The polar coordinates

Size: px
Start display at page:

Download "The polar coordinates"

Transcription

1 The polar coordinates 1

2 2

3 3

4 4

5 Graphing in polar coordinates 5

6 6

7 7

8 8

9 Area and length in polar coordinates 9

10 10

11 11

12 Partial deravitive 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 Double Integral 21

22 22

23 23

24 24

25 25

26 26

27 27

28 Triple Integrals in Rectangular Coordinates 28

29 29

30 30

31 Triple Integrals in Cylindrical and Spherical Coordinates 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 The series: is an infinite sequence of numbers and it is a function whose domain is the set of positive integers. The function associated to the sequence 2, 4, 6, 8 2n, Sends 1 to a 1 =2, 2 to a 2 =4, and so on. The general behavior of this sequence is described by the formula a n =2n Example: (a) The sequence of natural numbers 1, 2, 3, 4 n (b) The sequence 1 2, 2 3, 3 4,.., n n+1 (c) The sequence 1, -1, 1, -1, 1, -1 (-1) n Example: find the series of the sequence: (a) a n = n 1 sin n n = 0,1,2,3,. (b) a n+1 n = n = 1,2,3,.. n (b) a n = n! n = 1,2,3, (d) a n 2 n = 1 + ( 1) n n = 0,1,2,3, The sum of series: 1 a n = a 1 + a 2 + a 3 + a 4 + Example: Find the sum series of: 5 ln (n) n 1, 1, e 2n 1 0, x n 2 n x+n 40

41 Series test (1- The Ratio Test: Let a n be a series with positive terms and suppose that a n+1 lim = ρ n a n Then (a) The series converges if ρ < 1. (b) The series diverges if ρ > 1. (c) The test is inconclusive if ρ = 1. (2- The root test: Let a n be a series with positive terms and suppose that lim (a n) 1 n = ρ n Then (a) The series converges if ρ < 1. (b) The series diverges if ρ > 1. (c)the test is inconclusive if ρ = 1. (3- The second Ratio Test: Let a n be a series with positive terms and suppose that lim n(1 a n+1 ) = ρ n a n Then (a) The series converges if ρ > 1. (b) The series diverges if ρ < 1. (c)the test is inconclusive if ρ = 1. Example: find the sequence of the series, and test it: (a) (b) (1 3 )2 + ( 1 4 )3 + ( 1 5 )4 + 41

42 (c) (d) x + x 2 2! + x 3 3! + x 4 4! + Test the convergence or divergence of the series: a) b) c) n=0 n=1 n=1 ( 1) n +1 2 n ( 1) n n 2 +2n+2 ( 1) n +1 n 3n 1 d) 1 n sin 1 1 n=1 n e) ( 1) n n n=2 ln (n) Answers: a) conv. b) conv. c) div. d) conv. e) div. Power Series A power series about x=0 is a series of the form S = n=0 c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + A power series about x=a is a series of the form S = n=0 c n (x a) n = c 0 + c 1 (x a) + c 2 (x a) 2 + c 3 (x a) 3 + in which the center a and the coefficients c 0, c 1, c 2,, c n are constants. The term by term differentiation: If n=0 c n (x a) n converges for a R < x < a + R for some R > 0, it defines a function f: f x = c n x a n n=0 a R < x < a + R Such a function ƒ has derivatives of all orders inside the interval of convergence. We can obtain the derivatives by differentiating the original series term by term: 42

43 f x = f x = n=0 n c n x a n 1 n(n 1) c n x a n 2 n=0 and so on. Each of these derived series converges at every interior point of the interval of convergence of the original series. The Term-by-Term Integration Theorem If f(x) converges for a R < x < a + R for some R > 0 f x = n=0 c n x a n a R < x < a + R Such a function ƒ has integrations of all orders inside the interval of convergence. We can obtain the integrations by integral the original series term by term: f(x) dx = n=0 c n x a n+1 + c n + 1 Series Representations within its interval of convergence the sum of a power series is a continuous function with derivatives of all orders. If a function ƒ(x) has derivatives of all orders on an interval, it can be expressed as a power series on the interval: f x = Or n=0 c n x a n f x = c 0 + c 1 x a + c 2 (x a) 2 + c 3 (x a) 3 + c 4 (x a) 4 + f x = c 1 + 2c 2 (x a) + 3c 3 (x a) 2 + 4c 4 (x a) 3 + f x = 2c c 3 (x a) + 4.3c 4 (x a) 2 + f x = 3.2.1c c 4 (x a)

