9.2 Geometric Series Review

Size: px
Start display at page:

Download "9.2 Geometric Series Review"

Transcription

1 9.2 Geometric Series Review Geometric Series a= starting term, x=constant ratio of each term to preceding one ax i = i=0 a x when x < and diverges otherwise n th partial sum (st n terms added): n ax i = a( x n ) x for x Example: n 2 2 i=0 i = n i= i=0 i 2 careful of starting # and index Math 20: Calculus and Analytic Geometry II

2 9.3 Series: Partial Sums More Generally a n and convergence? [9.3, 9.4, 9.5, chapter 0] n= Math 20: Calculus and Analytic Geometry II

3 9.3 Series: Partial Sums More Generally a n and convergence? [9.3, 9.4, 9.5, chapter 0] n= n th partial sum (st n terms added): n i= a i = n a i i=0 sequence of partial sums S n converges series does so examine lim S n n Example: n= n(n+) Math 20: Calculus and Analytic Geometry II

4 9.3 Series: Partial Sums More Generally a n and convergence? [9.3, 9.4, 9.5, chapter 0] n= n th partial sum (st n terms added): n i= a i = n a i i=0 sequence of partial sums S n converges series does so examine lim S n n Example: n(n+) S n = n n+ n= Math 20: Calculus and Analytic Geometry II

5 9.3 Series: Partial Sums More Generally a n and convergence? [9.3, 9.4, 9.5, chapter 0] n= n th partial sum (st n terms added): n= n i= a i = n a i i=0 sequence of partial sums S n converges series does so examine lim S n n Example: n(n+) S n = n n+ lim S n = n Math 20: Calculus and Analytic Geometry II

6 9.3: Terms Not Going to 0 terms not going to 0: lim a n 0 or DNE, then partial n sums diverge and so does the series. Example: n= 5+n 2n+ Math 20: Calculus and Analytic Geometry II

7 Clicker Question. What can we say about the series () n? n= a) it is a geometric series with a constant ratio of each term to its preceding one x b) we can find a pattern for the partial sums S n = n a i i= c) lim n a n 0 so we can apply the terms not going to 0 d) all of the above Math 20: Calculus and Analytic Geometry II

8 Clicker Question. What can we say about the series () n? n= a) it is a geometric series with a constant ratio of each term to its preceding one x b) we can find a pattern for the partial sums S n = n a i i= c) lim n a n 0 so we can apply the terms not going to 0 d) all of the above Math 20: Calculus and Analytic Geometry II

9 9.3:Linearity for Convergence or Divergence Linearity: a n converges to S and b n converges to n= T, and k is any constant, then ks + T. n= ka n + b n converges to n= Math 20: Calculus and Analytic Geometry II

10 9.3:Linearity for Convergence or Divergence Linearity: a n converges to S and n= T, and k is any constant, then b n converges to n= ka n + b n converges to n= ks + T. Application : add two geometric series (converge to sum) Math 20: Calculus and Analytic Geometry II

11 9.3:Linearity for Convergence or Divergence Linearity: a n converges to S and n= T, and k is any constant, then b n converges to n= ka n + b n converges to n= ks + T. Application : add two geometric series (converge to sum) Application 2: add divergent & convergent series (diverge) Example: ( 2 )n + n. n= Diverges, because if it were convergent, then subtract convergent ( 2 )n and the result should converge by n= linearity, but doesn t! Math 20: Calculus and Analytic Geometry II

12 2. What can we say about Clicker Question n= 3 n + 2 n? a) It is a geometric series so we can apply 9.2 methods to determine convergence by checking if x < or divergence otherwise b) We can use the lim n a n 0 to determine divergence c) We can use linearity to determine convergence or divergence d) all of the above e) none of the above Math 20: Calculus and Analytic Geometry II

13 2. What can we say about Clicker Question n= 3 n + 2 n? a) It is a geometric series so we can apply 9.2 methods to determine convergence by checking if x < or divergence otherwise b) We can use the lim n a n 0 to determine divergence c) We can use linearity to determine convergence or divergence d) all of the above e) none of the above = n 3 n + n 2 n = ( 3 )n + ( 2 )n n= n= Math 20: Calculus and Analytic Geometry II

14 Clicker Question 3. Do any of the following apply to n= n? a) It is a geometric series so we can apply 9.2 methods to determine convergence by checking if x < or divergence otherwise b) We can use the lim n n 0 to determine divergence of c) We can use linearity to determine convergence d) all of the above e) none of the above n= n Math 20: Calculus and Analytic Geometry II

15 Clicker Question 3. Do any of the following apply to n= n? a) It is a geometric series so we can apply 9.2 methods to determine convergence by checking if x < or divergence otherwise b) We can use the lim n n 0 to determine divergence of c) We can use linearity to determine convergence d) all of the above e) none of the above n= n Math 20: Calculus and Analytic Geometry II

16 Math 20: Calculus and Analytic Geometry II

17 Harmonic series N= N diverges by growing to slowly! Why? Integral Test Math 20: Calculus and Analytic Geometry II

18 9.3: Integral Test Bounds If series has terms that are decreasing and positive (eventually), the integral test not only tells us about convergence, but also bounds the series: a =f() a a 2 a 3 a 4 Math 20: Calculus and Analytic Geometry II

