) A ball rolls down an inclined plane. B) A physics student stretches a spring. C) A projectile

More information

2. If a net horizontal force of 175 N is applied to a bike whose mass is 43 kg what acceleration is produced?

2. If a net horizontal force of 175 N is applied to a bike whose mass is 43 kg what acceleration is produced? Chapter Problems Newton s 2nd Law: Class Work 1. A 0.40 kg toy car moves at constant acceleration of 2.3 m/s 2. Determine the net applied force that is responsible for that acceleration. 2. If a net horizontal

More information

Test Booklet. Subject: SC, Grade: HS 2008 Grade High School Physics. Student name:

Test Booklet. Subject: SC, Grade: HS 2008 Grade High School Physics. Student name: Test ooklet Subject: S, Grade: HS 2008 Grade High School Physics Student name: uthor: North arolina istrict: North arolina Released Tests Printed: Monday July 09, 2012 1 n object is launched across a room.

More information

PSI AP Physics B Dynamics

PSI AP Physics B Dynamics PSI AP Physics B Dynamics Multiple-Choice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second

More information

Multiple Choice Practice

Multiple Choice Practice Class: Date: Multiple Choice Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An ice skater moving at 10.0 m/s coasts to a halt in 1.0 10 2 m on

More information

Show all workings for questions that involve calculations. No marks will be given for correct answers that are not supported by calculations.

Show all workings for questions that involve calculations. No marks will be given for correct answers that are not supported by calculations. Assignment 8 Unit 2 Newton s Laws (Outcomes 325-5, 325-8) Name: Multiple Choice: Show all workings for questions that involve calculations. No marks will be given for correct answers that are not supported

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Chapter 4 NEWTONS LAWS. Newton s 3 Laws Force Diagrams Balanced Forces Unbalanced Forces

Chapter 4 NEWTONS LAWS. Newton s 3 Laws Force Diagrams Balanced Forces Unbalanced Forces Chapter 4 NEWTONS LAWS Newton s 3 Laws Force Diagrams Balanced Forces Unbalanced Forces Force: a push or a pull Measured in Newton Vector Quantity Contact Force: applied by direct contact Field Force:

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

More information

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds?

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds? Newton s Laws 1 1. Define mass variable Formula S or v SI 2. Define inertia, how is inertia related to mass 3. What is a Force? variable Formula S or v SI 4. How is a Newton defined? What does a Newton

More information

Physics 180A Test Points

Physics 180A Test Points Physics 180A Test 2-120 Points Name 1) Describe each situation and fill in the blanks to the diagram below. There are 4 situations and 8 blanks. (12 pts) 2) A crate slides up an inclined ramp and then

More information

Pulling force $ % 6 Least

Pulling force $ % 6 Least B3-RT2: ROPES PULLING BOXES ACCELERATION Boxes are pulled by ropes along frictionless surfaces, accelerating toward the left. of the boxes are identical. The pulling force applied to the left-most rope

More information

Final Exam Review Answers

Final Exam Review Answers Weight (Pounds) Final Exam Review Answers Questions 1-8 are based on the following information: A student sets out to lose some weight. He made a graph of his weight loss over a ten week period. 180 Weight

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

Topic 2 Revision questions Paper

Topic 2 Revision questions Paper Topic 2 Revision questions Paper 1 3.1.2018 1. [1 mark] The graph shows the variation of the acceleration a of an object with time t. What is the change in speed of the object shown by the graph? A. 0.5

More information

Newton s Laws of Motion. Chapter 4

Newton s Laws of Motion. Chapter 4 Newton s Laws of Motion Chapter 4 Newton s First Law of Motion Force A force is a push or pull. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. Force

More information

Chapter 4. Forces in One Dimension

Chapter 4. Forces in One Dimension Chapter 4 Forces in One Dimension Chapter 4 Forces in One Dimension In this chapter you will: *VD Note Use Newton s laws to solve problems. Determine the magnitude and direction of the net force that causes

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

Summary. Chapter summary. Teaching Tip CHAPTER 4

Summary. Chapter summary. Teaching Tip CHAPTER 4 Chapter summary Teaching Tip Ask students to prepare a concept map for the chapter. The concept map should include most of the vocabulary terms, along with other integral terms or concepts. CHAPTER 4 Summary