44 Then, at x=a all derivatives becomes: f a = c 0 f a = c 1 f a = 2c 2 or c 0 = f(a) 0! or c 1 = f a 1! or c 2 = f (a) 2! f a = 3.2.1c 3 or c 3 = f (a) 3! DEFINITIONS: Taylor Series, Maclaurin Series Let ƒ be a function with derivatives of all orders throughout some interval containing a as an interior point, Then the Taylor series generated by ƒ at x=a is: f x = f a + (x a) 1! f a + (x a)2 2! f a + (x a)3 3! f a + = (x a) n n=0 f n (a) Taylor Series n! For Maclaurin series a must equal to zero. Examples: Find Maclaurin series (x=0): e x, e x, sin x, cos x, (x + 1) 3, ln (x + 1) Example: find Taylor series for: ln x at x = 1 1 x 1 at x = 2 x 1 at x = 2 (x + a) n at x = 0 Solutions: The series of e x : f x = f a + (x a) 1! f a + (x a)2 2! f a + (x a)3 3! f a + Where f(x) =e x and a=0 Then: 44

45 f x = e x, f 0 = 1 f x = e x, f 0 = 1 f x = e x, f 0 = 1 f x = e x, f 0 = 1 f x = e x, f 0 = 1 Then: f x = e x = 1 + x 1! + x2 2! + x3 3! + x4 4! + = x n n! - the series of sin(x): n=0 f x = f a + (x a) 1! f a + (x a)2 2! f a + (x a)3 3! f a + f(x)=sin(x), a=0 f x = sin x, f 0 = 0 f x = cos x, f 0 = 1 f x = sin (x), f 0 = 0 f x = cos x, f 0 = 1 f x = sin (x), f 0 = 0 f (5) x = cos x, f (5) 0 = 1 f (6) x = sin x, f (6) 0 = 0 Then: f x = sin x = x x 3 + x 5 x 7 + = 1! 3! 5! 7! ( 1)n x 2n +1 n=0 (2n+1)! Power Series Solutions of Differential Equations and Initial Value Problems When we cannot find a relatively simple expression for the solution of an initial value problem or differential equation, we try to get information about the solution in other ways. One way is to try to find a power series representation for the solution. If we can do so, we immediately have a source of polynomial approximations of the solution, which may be all that we really need. 45

46 The procedures can be concluding: 1) represent the power series 2) Substitute the series at the differential equation. 3) Find the relations between the polynomial for every power of (x) 4) Put all polynomial relative to the first and second polynomials. 5) Find the final solution Example: find the solution of y y = x for y 0 = 1 Solution: Let y = n=0 a n x n = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4 + a 5 x 5 + Then: y = n=0 na n x n 1 = a 1 + 2a 2 x + 3a 3 x 2 + 4a 4 x 3 Subs. In the differential equation: + (a 1 + 2a 2 x + 3a 3 x 2 + 4a 4 x 3 + ) a 0 + a 1 x + a 2 x 2 + a 3 x 3 + = x Coefficient of x 0 : a 1 a 0 = 0, a 1 = a 0 Coefficient of x 1 : 2a 2 a 1 = 1, a 2 = (a 1+1) 2 = (a 0+1) 2 = (a 0+1) 2! Coefficient of x 2 : 3a 3 a 2 = 0, a 3 = a 2 = (a 0+1) = (a 0+1) ! Coefficient of x 3 : 4a 4 a 3 = 0, a 4 = a 3 = (a 0+1) = (a 0+1) ! But a 0 =1 due to boundary condition, then: a 1 = 1, a 2 = 2 2!, a 3 = 2 3!, a 4 = 2 4!, a 5 = 2 5!, a n = 2 n! So the solution is: y = x + 2 2! x ! x ! x4 + 46

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

July 21 Math 2254 sec 001 Summer 2015

July 21 Math 2254 sec 001 Summer 2015 July 21 Math 2254 sec 001 Summer 2015 Section 8.8: Power Series Theorem: Let a n (x c) n have positive radius of convergence R, and let the function f be defined by this power series f (x) = a n (x c)

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

Section 9.7 and 9.10: Taylor Polynomials and Approximations/Taylor and Maclaurin Series

Section 9.7 and 9.10: Taylor Polynomials and Approximations/Taylor and Maclaurin Series Section 9.7 and 9.10: Taylor Polynomials and Approximations/Taylor and Maclaurin Series Power Series for Functions We can create a Power Series (or polynomial series) that can approximate a function around

More information

Section Taylor and Maclaurin Series

Section Taylor and Maclaurin Series Section.0 Taylor and Maclaurin Series Ruipeng Shen Feb 5 Taylor and Maclaurin Series Main Goal: How to find a power series representation for a smooth function us assume that a smooth function has a power

More information

TAYLOR AND MACLAURIN SERIES

TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES. Introduction Last time, we were able to represent a certain restricted class of functions as power series. This leads us to the question: can we represent more general functions

More information

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0 8.7 Taylor s Inequality Math 00 Section 005 Calculus II Name: ANSWER KEY Taylor s Inequality: If f (n+) is continuous and f (n+) < M between the center a and some point x, then f(x) T n (x) M x a n+ (n

More information

Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function.

Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function. Taylor Series (Sect. 10.8) Review: Power series define functions. Functions define power series. Taylor series of a function. Taylor polynomials of a function. Review: Power series define functions Remarks:

More information

Study # 1 11, 15, 19

Study # 1 11, 15, 19 Goals: 1. Recognize Taylor Series. 2. Recognize the Maclaurin Series. 3. Derive Taylor series and Maclaurin series representations for known functions. Study 11.10 # 1 11, 15, 19 f (n) (c)(x c) n f(c)+

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

Review of Power Series

Review of Power Series Review of Power Series MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Introduction In addition to the techniques we have studied so far, we may use power

More information

Let s Get Series(ous)

Let s Get Series(ous) Department of Mathematics, Computer Science, and Statistics Bloomsburg University Bloomsburg, Pennsylvania 785 Let s Get Series(ous) Summary Presenting infinite series can be (used to be) a tedious and

More information

Analysis II: Basic knowledge of real analysis: Part V, Power Series, Differentiation, and Taylor Series

Analysis II: Basic knowledge of real analysis: Part V, Power Series, Differentiation, and Taylor Series .... Analysis II: Basic knowledge of real analysis: Part V, Power Series, Differentiation, and Taylor Series Kenichi Maruno Department of Mathematics, The University of Texas - Pan American March 4, 20

More information

11.10a Taylor and Maclaurin Series

11.10a Taylor and Maclaurin Series 11.10a 1 11.10a Taylor and Maclaurin Series Let y = f(x) be a differentiable function at x = a. In first semester calculus we saw that (1) f(x) f(a)+f (a)(x a), for all x near a The right-hand side of

More information

Homework Problem Answers

Homework Problem Answers Homework Problem Answers Integration by Parts. (x + ln(x + x. 5x tan 9x 5 ln sec 9x 9 8 (. 55 π π + 6 ln 4. 9 ln 9 (ln 6 8 8 5. (6 + 56 0/ 6. 6 x sin x +6cos x. ( + x e x 8. 4/e 9. 5 x [sin(ln x cos(ln

More information

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form Taylor Series Given a function f(x), we would like to be able to find a power series that represents the function. For example, in the last section we noted that we can represent e x by the power series

More information

Introduction Derivation General formula Example 1 List of series Convergence Applications Test SERIES 4 INU0114/514 (MATHS 1)

Introduction Derivation General formula Example 1 List of series Convergence Applications Test SERIES 4 INU0114/514 (MATHS 1) MACLAURIN SERIES SERIES 4 INU0114/514 (MATHS 1) Dr Adrian Jannetta MIMA CMath FRAS Maclaurin Series 1/ 19 Adrian Jannetta Background In this presentation you will be introduced to the concept of a power

More information

Math 115 HW #5 Solutions

Math 115 HW #5 Solutions Math 5 HW #5 Solutions From 29 4 Find the power series representation for the function and determine the interval of convergence Answer: Using the geometric series formula, f(x) = 3 x 4 3 x 4 = 3(x 4 )

More information

Math 0230 Calculus 2 Lectures

Math 0230 Calculus 2 Lectures Math 00 Calculus Lectures Chapter 8 Series Numeration of sections corresponds to the text James Stewart, Essential Calculus, Early Transcendentals, Second edition. Section 8. Sequences A sequence is a

More information

3.4 Introduction to power series

3.4 Introduction to power series 3.4 Introduction to power series Definition 3.4.. A polynomial in the variable x is an expression of the form n a i x i = a 0 + a x + a 2 x 2 + + a n x n + a n x n i=0 or a n x n + a n x n + + a 2 x 2

More information

MATH 1231 MATHEMATICS 1B Calculus Section 4.4: Taylor & Power series.

MATH 1231 MATHEMATICS 1B Calculus Section 4.4: Taylor & Power series. MATH 1231 MATHEMATICS 1B 2010. For use in Dr Chris Tisdell s lectures. Calculus Section 4.4: Taylor & Power series. 1. What is a Taylor series? 2. Convergence of Taylor series 3. Common Maclaurin series

More information

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain.