19 9.3: Integral Test Bounds If series has terms that are decreasing and positive (eventually), the integral test not only tells us about convergence, but also bounds the series: a =f() a a 2 a 3 a 4 f (x)dx a n Math 20: Calculus and Analytic Geometry II

20 9.3: Integral Test Bounds If series has terms that are decreasing and positive, the integral test not only tells us about convergence, but also bounds the series: a =f() a a 2 a 3 a 4 Math 20: Calculus and Analytic Geometry II

21 9.3: Integral Test Bounds If series has terms that are decreasing and positive, the integral test not only tells us about convergence, but also bounds the series: a =f() a a 2 a 3 a 4 a a 2 a 3 a 4 a 5 f (x)dx a n a + f (x)dx Math 20: Calculus and Analytic Geometry II

22 Harmonic series N= N diverges by growing to slowly! Why? Integral Test assumptions: terms are decreasing, a n > 0, known integral Math 20: Calculus and Analytic Geometry II

23 Harmonic series N= N diverges by growing to slowly! Why? Integral Test assumptions: terms are decreasing, a n > 0, known integral yes so test applies Math 20: Calculus and Analytic Geometry II

24 Harmonic series N= N diverges by growing to slowly! Why? Integral Test assumptions: terms are decreasing, a n > 0, known integral yes so test applies b dx = lim x b x dx = Math 20: Calculus and Analytic Geometry II

25 Harmonic series N= N diverges by growing to slowly! Why? Integral Test assumptions: terms are decreasing, a n > 0, known integral yes so test applies b dx = lim x b x dx = lim ln(x) b b = Math 20: Calculus and Analytic Geometry II

26 Harmonic series N= N diverges by growing to slowly! Why? Integral Test assumptions: terms are decreasing, a n > 0, known integral yes so test applies b dx = lim x b x dx = lim ln(x) b b = lim ln(b) ln() b diverges so series does too Math 20: Calculus and Analytic Geometry II

27 9.3: Integral Test For a n, if the terms are decreasing and a n > 0 then the series behaves the same way as a n dn. So look for decreasing and positive terms (eventually) that we can integrate (Calc I or Chap 7) + improper integral. Otherwise the test does NOT help. Math 20: Calculus and Analytic Geometry II

28 9.3: Integral Test For a n, if the terms are decreasing and a n > 0 then the series behaves the same way as a n dn. So look for decreasing and positive terms (eventually) that we can integrate (Calc I or Chap 7) + improper integral. Otherwise the test does NOT help. p series conv if p > and div if p by int test n= n p Math 20: Calculus and Analytic Geometry II

29 Math 20: Calculus and Analytic Geometry II

30 Geo series n 2 2 i=0 i = n i= i 2 converges as n to 2 2 slowly (Zeno s paradox) = hamster Math 20: Calculus and Analytic Geometry II

31 Clicker Question 4. Which of the following are true regarding n=2 2n 4+n 2? a) It is a geometric series so we can apply 9.2 methods to determine convergence by checking if x < or divergence otherwise 2n b) lim 0 determines divergence of n 4+n 2 n=2 2n 4+n 2 c) We can use linearity to determine convergence d) We can use the integral test to determine convergence e) none of the above Math 20: Calculus and Analytic Geometry II

32 Clicker Question 4. Which of the following are true regarding n=2 2n 4+n 2? a) It is a geometric series so we can apply 9.2 methods to determine convergence by checking if x < or divergence otherwise 2n b) lim 0 determines divergence of n 4+n 2 n=2 2n 4+n 2 c) We can use linearity to determine convergence d) We can use the integral test to determine convergence e) none of the above Math 20: Calculus and Analytic Geometry II

33 5. Does the series Clicker Question ( ) n converge? n= a) yes and I have a good reason why b) yes but I am unsure of why c) no, but I am unsure of why d) no, and I have a good reason why e) it is not a series, so no Math 20: Calculus and Analytic Geometry II

34 5. Does the series Clicker Question ( ) n converge? n= a) yes and I have a good reason why b) yes but I am unsure of why c) no, but I am unsure of why d) no, and I have a good reason why e) it is not a series, so no Math 20: Calculus and Analytic Geometry II

35 History and Applications Brahmagupta gave rules for summing series in his 628 work Brahmasphutasiddanta (Opening of the Universe) wheat (or rice) and chess problem. Stories of 63 n=0 2 n grains owed by King (8,446,744,073,709,55,65) Nicole Oresme (4th century) harmonic series diverging. Name from wavelengths of the overtones of a vibrating string. Architects. James Gregory (668) introduced the terms convergence and divergence Integral test was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin-Cauchy test (or by either name). infinite series are widely used in mathematics & other quantitative disciplines such as physics, computer science, & finance. Math 20: Calculus and Analytic Geometry II

9.2 Geometric Series

9.2 Geometric Series 9.2 Geometric Series series: add the terms in a sequence geometric series ratio between any two consecutive terms is constant: n 1 ax i = a + ax + ax 2 +... + ax n 1 sum of the first n terms? 9.2 Geometric

More information

Absolute Convergence and the Ratio & Root Tests

Absolute Convergence and the Ratio & Root Tests Absolute Convergence and the Ratio & Root Tests Math114 Department of Mathematics, University of Kentucky February 20, 2017 Math114 Lecture 15 1/ 12 ( 1) n 1 = 1 1 + 1 1 + 1 1 + Math114 Lecture 15 2/ 12

More information

The integral test and estimates of sums

The integral test and estimates of sums The integral test Suppose f is a continuous, positive, decreasing function on [, ) and let a n = f (n). Then the series n= a n is convergent if and only if the improper integral f (x)dx is convergent.