More information

Name: Date: Period: AP Physics C Work HO11

Name: Date: Period: AP Physics C Work HO11 Name: Date: Period: AP Physics C Work HO11 1.) Rat pushes a 25.0 kg crate a distance of 6.0 m along a level floor at constant velocity by pushing horizontally on it. The coefficient of kinetic friction

More information

Welcome to Forces an anticipation guide A force is defined as a push or a pull When answering the following true or false statements, offer a

Welcome to Forces an anticipation guide A force is defined as a push or a pull When answering the following true or false statements, offer a Welcome to Forces an anticipation guide A force is defined as a push or a pull When answering the following true or false statements, offer a real-life example that justifies your answer. You haven t answered

More information

Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics)

Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics) Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics) Instructions: Pick the best answer available for Part A. Show all your work for each question in Part B Part A: Multiple-Choice 1. Inertia

More information

Name: Unit 4 Newton s 1 st & 3 rd Law

Name: Unit 4 Newton s 1 st & 3 rd Law Name: Period: Table #: Unit 4 Newton s 1 st & 3 rd Law 1 UNIT IV: Reading - Force Diagrams The analysis of a problem in dynamics usually involves the selection and analysis of the relevant forces acting

More information

Energy Whiteboard Problems

Energy Whiteboard Problems Energy Whiteboard Problems 1. (a) Consider an object that is thrown vertically up into the air. Draw a graph of gravitational force vs. height for that object. (b) Based on your experience with the formula

More information

Lecture 6 Force and Motion. Identifying Forces Free-body Diagram Newton s Second Law

Lecture 6 Force and Motion. Identifying Forces Free-body Diagram Newton s Second Law Lecture 6 Force and Motion Identifying Forces Free-body Diagram Newton s Second Law We are now moving on from the study of motion to studying what causes motion. Forces are what cause motion. Forces are

More information

Physics 201 Lecture 16

Physics 201 Lecture 16 Physics 01 Lecture 16 Agenda: l Review for exam Lecture 16 Newton s Laws Three blocks are connected on the table as shown. The table has a coefficient of kinetic friction of 0.350, the masses are m 1 =

More information

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1

University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction

More information

RELEASED FORM RELEASED. North Carolina Test of Physics

RELEASED FORM RELEASED. North Carolina Test of Physics Name Physics Form North arolina Test of Physics RELESE Public Schools of North arolina www.ncpublicschools.org State oard of Education epartment of Public Instruction ivision of ccountability Services/North

More information

Motor. Cable. Elevator

Motor. Cable. Elevator Q4.1 An elevator is being lifted at a constant speed by a steel cable attached to an electric motor. There is no air resistance, nor is there any friction between the elevator and the walls of the elevator

More information

Physics 8 Monday, September 21, 2015

Physics 8 Monday, September 21, 2015 Physics 8 Monday, September 21, 2015 HW4 will be due on Friday, October 2. I ll hand it out this Wednesday. Nothing to read for this Wednesday. But for your day off on Friday, read Chapter 9 ( Work ).

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. NAME: 4. Units of power include which of the following?

More information

4.2. Visualize: Assess: Note that the climber does not touch the sides of the crevasse so there are no forces from the crevasse walls.

4.2. Visualize: Assess: Note that the climber does not touch the sides of the crevasse so there are no forces from the crevasse walls. 4.1. Solve: A force is basically a push or a pull on an object. There are five basic characteristics of forces. (i) A force has an agent that is the direct and immediate source of the push or pull. (ii)

More information

Physics 8 Wednesday, October 11, 2017

Physics 8 Wednesday, October 11, 2017 Physics 8 Wednesday, October 11, 2017 HW5 due Friday. It s really Friday this week! Homework study/help sessions (optional): Bill will be in DRL 2C6 Wednesdays from 4 6pm (today). Grace will be in DRL

More information

8. The graph below shows a beetle s movement along a plant stem.

8. The graph below shows a beetle s movement along a plant stem. Name: Block: Date: Introductory Physics: Midyear Review 1. Motion and Forces Central Concept: Newton s laws of motion and gravitation describe and predict the motion of most objects. 1.1 Compare and contrast

More information

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc. Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S Central Concept: Newton s laws of motion and gravitation describe and predict the motion

More information

Newton s 3 Laws of Motion

Newton s 3 Laws of Motion Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Quiz 3 4.7 The Gravitational Force Newton s Law of Universal Gravitation Every particle in the universe exerts an attractive force on every other

More information

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information