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. For example f(x) = 1 1 x = 1 + x + x2 + x 3 + = ln(1 + x) = x x2 2

More information

Power Series in Differential Equations

Power Series in Differential Equations Power Series in Differential Equations Prof. Doug Hundley Whitman College April 18, 2014 Last time: Review of Power Series (5.1) The series a n (x x 0 ) n can converge either: Last time: Review of Power

More information

Math 162 Review of Series

Math 162 Review of Series Math 62 Review of Series. Explain what is meant by f(x) dx. What analogy (analogies) exists between such an improper integral and an infinite series a n? An improper integral with infinite interval of

More information

Introduction Derivation General formula List of series Convergence Applications Test SERIES 4 INU0114/514 (MATHS 1)

Introduction Derivation General formula List of series Convergence Applications Test SERIES 4 INU0114/514 (MATHS 1) MACLAURIN SERIES SERIES 4 INU0114/514 (MATHS 1) Dr Adrian Jannetta MIMA CMath FRAS Maclaurin Series 1/ 21 Adrian Jannetta Recap: Binomial Series Recall that some functions can be rewritten as a power series

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period:

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: WORKSHEET: Series, Taylor Series AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: 1 Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 10.1 Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1 Examples: EX1: Find a formula for the general term a n of the sequence,

More information

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved.

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved. 11.10 Taylor and Maclaurin Series Copyright Cengage Learning. All rights reserved. We start by supposing that f is any function that can be represented by a power series f(x)= c 0 +c 1 (x a)+c 2 (x a)

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson JUST THE MATHS UNIT NUMBER.5 DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) by A.J.Hobson.5. Maclaurin s series.5. Standard series.5.3 Taylor s series.5.4 Exercises.5.5 Answers to exercises

More information

MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS

MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS 1. We have one theorem whose conclusion says an alternating series converges. We have another theorem whose conclusion says an alternating series diverges.

More information

Section 8.7. Taylor and MacLaurin Series. (1) Definitions, (2) Common Maclaurin Series, (3) Taylor Polynomials, (4) Applications.

Section 8.7. Taylor and MacLaurin Series. (1) Definitions, (2) Common Maclaurin Series, (3) Taylor Polynomials, (4) Applications. Section 8.7 Taylor and MacLaurin Series (1) Definitions, (2) Common Maclaurin Series, (3) Taylor Polynomials, (4) Applications. MATH 126 (Section 8.7) Taylor and MacLaurin Series The University of Kansas

More information

Taylor Series. Math114. March 1, Department of Mathematics, University of Kentucky. Math114 Lecture 18 1/ 13

Taylor Series. Math114. March 1, Department of Mathematics, University of Kentucky. Math114 Lecture 18 1/ 13 Taylor Series Math114 Department of Mathematics, University of Kentucky March 1, 2017 Math114 Lecture 18 1/ 13 Given a function, can we find a power series representation? Math114 Lecture 18 2/ 13 Given

More information

Ma 530 Power Series II

Ma 530 Power Series II Ma 530 Power Series II Please note that there is material on power series at Visual Calculus. Some of this material was used as part of the presentation of the topics that follow. Operations on Power Series

More information

Polynomial Approximations and Power Series

Polynomial Approximations and Power Series Polynomial Approximations and Power Series June 24, 206 Tangent Lines One of the first uses of the derivatives is the determination of the tangent as a linear approximation of a differentiable function

More information

MATH 1231 MATHEMATICS 1B CALCULUS. Section 5: - Power Series and Taylor Series.

MATH 1231 MATHEMATICS 1B CALCULUS. Section 5: - Power Series and Taylor Series. MATH 1231 MATHEMATICS 1B CALCULUS. Section 5: - Power Series and Taylor Series. The objective of this section is to become familiar with the theory and application of power series and Taylor series. By

More information

c n (x a) n c 0 c 1 (x a) c 2 (x a) 2...

c n (x a) n c 0 c 1 (x a) c 2 (x a) 2... 3 CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS 6. REVIEW OF POWER SERIES REVIEW MATERIAL Infinite series of constants, p-series, harmonic series, alternating harmonic series, geometric series, tests

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

AP Calculus Chapter 9: Infinite Series

AP Calculus Chapter 9: Infinite Series AP Calculus Chapter 9: Infinite Series 9. Sequences a, a 2, a 3, a 4, a 5,... Sequence: A function whose domain is the set of positive integers n = 2 3 4 a n = a a 2 a 3 a 4 terms of the sequence Begin

More information

Introduction and Review of Power Series

Introduction and Review of Power Series Introduction and Review of Power Series Definition: A power series in powers of x a is an infinite series of the form c n (x a) n = c 0 + c 1 (x a) + c 2 (x a) 2 +...+c n (x a) n +... If a = 0, this is