More information

Math 0230 Calculus 2 Lectures

Math 0230 Calculus 2 Lectures Math 00 Calculus Lectures Chapter 8 Series Numeration of sections corresponds to the text James Stewart, Essential Calculus, Early Transcendentals, Second edition. Section 8. Sequences A sequence is a

More information

10.1 Approximating f (x): Taylor Polynomials. f (x) is back. Approximate behavior of f (x) at (a, f (a))? Degree 0 Taylor polynomial: f (a)

10.1 Approximating f (x): Taylor Polynomials. f (x) is back. Approximate behavior of f (x) at (a, f (a))? Degree 0 Taylor polynomial: f (a) 10.1 Approximating f (x): Taylor Polynomials f (x) is back. Approximate behavior of f (x) at (a, f (a))? Degree 0 Taylor polynomial: f (a) 10.1 Approximating f (x): Taylor Polynomials f (x) is back. Approximate

More information

Because of the special form of an alternating series, there is an simple way to determine that many such series converge:

Because of the special form of an alternating series, there is an simple way to determine that many such series converge: Section.5 Absolute and Conditional Convergence Another special type of series that we will consider is an alternating series. A series is alternating if the sign of the terms alternates between positive

More information

AP Calculus Chapter 9: Infinite Series

AP Calculus Chapter 9: Infinite Series AP Calculus Chapter 9: Infinite Series 9. Sequences a, a 2, a 3, a 4, a 5,... Sequence: A function whose domain is the set of positive integers n = 2 3 4 a n = a a 2 a 3 a 4 terms of the sequence Begin

More information

(Infinite) Series Series a n = a 1 + a 2 + a a n +...

(Infinite) Series Series a n = a 1 + a 2 + a a n +... (Infinite) Series Series a n = a 1 + a 2 + a 3 +... + a n +... What does it mean to add infinitely many terms? The sequence of partial sums S 1, S 2, S 3, S 4,...,S n,...,where nx S n = a i = a 1 + a 2

More information

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell Power Series Part 1 1 Power Series Suppose x is a variable and c k & a are constants. A power series about x = 0 is c k x k A power series about x = a is c k x a k a = center of the power series c k =

More information

Convergence Tests. Theorem. (the divergence test)., then the series u k diverges. k k. (b) If lim u = 0, then the series u may either converge

Convergence Tests. Theorem. (the divergence test)., then the series u k diverges. k k. (b) If lim u = 0, then the series u may either converge Convergence Tests We are now interested in developing tests to tell whether or not a series converges, without having to guess at its sum. The first such test is entirely a negative result. Theorem. (the

More information

Sequences and infinite series

Sequences and infinite series Sequences and infinite series D. DeTurck University of Pennsylvania March 29, 208 D. DeTurck Math 04 002 208A: Sequence and series / 54 Sequences The lists of numbers you generate using a numerical method

More information

Introduction Derivation General formula List of series Convergence Applications Test SERIES 4 INU0114/514 (MATHS 1)

Introduction Derivation General formula List of series Convergence Applications Test SERIES 4 INU0114/514 (MATHS 1) MACLAURIN SERIES SERIES 4 INU0114/514 (MATHS 1) Dr Adrian Jannetta MIMA CMath FRAS Maclaurin Series 1/ 21 Adrian Jannetta Recap: Binomial Series Recall that some functions can be rewritten as a power series

More information

Assignment 16 Solution. Please do not copy and paste my answer. You will get similar questions but with different numbers!

Assignment 16 Solution. Please do not copy and paste my answer. You will get similar questions but with different numbers! Assignment 6 Solution Please do not copy and paste my answer. You will get similar questions but with different numbers! Suppose f is a continuous, positive, decreasing function on [, ) and let a n = f

More information

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 8. Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = Examples: 6. Find a formula for the general term a n of the sequence, assuming

More information

Series. richard/math230 These notes are taken from Calculus Vol I, by Tom M. Apostol,

Series.  richard/math230 These notes are taken from Calculus Vol I, by Tom M. Apostol, Series Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math230 These notes are taken from Calculus Vol I, by Tom

More information

Review (11.1) 1. A sequence is an infinite list of numbers {a n } n=1 = a 1, a 2, a 3, The sequence is said to converge if lim

Review (11.1) 1. A sequence is an infinite list of numbers {a n } n=1 = a 1, a 2, a 3, The sequence is said to converge if lim Announcements: Note that we have taking the sections of Chapter, out of order, doing section. first, and then the rest. Section. is motivation for the rest of the chapter. Do the homework questions from

More information

The infinite series is written using sigma notation as: lim u k. lim. better yet, we can say if the

The infinite series is written using sigma notation as: lim u k. lim. better yet, we can say if the Divergence and Integral Test With the previous content, we used the idea of forming a closed form for the n th partial sum and taking its limit to determine the SUM of the series (if it exists). *** It

