Supplementary materials: Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields

Size: px
Start display at page:

Download "Supplementary materials: Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields"

Transcription

1 Supplementary materials: Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields Hiroaki Mamiya and Balachandran Jeyadevan Appendix A: Verification of our methods Test simulations were performed to check the validity of the used method by setting conditions similar to already published reports 1,2. The results agree with the behaviour reported in earlier papers 1,2. First, the method for the simulation of the reversal in the non-rotatable nanoparticles was verified. Carrey et al. 1 recently performed numerical simulations of hysteresis loops for the reversals, and we used their parameters in the test simulation. As shown in Supplementary Figs. S1 and S2, the results obtained from our simulation of the reversal were consistent with the results reported by Carrey et al. Next, the method for the simulation of the reversal and rotation in the rotatable nanoparticles was verified. There have been no prior theoretical studies on systems where both reversal and rotation occur simultaneously in a large AC magnetic field. Consequently, the comparisons with prior studies were performed at the two extreme conditions. First, high viscosities were assumed, and because reversals are predominant over rotation under these conditions, the results were compared with those reported by Carrey et al 1 (see Supplementary Figs. S1, S2). Second, a high anisotropic field was assumed. Because reversals are predominant over rotation, the results were compared with the numerical simulations of Yoshida et al. for nonlinear Brownian rotational relaxation of magnetic fluids in a large excitation field 2 (see Supplementary Figs. S3, S4). The results obtained from our simulation of the reversal and rotation were consistent with these studies as shown in Supplementary Figs. S1 S4. Figure S1 Hysteresis areas obtained from the simulations plotted as a function of = H ac /k B T for various uniaxial anisotropy constants, K eff, where H ac = 0.8 ka/m, T = 300 K, f = 100 khz, and M s = 10 6 A/m. The small dots are the results of simulations reported by Carrey et al.*, and the open symbols are the results of our test simulations for the reversals. The large solid symbols are for the results of our test simulations for the reversals and rotation, where the viscosity was set at 1000 mpa s and the hydrodynamic volume was assumed to be the same as that of the magnetic core. *Reproduced from Carrey et al. with permission (Copyright 2011 American Institute of Physics)..

2 Figure S2 Normalized hysteresis area as a function of the normalized magnetic field for various nanoparticle radii, where K eff = J/m 3, M s = 10 6 A/m, f = 100 khz, H ac = 16 ka/m, T = 300 K, and f 0 = s 1. The solid lines are for the results of the simulations reported by Carrey et al.*, and the open symbols are for the results of our test simulations for the reversals. The large solid symbols are for the results of our test simulations for the reversals and rotation, where the viscosity was set at mpa s and the hydrodynamic volume was assumed to be the same as that of the magnetic core. *Reproduced from Carrey et al. with permission (Copyright 2011 American Institute of Physics). Figure S3 Relationship between and magnetisation <M> st in steady state. The open circles are the results of the simulations reported by Yoshida et al.* The solid curves are the results of our test simulations for the reversals and rotation, where the anisotropy field is set at 400 ka/m. *Reproduced from Yoshida et al. with permission (Copyright 2009 The Japan Society of Applied Physics).

3 Figure S4 Frequency dependency of the real and imaginary parts of the susceptibility of (a) the fundamental component and (b) the third harmonic when sinusoidal fields with of 10 were applied. The open symbols are the results of the simulations reported by Yoshida et al.* The solid symbols are the results of our test simulations for the reversals and rotation, where the anisotropy field was set at 400 ka/m. The solid curves are the theoretical values.* *Reproduced from Yoshida et al. with permission (Copyright 2009 The Japan Society of Applied Physics). Appendix B: Other results of the simulations. Other supporting results obtained for nanoparticles with various sizes and shapes are detailed in Figs. S5 and S6. Figure S5 presents the contour plots of P H /(H ac f) for elongated spheroidal nanoparticles with the same shape ( = 1.4) and various sizes, as a function of the amplitude H ac and frequency f. For the smaller nanoparticles with 2R M = 12 nm, which are considered SPIONs, an evident rise of the P H /(H ac f) due to the rotatability was observed at 100 khz and 32 ka/m where H (H, ) was comparable to B. For the slightly larger nanoparticles with 2R M of 18 nm, the rotatability shifted the peak maxima of P H /(H ac f) towards higher H ac at higher frequencies. Because the slightly larger nanoparticles with N (H = 0) of 0.02 s is considered as ferromagnetic nanoparticles in the frequency range of hyperthermia treatments, this shift can be also attributed to the formation of dissipative structures. The behaviour for the larger nanoparticles with 2R M of 24 nm has been already discussed in the main text. Figure S6 is the contour plot of P H /(H ac f) of the spheroidal nanoparticles (2R M = 18 nm) with various aspect ratios. For the nearly spherical nanoparticles with = 1.1, there is the secondary maximum due to the rotatability as discussed in the main text. On the other hand, the shift in the peak maximum of P H /(H ac f) towards higher H ac at higher frequencies can be found for the rotatable elongated spheroidal nanoparticles with of 1.4, as discussed above. For the nanoparticles with an intermediate shape ( = 1.25), N (H = 0) of 8 s is as long as B of 9 s, and it is comparable to the period 1/f of the AC field. In this borderline case, P H /(H ac f) for the rotatable nanoparticles seems to show both the features mentioned above (to be discussed elsewhere.) Apart from such a borderline case, we can say that superparamagnetic nanoparticles have the features common to the typical SPION described in the main text, while ferromagnetic nanoparticles have the features equivalent to the typical ferromagnetic nanoparticles described in the main text.