More information

Chapter 8. Infinite Series

Chapter 8. Infinite Series 8.4 Series of Nonnegative Terms Chapter 8. Infinite Series 8.4 Series of Nonnegative Terms Note. Given a series we have two questions:. Does the series converge? 2. If it converges, what is its sum? Corollary

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background We have seen that some power series converge. When they do, we can think of them as

More information

Math Numerical Analysis

Math Numerical Analysis Math 541 - Numerical Analysis Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University

More information

1 Question related to polynomials

1 Question related to polynomials 07-08 MATH00J Lecture 6: Taylor Series Charles Li Warning: Skip the material involving the estimation of error term Reference: APEX Calculus This lecture introduced Taylor Polynomial and Taylor Series

More information

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 8. Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = Examples: 6. Find a formula for the general term a n of the sequence, assuming

More information

CHALLENGE! (0) = 5. Construct a polynomial with the following behavior at x = 0:

CHALLENGE! (0) = 5. Construct a polynomial with the following behavior at x = 0: TAYLOR SERIES Construct a polynomial with the following behavior at x = 0: CHALLENGE! P( x) = a + ax+ ax + ax + ax 2 3 4 0 1 2 3 4 P(0) = 1 P (0) = 2 P (0) = 3 P (0) = 4 P (4) (0) = 5 Sounds hard right?

More information

Exercises from other sources REAL NUMBERS 2,...,

Exercises from other sources REAL NUMBERS 2,..., Exercises from other sources REAL NUMBERS 1. Find the supremum and infimum of the following sets: a) {1, b) c) 12, 13, 14, }, { 1 3, 4 9, 13 27, 40 } 81,, { 2, 2 + 2, 2 + 2 + } 2,..., d) {n N : n 2 < 10},

More information

Constructing Taylor Series

Constructing Taylor Series Constructing Taylor Series 8-8-200 The Taylor series for fx at x = c is fc + f cx c + f c 2! x c 2 + f c x c 3 + = 3! f n c x c n. By convention, f 0 = f. When c = 0, the series is called a Maclaurin series.

More information

(c) Find the equation of the degree 3 polynomial that has the same y-value, slope, curvature, and third derivative as ln(x + 1) at x = 0.

(c) Find the equation of the degree 3 polynomial that has the same y-value, slope, curvature, and third derivative as ln(x + 1) at x = 0. Chapter 7 Challenge problems Example. (a) Find the equation of the tangent line for ln(x + ) at x = 0. (b) Find the equation of the parabola that is tangent to ln(x + ) at x = 0 (i.e. the parabola has

More information

n=1 ( 2 3 )n (a n ) converges by direct comparison to

n=1 ( 2 3 )n (a n ) converges by direct comparison to . (a) n = a n converges, so we know that a n =. Therefore, for n large enough we know that a n

More information

Name. Instructor K. Pernell 1. Berkeley City College Due: HW 4 - Chapter 11 - Infinite Sequences and Series. Write the first four terms of {an}.

Name. Instructor K. Pernell 1. Berkeley City College Due: HW 4 - Chapter 11 - Infinite Sequences and Series. Write the first four terms of {an}. Berkeley City College Due: HW 4 - Chapter 11 - Infinite Sequences and Series Name Write the first four terms of {an}. 1) an = (-1)n n 2) an = n + 1 3n - 1 3) an = sin n! 3 Determine whether the sequence

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES In section 11.9, we were able to find power series representations for a certain restricted class of functions. INFINITE SEQUENCES AND SERIES

More information

Taylor Series. richard/math230 These notes are taken from Calculus Vol I, by Tom M. Apostol,

Taylor Series.  richard/math230 These notes are taken from Calculus Vol I, by Tom M. Apostol, Taylor Series Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math230 These notes are taken from Calculus Vol

More information

11.6: Ratio and Root Tests Page 1. absolutely convergent, conditionally convergent, or divergent?

11.6: Ratio and Root Tests Page 1. absolutely convergent, conditionally convergent, or divergent? .6: Ratio and Root Tests Page Questions ( 3) n n 3 ( 3) n ( ) n 5 + n ( ) n e n ( ) n+ n2 2 n Example Show that ( ) n n ln n ( n 2 ) n + 2n 2 + converges for all x. Deduce that = 0 for all x. Solutions

More information

A sequence { a n } converges if a n = finite number. Otherwise, { a n }

A sequence { a n } converges if a n = finite number. Otherwise, { a n } 9.1 Infinite Sequences Ex 1: Write the first four terms and determine if the sequence { a n } converges or diverges given a n =(2n) 1 /2n A sequence { a n } converges if a n = finite number. Otherwise,