More information

5.9 Representations of Functions as a Power Series

5.9 Representations of Functions as a Power Series 5.9 Representations of Functions as a Power Series Example 5.58. The following geometric series x n + x + x 2 + x 3 + x 4 +... will converge when < x

More information

Chapter 8. Infinite Series

Chapter 8. Infinite Series 8.4 Series of Nonnegative Terms Chapter 8. Infinite Series 8.4 Series of Nonnegative Terms Note. Given a series we have two questions:. Does the series converge? 2. If it converges, what is its sum? Corollary

More information

Math 1b Sequences and series summary

Math 1b Sequences and series summary Math b Sequences and series summary December 22, 2005 Sequences (Stewart p. 557) Notations for a sequence: or a, a 2, a 3,..., a n,... {a n }. The numbers a n are called the terms of the sequence.. Limit

More information

MATH115. Infinite Series. Paolo Lorenzo Bautista. July 17, De La Salle University. PLBautista (DLSU) MATH115 July 17, / 43

MATH115. Infinite Series. Paolo Lorenzo Bautista. July 17, De La Salle University. PLBautista (DLSU) MATH115 July 17, / 43 MATH115 Infinite Series Paolo Lorenzo Bautista De La Salle University July 17, 2014 PLBautista (DLSU) MATH115 July 17, 2014 1 / 43 Infinite Series Definition If {u n } is a sequence and s n = u 1 + u 2

More information

Introduction to Series and Sequences Math 121 Calculus II Spring 2015

Introduction to Series and Sequences Math 121 Calculus II Spring 2015 Introduction to Series and Sequences Math Calculus II Spring 05 The goal. The main purpose of our study of series and sequences is to understand power series. A power series is like a polynomial of infinite

More information

The polar coordinates

The polar coordinates The polar coordinates 1 2 3 4 Graphing in polar coordinates 5 6 7 8 Area and length in polar coordinates 9 10 11 Partial deravitive 12 13 14 15 16 17 18 19 20 Double Integral 21 22 23 24 25 26 27 Triple

More information

Polynomial Approximations and Power Series

Polynomial Approximations and Power Series Polynomial Approximations and Power Series June 24, 206 Tangent Lines One of the first uses of the derivatives is the determination of the tangent as a linear approximation of a differentiable function

More information

Infinite series, improper integrals, and Taylor series

Infinite series, improper integrals, and Taylor series Chapter 2 Infinite series, improper integrals, and Taylor series 2. Introduction to series In studying calculus, we have explored a variety of functions. Among the most basic are polynomials, i.e. functions

More information

Preliminary check: are the terms that we are adding up go to zero or not? If not, proceed! If the terms a n are going to zero, pick another test.

Preliminary check: are the terms that we are adding up go to zero or not? If not, proceed! If the terms a n are going to zero, pick another test. Throughout these templates, let series. be a series. We hope to determine the convergence of this Divergence Test: If lim is not zero or does not exist, then the series diverges. Preliminary check: are

More information

The Comparison Test & Limit Comparison Test

The Comparison Test & Limit Comparison Test The Comparison Test & Limit Comparison Test Math4 Department of Mathematics, University of Kentucky February 5, 207 Math4 Lecture 3 / 3 Summary of (some of) what we have learned about series... Math4 Lecture

More information

Chapter 11: Equations with Derivatives

Chapter 11: Equations with Derivatives Chapter 11: Equations with Derivatives Calc II & analytic geo Calc III & analytic geo differential geometry differential equations partial differential equations namical systems 11.1: Differential Equations

More information

Let s Get Series(ous)

Let s Get Series(ous) Department of Mathematics, Computer Science, and Statistics Bloomsburg University Bloomsburg, Pennsylvania 785 Let s Get Series(ous) Summary Presenting infinite series can be (used to be) a tedious and

More information

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer.

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer. Math 22 - Review for Exam 3. Answer each of the following questions as either True or False. Circle the correct answer. (a) True/False: If a n > 0 and a n 0, the series a n converges. Soln: False: Let

More information

10.1 Sequences. A sequence is an ordered list of numbers: a 1, a 2, a 3,..., a n, a n+1,... Each of the numbers is called a term of the sequence.

10.1 Sequences. A sequence is an ordered list of numbers: a 1, a 2, a 3,..., a n, a n+1,... Each of the numbers is called a term of the sequence. 10.1 Sequences A sequence is an ordered list of numbers: a 1, a 2, a 3,..., a n, a n+1,... Each of the numbers is called a term of the sequence. Notation: A sequence {a 1, a 2, a 3,...} can be denoted

More information

Final exam (practice) UCLA: Math 31B, Spring 2017

Final exam (practice) UCLA: Math 31B, Spring 2017 Instructor: Noah White Date: Final exam (practice) UCLA: Math 3B, Spring 207 This exam has 8 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions in the

More information

MATH 1231 MATHEMATICS 1B Calculus Section 4.4: Taylor & Power series.