4 Figure S5 Efficiency of heat dissipation of the elongated spheroidal nanoparticles with various sizes, in non-rotatable case ((a), (c) and (e)) and in rotatable case ((b), (d) and (f)). Dashed lines represent the Néel relaxation time (2 N ) 1 ; dotted lines show the Brownian relaxation time (2 B ) 1, solid lines indicate a typical angular velocity, H (H = H ac, = /4)/2, of the rotation due to magnetic torque. and dot-dash-line lines indicate f p calculated by the equation (5). White lines show the thresholds for biomedical safety.

5 Figure S6 Efficiency of heat dissipation of the spheroidal nanoparticles with the same equatorial diameter and various shapes, in non-rotatable case ((a), (c) and (e)) and in rotatable case ((b), (d) and (f)). Dashed lines represent the Néel relaxation time (2 N ) 1 ; dotted lines show the Brownian relaxation time (2 B ) 1, solid lines indicate a typical angular velocity, H (H = H ac, = /4)/2, of the rotation due to magnetic torque, and dot-dash-line lines indicate f p calculated by the equation (5). White lines show the thresholds for biomedical safety.

6 1. Carrey, J., Mehdaoui, B., & Respaud, M. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization, J. Appl. Phys. 109, (2011). 2. Yoshida, T., & Enpuku, K. Simulation and Quantitative Clarification of AC Susceptibility of Magnetic Fluid in Nonlinear Brownian Relaxation Region, Jpn. J. Appl. Phys. 48, (2009).

B. Mehdaoui, J. Carrey*, M. Stadler, A. Cornejo, C. Nayral, F. Delpech, B. Chaudret and M. Respaud

B. Mehdaoui, J. Carrey*, M. Stadler, A. Cornejo, C. Nayral, F. Delpech, B. Chaudret and M. Respaud Influence of a transverse static magnetic field on the magnetic hyperthermia properties and high-frequency hysteresis loops of ferromagnetic FeCo nanoparticles. B. Mehdaoui, J. Carrey*, M. Stadler, A.

More information

MAGNETIC nanoparticle hyperthermia (MNH) is a

MAGNETIC nanoparticle hyperthermia (MNH) is a Computational analysis of the effect of superparamagnetic nanoparticle properties on bioheat transfer in magnetic nanoparticle hyperthermia Frederik Soetaert, Luc Dupré, and Guillaume Crevecoeur Abstract

More information

Dynamics of a magnetic nanoparticle with cubic anisotropy in a viscous liquid

Dynamics of a magnetic nanoparticle with cubic anisotropy in a viscous liquid Dynamics of a magnetic nanoparticle with cubic anisotropy in a viscous liquid N. A. Usov 1,2,4, M. L. Fdez-Gubieda 2, A. Muela 3 and J. M. Barandiarán 2 1 IKERBASQUE, The Basque Foundation for Science,

More information

Dpto. de Química Inorgánica, Universidad del País Vasco, UPV/EHU, P.O. Box. 644, E-48080, Bilbao, Spain.