More information

Math 113 Winter 2005 Key

Math 113 Winter 2005 Key Name Student Number Section Number Instructor Math Winter 005 Key Departmental Final Exam Instructions: The time limit is hours. Problem consists of short answer questions. Problems through are multiple

More information

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C

Math 106 Fall 2014 Exam 2.1 October 31, ln(x) x 3 dx = 1. 2 x 2 ln(x) + = 1 2 x 2 ln(x) + 1. = 1 2 x 2 ln(x) 1 4 x 2 + C Math 6 Fall 4 Exam. October 3, 4. The following questions have to do with the integral (a) Evaluate dx. Use integration by parts (x 3 dx = ) ( dx = ) x3 x dx = x x () dx = x + x x dx = x + x 3 dx dx =

More information

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series:

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series: Math Rahman Week 0.8-0.0 Taylor Series Suppose the function f has the following power series: fx) c 0 + c x a) + c x a) + c 3 x a) 3 + c n x a) n. ) Can we figure out what the coefficients are? Yes, yes

More information

Chapter 9: Infinite Series Part 2

Chapter 9: Infinite Series Part 2 Name: Date: Period: AP Calc BC Mr. Mellina/Ms. Lombardi Chapter 9: Infinite Series Part 2 Topics: 9.5 Alternating Series Remainder 9.7 Taylor Polynomials and Approximations 9.8 Power Series 9.9 Representation

More information

MA 162 FINAL EXAM PRACTICE PROBLEMS Spring Find the angle between the vectors v = 2i + 2j + k and w = 2i + 2j k. C.

MA 162 FINAL EXAM PRACTICE PROBLEMS Spring Find the angle between the vectors v = 2i + 2j + k and w = 2i + 2j k. C. MA 6 FINAL EXAM PRACTICE PROBLEMS Spring. Find the angle between the vectors v = i + j + k and w = i + j k. cos 8 cos 5 cos D. cos 7 E. cos. Find a such that u = i j + ak and v = i + j + k are perpendicular.

More information

Math 227 Sample Final Examination 1. Name (print) Name (sign) Bing ID number

Math 227 Sample Final Examination 1. Name (print) Name (sign) Bing ID number Math 227 Sample Final Examination 1 Name (print) Name (sign) Bing ID number (Your instructor may check your ID during or after the test) No books, notes, or electronic devices (calculators, cell phones,

More information

CALCULUS JIA-MING (FRANK) LIOU

CALCULUS JIA-MING (FRANK) LIOU CALCULUS JIA-MING (FRANK) LIOU Abstract. Contents. Power Series.. Polynomials and Formal Power Series.2. Radius of Convergence 2.3. Derivative and Antiderivative of Power Series 4.4. Power Series Expansion

More information

Taylor Series and Maclaurin Series

Taylor Series and Maclaurin Series Taylor Series and Maclaurin Series Definition (Taylor Series) Suppose the function f is infinitely di erentiable at a. The Taylor series of f about a (or at a or centered at a) isthepowerseries f (n) (a)

More information

TAYLOR SERIES [SST 8.8]

TAYLOR SERIES [SST 8.8] TAYLOR SERIES [SST 8.8] TAYLOR SERIES: Every function f C (c R, c + R) has a unique Taylor series about x = c of the form: f (k) (c) f(x) = (x c) k = f(c) + f (c) (x c) + f (c) (x c) 2 + f (c) (x c) 3

More information

MAT137 Calculus! Lecture 48

MAT137 Calculus! Lecture 48 official website http://uoft.me/mat137 MAT137 Calculus! Lecture 48 Today: Taylor Series Applications Next: Final Exams Important Taylor Series and their Radii of Convergence 1 1 x = e x = n=0 n=0 x n n!

More information

f (x) = k=0 f (0) = k=0 k=0 a k k(0) k 1 = a 1 a 1 = f (0). a k k(k 1)x k 2, k=2 a k k(k 1)(0) k 2 = 2a 2 a 2 = f (0) 2 a k k(k 1)(k 2)x k 3, k=3

f (x) = k=0 f (0) = k=0 k=0 a k k(0) k 1 = a 1 a 1 = f (0). a k k(k 1)x k 2, k=2 a k k(k 1)(0) k 2 = 2a 2 a 2 = f (0) 2 a k k(k 1)(k 2)x k 3, k=3 1 M 13-Lecture Contents: 1) Taylor Polynomials 2) Taylor Series Centered at x a 3) Applications of Taylor Polynomials Taylor Series The previous section served as motivation and gave some useful expansion.