MATH 1231 MATHEMATICS 1B Calculus Section 4.4: Taylor & Power series. MATH 1231 MATHEMATICS 1B 2010. For use in Dr Chris Tisdell s lectures. Calculus Section 4.4: Taylor & Power series. 1. What is a Taylor series? 2. Convergence of Taylor series 3. Common Maclaurin series

More information

NORTHEASTERN UNIVERSITY Department of Mathematics

NORTHEASTERN UNIVERSITY Department of Mathematics NORTHEASTERN UNIVERSITY Department of Mathematics MATH 1342 (Calculus 2 for Engineering and Science) Final Exam Spring 2010 Do not write in these boxes: pg1 pg2 pg3 pg4 pg5 pg6 pg7 pg8 Total (100 points)

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

Series. Definition. a 1 + a 2 + a 3 + is called an infinite series or just series. Denoted by. n=1

Series. Definition. a 1 + a 2 + a 3 + is called an infinite series or just series. Denoted by. n=1 Definition a 1 + a 2 + a 3 + is called an infinite series or just series. Denoted by a n, or a n. Chapter 11: Sequences and, Section 11.2 24 / 40 Given a series a n. The partial sum is the sum of the first

More information

Math 162 Review of Series

Math 162 Review of Series Math 62 Review of Series. Explain what is meant by f(x) dx. What analogy (analogies) exists between such an improper integral and an infinite series a n? An improper integral with infinite interval of

More information

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 10.1 Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1 Examples: EX1: Find a formula for the general term a n of the sequence,

More information

Math 162: Calculus IIA

Math 162: Calculus IIA Math 62: Calculus IIA Final Exam ANSWERS December 9, 26 Part A. (5 points) Evaluate the integral x 4 x 2 dx Substitute x 2 cos θ: x 8 cos dx θ ( 2 sin θ) dθ 4 x 2 2 sin θ 8 cos θ dθ 8 cos 2 θ cos θ dθ

More information

Objectives. Materials

Objectives. Materials Activity 8 Exploring Infinite Series Objectives Identify a geometric series Determine convergence and sum of geometric series Identify a series that satisfies the alternating series test Use a graphing

More information

MATH115. Indeterminate Forms and Improper Integrals. Paolo Lorenzo Bautista. June 24, De La Salle University

MATH115. Indeterminate Forms and Improper Integrals. Paolo Lorenzo Bautista. June 24, De La Salle University MATH115 Indeterminate Forms and Improper Integrals Paolo Lorenzo Bautista De La Salle University June 24, 2014 PLBautista (DLSU) MATH115 June 24, 2014 1 / 25 Theorem (Mean-Value Theorem) Let f be a function

More information

Absolute Convergence and the Ratio Test

Absolute Convergence and the Ratio Test Absolute Convergence and the Ratio Test MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Bacground Remar: All previously covered tests for convergence/divergence apply only

More information

Homework Problem Answers

Homework Problem Answers Homework Problem Answers Integration by Parts. (x + ln(x + x. 5x tan 9x 5 ln sec 9x 9 8 (. 55 π π + 6 ln 4. 9 ln 9 (ln 6 8 8 5. (6 + 56 0/ 6. 6 x sin x +6cos x. ( + x e x 8. 4/e 9. 5 x [sin(ln x cos(ln

More information

Math 104 Calculus 8.8 Improper Integrals. Math Yu

Math 104 Calculus 8.8 Improper Integrals. Math Yu Math 04 Calculus 8.8 Improper Integrals Math 04 - Yu Improper Integrals Goal: To evaluate integrals of func?ons over infinite intervals or with an infinite discon?nuity. Method: We replace the bad endpoints

More information

Math 113 (Calculus II) Final Exam KEY

Math 113 (Calculus II) Final Exam KEY Math (Calculus II) Final Exam KEY Short Answer. Fill in the blank with the appropriate answer.. (0 points) a. Let y = f (x) for x [a, b]. Give the formula for the length of the curve formed by the b graph

More information

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx Millersville University Name Answer Key Mathematics Department MATH 2, Calculus II, Final Examination May 4, 2, 8:AM-:AM Please answer the following questions. Your answers will be evaluated on their correctness,

More information

Math 143 Flash Cards. Divergence of a sequence {a n } {a n } diverges to. Sandwich Theorem for Sequences. Continuous Function Theorem for Sequences

Math 143 Flash Cards. Divergence of a sequence {a n } {a n } diverges to. Sandwich Theorem for Sequences. Continuous Function Theorem for Sequences Math Flash cards Math 143 Flash Cards Convergence of a sequence {a n } Divergence of a sequence {a n } {a n } diverges to Theorem (10.1) {a n } diverges to Sandwich Theorem for Sequences Theorem (10.1)

More information

Review Sheet on Convergence of Series MATH 141H

Review Sheet on Convergence of Series MATH 141H Review Sheet on Convergence of Series MATH 4H Jonathan Rosenberg November 27, 2006 There are many tests for convergence of series, and frequently it can been confusing. How do you tell what test to use?