Dpto. de Química Inorgánica, Universidad del País Vasco, UPV/EHU, P.O. Box. 644, E-48080, Bilbao, Spain. Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Fe 3 O 4 Nanoparticles Prepared by Seeded-Growth Route for Hyperthermia: Electron Magnetic Resonance

More information

T (K) Supplementary Figure 1. Temperature dependence of magnetization for different fields 0.5 T

T (K) Supplementary Figure 1. Temperature dependence of magnetization for different fields 0.5 T M (Am - ) 8 6 4 H c, T 8 T 4 T 3 4 5 Supplementary Figure. Temperature dependence of magnetization for different fields applied along c axis. τ ( - N m) τ ( - N m) τ ( N m) 4-4 - - 4 - -4 a b c 8.5 K 9,,4

More information

EQUATION LANGEVIN. Physics, Chemistry and Electrical Engineering. World Scientific. With Applications to Stochastic Problems in. William T.

EQUATION LANGEVIN. Physics, Chemistry and Electrical Engineering. World Scientific. With Applications to Stochastic Problems in. William T. SHANGHAI HONG WorlrfScientific Series krtonttimfjorary Chemical Physics-Vol. 27 THE LANGEVIN EQUATION With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering Third Edition

More information

Heating Characteristics of Transformer Oil-Based Magnetic Fluids of Different Magnetic Particle Concentrations

Heating Characteristics of Transformer Oil-Based Magnetic Fluids of Different Magnetic Particle Concentrations Int J Thermophys (2011) 32:876 885 DOI 10.1007/s10765-010-0799-4 Heating Characteristics of Transformer Oil-Based Magnetic Fluids of Different Magnetic Particle Concentrations A. Skumiel T. Hornowski A.

More information

Satoshi Ota, Tsutomu Yamada, and Yasushi Takemura. 1. Introduction

Satoshi Ota, Tsutomu Yamada, and Yasushi Takemura. 1. Introduction Nanomaterials Volume 215, Article ID 836761, 8 pages http://dx.doi.org/1.1155/215/836761 Research Article Magnetization Reversal and Specific Loss Power of Magnetic Nanoparticles in Environment Evaluated

More information

NEPTUNE -code: KAUVG11ONC Prerequisites:... Knowledge description:

NEPTUNE -code: KAUVG11ONC Prerequisites:... Knowledge description: Subject name: Electrical Machines Credits: 9 Requirement : Course director: Dr. Vajda István Position: Assessment and verification procedures: NEPTUNE -code: KAUVG11ONC Prerequisites:... Number of hours:

More information

Nanoparticles. Carolin Schmitz-Antoniak Peter-Grünberg-Institut (PGI-6) Forschungszentrum Jülich Jülich.

Nanoparticles. Carolin Schmitz-Antoniak Peter-Grünberg-Institut (PGI-6) Forschungszentrum Jülich Jülich. Nanoparticles Carolin Schmitz-Antoniak Peter-Grünberg-Institut (PGI-6) Forschungszentrum Jülich 52425 Jülich www.csa-group.de Outline Basics of nanomagnetism Single domain state Anisotropy Superparamagnetism

More information

Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires

Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires Benjamin Krüger 17.11.2006 1 Model The Micromagnetic Model Current Induced Magnetisation Dynamics Phenomenological Description Experimental

More information

INITIAL DYNAMIC SUSCEPTIBILITY OF BIOCOMPATIBLE MAGNETIC FLUIDS

INITIAL DYNAMIC SUSCEPTIBILITY OF BIOCOMPATIBLE MAGNETIC FLUIDS 536 Rev.Adv.Mater.Sci. 18(28) 536-54 P.C. Morais, L.B. Silveira, A.C. Oliveira and J.G. Santos INITIAL DYNAMIC SUSCEPTIBILITY OF BIOCOMPATIBLE MAGNETIC FLUIDS P.C. Morais 1, L.B. Silveira 2, A.C. Oliveira

More information

A MODEL OF MAGNETIC HYPERTHERMIA

A MODEL OF MAGNETIC HYPERTHERMIA A MODEL OF MAGNETIC HYPERTHERMIA FLEUR BURROWS Submitted for the Degree of Master of Science THE UNIVERSITY OF YORK DEPARTMENT OF PHYSICS MARCH 2012 List of Corrections Page 3: Line 3, typo fixed. Page

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Materials and Methods Single crystals of Pr 2 Ir 2 O 7 were grown by a flux method [S1]. Energy dispersive x-ray analysis found no impurity phases, no inhomogeneities and a ratio between Pr and Ir of 1:1.03(3).