More information

MATH 163 HOMEWORK Week 13, due Monday April 26 TOPICS. c n (x a) n then c n = f(n) (a) n!

MATH 163 HOMEWORK Week 13, due Monday April 26 TOPICS. c n (x a) n then c n = f(n) (a) n! MATH 63 HOMEWORK Week 3, due Monday April 6 TOPICS 4. Taylor series Reading:.0, pages 770-77 Taylor series. If a function f(x) has a power series representation f(x) = c n (x a) n then c n = f(n) (a) ()

More information

You can learn more about the services offered by the teaching center by visiting

You can learn more about the services offered by the teaching center by visiting MAC 232 Exam 3 Review Spring 209 This review, produced by the Broward Teaching Center, contains a collection of questions which are representative of the type you may encounter on the exam. Other resources

More information

Math 651 Introduction to Numerical Analysis I Fall SOLUTIONS: Homework Set 1

Math 651 Introduction to Numerical Analysis I Fall SOLUTIONS: Homework Set 1 ath 651 Introduction to Numerical Analysis I Fall 2010 SOLUTIONS: Homework Set 1 1. Consider the polynomial f(x) = x 2 x 2. (a) Find P 1 (x), P 2 (x) and P 3 (x) for f(x) about x 0 = 0. What is the relation

More information

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. SECTION A 1. State the maximal domain and range of the function f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes. 2. By evaluating f(0),

More information

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 Chapter 11 Taylor Series Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 First-Order Approximation We want to approximate function f by some simple function. Best possible approximation

More information

Section 10.7 Taylor series

Section 10.7 Taylor series Section 10.7 Taylor series 1. Common Maclaurin series 2. s and approximations with Taylor polynomials 3. Multiplication and division of power series Math 126 Enhanced 10.7 Taylor Series The University

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

Series. Xinyu Liu. April 26, Purdue University

Series. Xinyu Liu. April 26, Purdue University Series Xinyu Liu Purdue University April 26, 2018 Convergence of Series i=0 What is the first step to determine the convergence of a series? a n 2 of 21 Convergence of Series i=0 What is the first step

More information

Final exam (practice) UCLA: Math 31B, Spring 2017

Final exam (practice) UCLA: Math 31B, Spring 2017 Instructor: Noah White Date: Final exam (practice) UCLA: Math 3B, Spring 207 This exam has 8 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions in the

More information

Math 113 Winter 2005 Departmental Final Exam

Math 113 Winter 2005 Departmental Final Exam Name Student Number Section Number Instructor Math Winter 2005 Departmental Final Exam Instructions: The time limit is hours. Problem consists of short answer questions. Problems 2 through are multiple

More information

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell Power Series Part 1 1 Power Series Suppose x is a variable and c k & a are constants. A power series about x = 0 is c k x k A power series about x = a is c k x a k a = center of the power series c k =

More information

Chapter 4 Sequences and Series

Chapter 4 Sequences and Series Chapter 4 Sequences and Series 4.1 Sequence Review Sequence: a set of elements (numbers or letters or a combination of both). The elements of the set all follow the same rule (logical progression). The

More information

13 Maximum Modulus Principle

13 Maximum Modulus Principle 3 Maximum Modulus Principle Theorem 3. (maximum modulus principle). If f is non-constant and analytic on an open connected set Ω, then there is no point z 0 Ω such that f(z) f(z 0 ) for all z Ω. Remark

More information

Math 113: Quiz 6 Solutions, Fall 2015 Chapter 9

Math 113: Quiz 6 Solutions, Fall 2015 Chapter 9 Math 3: Quiz 6 Solutions, Fall 05 Chapter 9 Keep in mind that more than one test will wor for a given problem. I chose one that wored. In addition, the statement lim a LR b means that L Hôpital s rule

More information

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer.

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer. Math 22 - Review for Exam 3. Answer each of the following questions as either True or False. Circle the correct answer. (a) True/False: If a n > 0 and a n 0, the series a n converges. Soln: False: Let

More information

Solutions to Math 1b Midterm II

Solutions to Math 1b Midterm II Solutions to Math b Midterm II Tuesday, pril 8, 006. (6 points) Suppose that the power series a n(x + ) n converges if x = 7 and diverges if x = 7. ecide which of the following series must converge, must

More information

MA 114 Worksheet # 1: Improper Integrals

MA 114 Worksheet # 1: Improper Integrals MA 4 Worksheet # : Improper Integrals. For each of the following, determine if the integral is proper or improper. If it is improper, explain why. Do not evaluate any of the integrals. (c) 2 0 2 2 x x

More information

Convergence Tests. Academic Resource Center

Convergence Tests. Academic Resource Center Convergence Tests Academic Resource Center Series Given a sequence {a 0, a, a 2,, a n } The sum of the series, S n = A series is convergent if, as n gets larger and larger, S n goes to some finite number.