More information

Sec 2.2: Infinite Limits / Vertical Asymptotes Sec 2.6: Limits At Infinity / Horizontal Asymptotes

Sec 2.2: Infinite Limits / Vertical Asymptotes Sec 2.6: Limits At Infinity / Horizontal Asymptotes Sec 2.2: Infinite Limits / Vertical Asymptotes Sec 2.6: Limits At Infinity / Horizontal Asymptotes Sec 2.2: Infinite Limits / Vertical Asymptotes Sec 2.6: Limits At Infinity / Horizontal Asymptotes Infinite

More information

Sec 2.2: Infinite Limits / Vertical Asymptotes Sec 2.6: Limits At Infinity / Horizontal Asymptotes

Sec 2.2: Infinite Limits / Vertical Asymptotes Sec 2.6: Limits At Infinity / Horizontal Asymptotes Sec 2.2: Infinite Limits / Vertical Asymptotes Sec 2.6: Limits At Infinity / Horizontal Asymptotes Sec 2.2: Infinite Limits / Vertical Asymptotes Sec 2.6: Limits At Infinity / Horizontal Asymptotes Infinite

More information

CHAPTER 11. SEQUENCES AND SERIES 114. a 2 = 2 p 3 a 3 = 3 p 4 a 4 = 4 p 5 a 5 = 5 p 6. n +1. 2n p 2n +1

CHAPTER 11. SEQUENCES AND SERIES 114. a 2 = 2 p 3 a 3 = 3 p 4 a 4 = 4 p 5 a 5 = 5 p 6. n +1. 2n p 2n +1 CHAPTER. SEQUENCES AND SERIES.2 Series Example. Let a n = n p. (a) Find the first 5 terms of the sequence. Find a formula for a n+. (c) Find a formula for a 2n. (a) a = 2 a 2 = 2 p 3 a 3 = 3 p a = p 5

More information

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. SECTION A 1. State the maximal domain and range of the function f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. 2. By evaluating f(0),

More information

Absolute Convergence and the Ratio Test

Absolute Convergence and the Ratio Test Absolute Convergence and the Ratio Test MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Bacground Remar: All previously covered tests for convergence/divergence apply only

More information

AP Calc BC Convergence Tests Name: Block: Seat:

AP Calc BC Convergence Tests Name: Block: Seat: AP Calc BC Convergence Tests Name: Block: Seat: n th Term Divergence Test n=k diverges if lim n a n 0 a n diverges if lim n a n does not exist 1. Determine the convergence n 1 n + 1 Geometric Series The

More information

Math 113: Quiz 6 Solutions, Fall 2015 Chapter 9

Math 113: Quiz 6 Solutions, Fall 2015 Chapter 9 Math 3: Quiz 6 Solutions, Fall 05 Chapter 9 Keep in mind that more than one test will wor for a given problem. I chose one that wored. In addition, the statement lim a LR b means that L Hôpital s rule

More information

Chapter 11: Sequences; Indeterminate Forms; Improper Integrals

Chapter 11: Sequences; Indeterminate Forms; Improper Integrals Chapter 11: Sequences; Indeterminate Forms; Improper Integrals Section 11.1 The Least Upper Bound Axiom a. Least Upper Bound Axiom b. Examples c. Theorem 11.1.2 d. Example e. Greatest Lower Bound f. Theorem

More information

Integration by Parts

Integration by Parts Calculus 2 Lia Vas Integration by Parts Using integration by parts one transforms an integral of a product of two functions into a simpler integral. Divide the initial function into two parts called u

More information

Math WW08 Solutions November 19, 2008

Math WW08 Solutions November 19, 2008 Math 352- WW08 Solutions November 9, 2008 Assigned problems 8.3 ww ; 8.4 ww 2; 8.5 4, 6, 26, 44; 8.6 ww 7, ww 8, 34, ww 0, 50 Always read through the solution sets even if your answer was correct. Note

More information

Introduction Derivation General formula Example 1 List of series Convergence Applications Test SERIES 4 INU0114/514 (MATHS 1)

Introduction Derivation General formula Example 1 List of series Convergence Applications Test SERIES 4 INU0114/514 (MATHS 1) MACLAURIN SERIES SERIES 4 INU0114/514 (MATHS 1) Dr Adrian Jannetta MIMA CMath FRAS Maclaurin Series 1/ 19 Adrian Jannetta Background In this presentation you will be introduced to the concept of a power

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

Final Exam Review Quesitons

Final Exam Review Quesitons Final Exam Review Quesitons. Compute the following integrals. (a) x x 4 (x ) (x + 4) dx. The appropriate partial fraction form is which simplifies to x x 4 (x ) (x + 4) = A x + B (x ) + C x + 4 + Dx x

More information

Review of Power Series

Review of Power Series Review of Power Series MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Introduction In addition to the techniques we have studied so far, we may use power

More information

Power Series. Part 2 Differentiation & Integration; Multiplication of Power Series. J. Gonzalez-Zugasti, University of Massachusetts - Lowell

Power Series. Part 2 Differentiation & Integration; Multiplication of Power Series. J. Gonzalez-Zugasti, University of Massachusetts - Lowell Power Series Part 2 Differentiation & Integration; Multiplication of Power Series 1 Theorem 1 If a n x n converges absolutely for x < R, then a n f x n converges absolutely for any continuous function

More information

Convergence Tests. Academic Resource Center

Convergence Tests. Academic Resource Center Convergence Tests Academic Resource Center Series Given a sequence {a 0, a, a 2,, a n } The sum of the series, S n = A series is convergent if, as n gets larger and larger, S n goes to some finite number.