More information

Physics 102 Spring 2007: Final Exam Multiple-Choice Questions

Physics 102 Spring 2007: Final Exam Multiple-Choice Questions Last Name: First Name: Physics 102 Spring 2007: Final Exam Multiple-Choice Questions 1. The circuit on the left in the figure below contains a battery of potential V and a variable resistor R V. The circuit

More information

Characterization of residual stresses in ferrous components by magnetic anisotropy measurements using a hall effect sensor array probe

Characterization of residual stresses in ferrous components by magnetic anisotropy measurements using a hall effect sensor array probe Center for Nondestructive Evaluation Conference Papers, Posters and Presentations Center for Nondestructive Evaluation 7-2010 Characterization of residual stresses in ferrous components by magnetic anisotropy

More information

Heating in the MRI environment due to superparamagnetic fluid suspensions in a rotating magnetic field

Heating in the MRI environment due to superparamagnetic fluid suspensions in a rotating magnetic field Heating in the MRI environment due to superparamagnetic fluid suspensions in a rotating magnetic field The MIT Faculty has made this article openly available. Please share how this access benefits you.

More information

Slow Dynamics of Magnetic Nanoparticle Systems: Memory effects

Slow Dynamics of Magnetic Nanoparticle Systems: Memory effects Slow Dynamics of Magnetic Nanoparticle Systems: Memory effects P. E. Jönsson, M. Sasaki and H. Takayama ISSP, Tokyo University Co-workers: H. Mamiya and P. Nordblad Outline? Introduction Motivation? Memory

More information

Author s Accepted Manuscript

Author s Accepted Manuscript Author s Accepted Manuscript An experimental study of the dynamic properties of nanoparticle colloids with identical magnetization but different particle size P.C. Fannin, C.N. Marin, K. Raj, C. Couper,

More information

Introduction to CLASSICAL MECHANICS

Introduction to CLASSICAL MECHANICS Introduction to CLASSICAL MECHANICS Introduction to CLASSICAL MECHANICS A.P. FRENCH Massachusetts Institute oj Technology M.G. EBISON The Institute oj Physics, London KLUWER ACADEMIC PUBLISHERS DORDRECHT

More information

NANOMEDICINE. WILEY A John Wiley and Sons, Ltd., Publication DESIGN AND APPLICATIONS OF MAGNETIC NANOMATERIALS, NANOSENSORS AND NANOSYSTEMS

NANOMEDICINE. WILEY A John Wiley and Sons, Ltd., Publication DESIGN AND APPLICATIONS OF MAGNETIC NANOMATERIALS, NANOSENSORS AND NANOSYSTEMS NANOMEDICINE DESIGN AND APPLICATIONS OF MAGNETIC NANOMATERIALS, NANOSENSORS AND NANOSYSTEMS Vijay K. Varadan Linfeng Chen Jining Xie WILEY A John Wiley and Sons, Ltd., Publication Preface About the Authors

More information

Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications

Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications Nanoscale Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications Journal: Nanoscale Manuscript ID: NR-REV-03-2015-001538 Article Type: Review Article Date Submitted

More information

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 311-0102, Japan 1) University

More information

An Accurate Iron Loss Analysis Method based on Finite Element Analysis considering Dynamic Anomalous Loss

An Accurate Iron Loss Analysis Method based on Finite Element Analysis considering Dynamic Anomalous Loss An Accurate Iron Loss Analysis Method based on Finite Element Analysis considering Dynamic Anomalous Loss Katsuyuki Narita JMAG Buisiness Company JSOL Corporation Tokyo, Japan narita.katuyuki@jsol.co.jp

More information

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200,

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200, 复习题 1 Calculate the magnetic moment of a sphere of radius R made from a magnetic material with magnetic susceptibility, when it is magnetized by an external magnetic field H. How is the value of the moment

More information

COMSOL Conference 2010

COMSOL Conference 2010 Presented at the COMSOL Conference 2010 Boston COMSOL Conference 2010 Understanding Ferrofluid Spin-Up Flows in Rotating Uniform Magnetic Fields Shahriar Khushrushahi, Prof. Markus Zahn Massachusetts Institute

More information

Handbook of Radiation and Scattering of Waves:

Handbook of Radiation and Scattering of Waves: Handbook of Radiation and Scattering of Waves: Acoustic Waves in Fluids Elastic Waves in Solids Electromagnetic Waves Adrianus T. de Hoop Professor of Electromagnetic Theory and Applied Mathematics Delft

More information

Planar Geometry Ferrofluid Flows in Spatially Uniform Sinusoidally Time-varying Magnetic Fields