More information

Infinite Series. Copyright Cengage Learning. All rights reserved.

Infinite Series. Copyright Cengage Learning. All rights reserved. Infinite Series Copyright Cengage Learning. All rights reserved. Taylor and Maclaurin Series Copyright Cengage Learning. All rights reserved. Objectives Find a Taylor or Maclaurin series for a function.

More information

Math 1b Sequences and series summary

Math 1b Sequences and series summary Math b Sequences and series summary December 22, 2005 Sequences (Stewart p. 557) Notations for a sequence: or a, a 2, a 3,..., a n,... {a n }. The numbers a n are called the terms of the sequence.. Limit

More information

FRESHMAN PRIZE EXAM 2017

FRESHMAN PRIZE EXAM 2017 FRESHMAN PRIZE EXAM 27 Full reasoning is expected. Please write your netid on your paper so we can let you know of your result. You have 9 minutes. Problem. In Extracurricula all of the high school students

More information

Section Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence.

Section Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence. Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence. Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence. f n (0)x n Recall from

More information

Section 3.2 Working with Derivatives

Section 3.2 Working with Derivatives Section 3.2 Working with Derivatives Problem (a) If f 0 (2) exists, then (i) lim f(x) must exist, but lim f(x) 6= f(2) (ii) lim f(x) =f(2). (iii) lim f(x) =f 0 (2) (iv) lim f(x) need not exist. The correct

More information

Section 1.2 Combining Functions; Shifting and Scaling Graphs. (a) Function addition: Given two functions f and g we define the sum of f and g as

Section 1.2 Combining Functions; Shifting and Scaling Graphs. (a) Function addition: Given two functions f and g we define the sum of f and g as Section 1.2 Combining Functions; Shifting and Scaling Graphs We will get new functions from the ones we know. Tow functions f and g can be combined to form new functions by function addition, substraction,

More information

MAS153/MAS159. MAS153/MAS159 1 Turn Over SCHOOL OF MATHEMATICS AND STATISTICS hours. Mathematics (Materials) Mathematics For Chemists

MAS153/MAS159. MAS153/MAS159 1 Turn Over SCHOOL OF MATHEMATICS AND STATISTICS hours. Mathematics (Materials) Mathematics For Chemists Data provided: Formula sheet MAS53/MAS59 SCHOOL OF MATHEMATICS AND STATISTICS Mathematics (Materials Mathematics For Chemists Spring Semester 203 204 3 hours All questions are compulsory. The marks awarded

More information

Series Solutions. 8.1 Taylor Polynomials

Series Solutions. 8.1 Taylor Polynomials 8 Series Solutions 8.1 Taylor Polynomials Polynomial functions, as we have seen, are well behaved. They are continuous everywhere, and have continuous derivatives of all orders everywhere. It also turns

More information

As f and g are differentiable functions such that. f (x) = 20e 2x, g (x) = 4e 2x + 4xe 2x,

As f and g are differentiable functions such that. f (x) = 20e 2x, g (x) = 4e 2x + 4xe 2x, srinivasan (rs7) Sample Midterm srinivasan (690) This print-out should have 0 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Determine if

More information

Test 3 - Answer Key Version B

Test 3 - Answer Key Version B Student s Printed Name: Instructor: CUID: Section: Instructions: You are not permitted to use a calculator on any portion of this test. You are not allowed to use any textbook, notes, cell phone, laptop,

More information

Section 5.8. Taylor Series

Section 5.8. Taylor Series Difference Equations to Differential Equations Section 5.8 Taylor Series In this section we will put together much of the work of Sections 5.-5.7 in the context of a discussion of Taylor series. We begin

More information

Math WW09 Solutions November 24, 2008

Math WW09 Solutions November 24, 2008 Math 352- WW09 Solutions November 24, 2008 Assigned problems: 8.7 0, 6, ww 4; 8.8 32, ww 5, ww 6 Always read through the solution sets even if your answer was correct. Note that like many of the integrals

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

CHAPTER 10, INFINITE SERIES Infinite Sequence

CHAPTER 10, INFINITE SERIES Infinite Sequence CHAPTER INFINITE SERIES Definition. = f(n).. Infinite Sequence a a a 3 { } n= { } { }. () { n } { n } { 3n 7} 3 {sin nπ } {3+( )n }. () { 3 5 7 3 7 3 } (3) {3 4 5 9 6 5 3 5 } (4) Fibonacii sequemce F =F

More information