More information

SERIES REVIEW SHEET, SECTIONS 11.1 TO 11.5 OF OZ

SERIES REVIEW SHEET, SECTIONS 11.1 TO 11.5 OF OZ SERIES REVIEW SHEET, SECTIONS 11.1 TO 11.5 OF OZ Fill in the blanks and give the indicated examples, including reasons. Don t simply fill in the blanks and give the examples. Take this opportunity to really

More information

July 21 Math 2254 sec 001 Summer 2015

July 21 Math 2254 sec 001 Summer 2015 July 21 Math 2254 sec 001 Summer 2015 Section 8.8: Power Series Theorem: Let a n (x c) n have positive radius of convergence R, and let the function f be defined by this power series f (x) = a n (x c)

More information

Math 132 Exam 3 Fall 2016

Math 132 Exam 3 Fall 2016 Math 3 Exam 3 Fall 06 multiple choice questions worth points each. hand graded questions worth and 3 points each. Exam covers sections.-.6: Sequences, Series, Integral, Comparison, Alternating, Absolute

More information

Math 163: Lecture notes

Math 163: Lecture notes Math 63: Lecture notes Professor Monika Nitsche March 2, 2 Special functions that are inverses of known functions. Inverse functions (Day ) Go over: early exam, hw, quizzes, grading scheme, attendance

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES Infinite sequences and series were introduced briefly in A Preview of Calculus in connection with Zeno s paradoxes and the decimal representation

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

Chapter 9: Infinite Series Part 2

Chapter 9: Infinite Series Part 2 Name: Date: Period: AP Calc BC Mr. Mellina/Ms. Lombardi Chapter 9: Infinite Series Part 2 Topics: 9.5 Alternating Series Remainder 9.7 Taylor Polynomials and Approximations 9.8 Power Series 9.9 Representation

More information

Final exam (practice) UCLA: Math 31B, Spring 2017

Final exam (practice) UCLA: Math 31B, Spring 2017 Instructor: Noah White Date: Final exam (practice) UCLA: Math 31B, Spring 2017 This exam has 8 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions in

More information

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C Math 6 Fall 4 Exam. October 3, 4. The following questions have to do with the integral (a) Evaluate dx. Use integration by parts (x 3 dx = ) ( dx = ) x3 x dx = x x () dx = x + x x dx = x + x 3 dx dx =

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background We have seen that some power series converge. When they do, we can think of them as

More information

CS1800: Sequences & Sums. Professor Kevin Gold

CS1800: Sequences & Sums. Professor Kevin Gold CS1800: Sequences & Sums Professor Kevin Gold Moving Toward Analysis of Algorithms Today s tools help in the analysis of algorithms. We ll cover tools for deciding what equation best fits a sequence of

More information

CHAPTER 2 INFINITE SUMS (SERIES) Lecture Notes PART 1

CHAPTER 2 INFINITE SUMS (SERIES) Lecture Notes PART 1 CHAPTER 2 INFINITE SUMS (SERIES) Lecture Notes PART We extend now the notion of a finite sum Σ n k= a k to an INFINITE SUM which we write as Σ n= a n as follows. For a given a sequence {a n } n N {0},

More information

Infinite Series Summary

Infinite Series Summary Infinite Series Summary () Special series to remember: Geometric series ar n Here a is the first term and r is the common ratio. When r

More information

Positive Series: Integral Test & p-series

Positive Series: Integral Test & p-series Positive Series: Integral Test & p-series Calculus II Josh Engwer TTU 3 March 204 Josh Engwer (TTU) Positive Series: Integral Test & p-series 3 March 204 / 8 Bad News about Summing a (Convergent) Series...

More information

RED. Math 113 (Calculus II) Final Exam Form A Fall Name: Student ID: Section: Instructor: Instructions:

RED. Math 113 (Calculus II) Final Exam Form A Fall Name: Student ID: Section: Instructor: Instructions: Name: Student ID: Section: Instructor: Math 3 (Calculus II) Final Exam Form A Fall 22 RED Instructions: For questions which require a written answer, show all your work. Full credit will be given only

More information

2t t dt.. So the distance is (t2 +6) 3/2

2t t dt.. So the distance is (t2 +6) 3/2 Math 8, Solutions to Review for the Final Exam Question : The distance is 5 t t + dt To work that out, integrate by parts with u t +, so that t dt du The integral is t t + dt u du u 3/ (t +) 3/ So the

More information

Series. Xinyu Liu. April 26, Purdue University

Series. Xinyu Liu. April 26, Purdue University Series Xinyu Liu Purdue University April 26, 2018 Convergence of Series i=0 What is the first step to determine the convergence of a series? a n 2 of 21 Convergence of Series i=0 What is the first step

More information

Series Solution of Linear Ordinary Differential Equations

Series Solution of Linear Ordinary Differential Equations Series Solution of Linear Ordinary Differential Equations Department of Mathematics IIT Guwahati Aim: To study methods for determining series expansions for solutions to linear ODE with variable coefficients.

More information

Assignment 4. u n+1 n(n + 1) i(i + 1) = n n (n + 1)(n + 2) n(n + 2) + 1 = (n + 1)(n + 2) 2 n + 1. u n (n + 1)(n + 2) n(n + 1) = n

Assignment 4. u n+1 n(n + 1) i(i + 1) = n n (n + 1)(n + 2) n(n + 2) + 1 = (n + 1)(n + 2) 2 n + 1. u n (n + 1)(n + 2) n(n + 1) = n Assignment 4 Arfken 5..2 We have the sum Note that the first 4 partial sums are n n(n + ) s 2, s 2 2 3, s 3 3 4, s 4 4 5 so we guess that s n n/(n + ). Proving this by induction, we see it is true for

More information

You can learn more about the services offered by the teaching center by visiting

You can learn more about the services offered by the teaching center by visiting MAC 232 Exam 3 Review Spring 209 This review, produced by the Broward Teaching Center, contains a collection of questions which are representative of the type you may encounter on the exam. Other resources

More information

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved.

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved. 11.10 Taylor and Maclaurin Series Copyright Cengage Learning. All rights reserved. We start by supposing that f is any function that can be represented by a power series f(x)= c 0 +c 1 (x a)+c 2 (x a)

More information

Math 142, Final Exam. 12/7/10.

Math 142, Final Exam. 12/7/10. Math 4, Final Exam. /7/0. No notes, calculator, or text. There are 00 points total. Partial credit may be given. Write your full name in the upper right corner of page. Number the pages in the upper right

More information

TAYLOR AND MACLAURIN SERIES

TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES. Introduction Last time, we were able to represent a certain restricted class of functions as power series. This leads us to the question: can we represent more general functions

More information

Taylor Series and Maclaurin Series

Taylor Series and Maclaurin Series Taylor Series and Maclaurin Series Definition (Taylor Series) Suppose the function f is infinitely di erentiable at a. The Taylor series of f about a (or at a or centered at a) isthepowerseries f (n) (a)

More information

Geometric Series and the Ratio and Root Test

Geometric Series and the Ratio and Root Test Geometric Series and the Ratio and Root Test James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 5, 2018 Outline 1 Geometric Series

More information

Upon completion of this course, the student should be able to satisfy the following objectives.

Upon completion of this course, the student should be able to satisfy the following objectives. Homework: Chapter 6: o 6.1. #1, 2, 5, 9, 11, 17, 19, 23, 27, 41. o 6.2: 1, 5, 9, 11, 15, 17, 49. o 6.3: 1, 5, 9, 15, 17, 21, 23. o 6.4: 1, 3, 7, 9. o 6.5: 5, 9, 13, 17. Chapter 7: o 7.2: 1, 5, 15, 17,

More information

Section Taylor and Maclaurin Series

Section Taylor and Maclaurin Series Section.0 Taylor and Maclaurin Series Ruipeng Shen Feb 5 Taylor and Maclaurin Series Main Goal: How to find a power series representation for a smooth function us assume that a smooth function has a power

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

Sequences and Summations

Sequences and Summations COMP 182 Algorithmic Thinking Sequences and Summations Luay Nakhleh Computer Science Rice University Chapter 2, Section 4 Reading Material Sequences A sequence is a function from a subset of the set of

More information

FINAL EXAM Math 25 Temple-F06

FINAL EXAM Math 25 Temple-F06 FINAL EXAM Math 25 Temple-F06 Write solutions on the paper provided. Put your name on this exam sheet, and staple it to the front of your finished exam. Do Not Write On This Exam Sheet. Problem 1. (Short

More information

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS.

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS. MATH 1 TEST ON CHAPTER ANSWER ALL QUESTIONS. TIME 1. HRS. M1c Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Use the summation formulas to rewrite the

More information

Math 113 Fall 2005 key Departmental Final Exam

Math 113 Fall 2005 key Departmental Final Exam Math 3 Fall 5 key Departmental Final Exam Part I: Short Answer and Multiple Choice Questions Do not show your work for problems in this part.. Fill in the blanks with the correct answer. (a) The integral

More information

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0 8.7 Taylor s Inequality Math 00 Section 005 Calculus II Name: ANSWER KEY Taylor s Inequality: If f (n+) is continuous and f (n+) < M between the center a and some point x, then f(x) T n (x) M x a n+ (n

More information

Solutions to Homework 2

Solutions to Homework 2 Solutions to Homewor Due Tuesday, July 6,. Chapter. Problem solution. If the series for ln+z and ln z both converge, +z then we can find the series for ln z by term-by-term subtraction of the two series:

More information

Section 8.2: Integration by Parts When you finish your homework, you should be able to

Section 8.2: Integration by Parts When you finish your homework, you should be able to Section 8.2: Integration by Parts When you finish your homework, you should be able to π Use the integration by parts technique to find indefinite integral and evaluate definite integrals π Use the tabular

More information

(e) 2 (f) 2. (c) + (d). Limits at Infinity. 2.5) 9-14,25-34,41-43,46-47,56-57, (c) (d) 2

(e) 2 (f) 2. (c) + (d). Limits at Infinity. 2.5) 9-14,25-34,41-43,46-47,56-57, (c) (d) 2 Math 150A. Final Review Answers, Spring 2018. Limits. 2.2) 7-10, 21-24, 28-1, 6-8, 4-44. 1. Find the values, or state they do not exist. (a) (b) 1 (c) DNE (d) 1 (e) 2 (f) 2 (g) 2 (h) 4 2. lim f(x) = 2,

More information