Planar Geometry Ferrofluid Flows in Spatially Uniform Sinusoidally Time-varying Magnetic Fields Presented at the 11 COMSOL Conference in Boston Planar Geometry Ferrofluid Flows in Spatially Uniform Sinusoidally Time-varying Magnetic Fields Shahriar Khushrushahi, Alexander Weddemann, Young Sun Kim

More information

Supplementary material to On the rheology of pendular gels and morphological developments in paste- like ternary systems based on capillary attraction

Supplementary material to On the rheology of pendular gels and morphological developments in paste- like ternary systems based on capillary attraction Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 214 Supplementary material to On the rheology of pendular gels and morphological developments in

More information

Chapter 2 Magnetic Properties

Chapter 2 Magnetic Properties Chapter 2 Magnetic Properties Abstract The magnetic properties of a material are the basis of their applications. Specifically, the contrast agents that will be developed in Chaps. 4 and 5 use their magnetic

More information

Tuning the Magnetic Properties of Nanoparticles

Tuning the Magnetic Properties of Nanoparticles Int. J. Mol. Sci. 2013, 14, 15977-16009; doi:10.3390/ijms140815977 Review OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Tuning the Magnetic Properties

More information

Supplementary Figure 1 Representative sample of DW spin textures in a

Supplementary Figure 1 Representative sample of DW spin textures in a Supplementary Figure 1 Representative sample of DW spin textures in a Fe/Ni/W(110) film. (a) to (d) Compound SPLEEM images of the Fe/Ni/W(110) sample. As in Fig. 2 in the main text, Fe thickness is 1.5

More information

Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA

Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 218 Electronic Supplementary Information Size-dependent magnetic and inductive heating

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supramolecular Spin Valves M. Urdampilleta, 1 J.-P. Cleuziou, 1 S. Klyatskaya, 2 M. Ruben, 2,3* W. Wernsdorfer 1,* 1 Institut Néel, associé á l Université Joseph Fourier, CNRS, BP 166, 38042 Grenoble Cedex

More information

Supplementary Information For

Supplementary Information For Supplementary Information For Magnetoresistive performance and comparison of supermagnetic nanoparticles on giant magnetoresistive sensor-based detection system Wei Wang, Yi Wang, Liang Tu, Yinglong Feng,

More information

Direct observation of the skyrmion Hall effect

Direct observation of the skyrmion Hall effect SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS3883 Direct observation of the skyrmion Hall effect Wanjun Jiang 1,2,3, *,, Xichao Zhang 4,*, Guoqiang Yu 5, Wei Zhang 1, Xiao Wang 6, M. Benjamin Jungfleisch

More information

Decay mechanisms of oscillating quartz tuning fork immersed in He II

Decay mechanisms of oscillating quartz tuning fork immersed in He II Journal of Physics: Conference Series Decay mechanisms of oscillating quartz tuning fork immersed in He II To cite this article: I Gritsenko et al 202 J. Phys.: Conf. Ser. 400 02068 View the article online

More information

PH4211 Statistical Mechanics Brian Cowan

PH4211 Statistical Mechanics Brian Cowan PH4211 Statistical Mechanics Brian Cowan Contents 1 The Methodology of Statistical Mechanics 1.1 Terminology and Methodology 1.1.1 Approaches to the subject 1.1.2 Description of states 1.1.3 Extensivity

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 1.138/NPHYS98 Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer Takayuki Nozaki 1,*, 3, Yoichi Shiota 1, Shinji Miwa 1,

More information

Field Dependence of Blocking Temperature in Magnetite Nanoparticles

Field Dependence of Blocking Temperature in Magnetite Nanoparticles J. Metastable and Nanocrystalline Materials 20-21,(2004) 673 Field Dependence of Blocking Temperature in Magnetite Nanoparticles G. F. Goya 1 and M. P. Morales 2 1 Instituto de Física, Universidade de

More information

Ferromagnetism. In free space, the flux density and magnetizing field strength are related by the expression

Ferromagnetism. In free space, the flux density and magnetizing field strength are related by the expression 1 Ferromagnetism B In free space, the flux density and magnetizing field strength are related by the expression H B =µ 0 H µ 0 =4π x 10-7 H.m -1, the permeability of free space. 2 Ferromagnetism B H For

More information

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium with thickness L. Supplementary Figure Measurement of

More information

Introduction to magnetism of confined systems

Introduction to magnetism of confined systems Introduction to magnetism of confined systems P. Vavassori CIC nanogune Consolider, San Sebastian, Spain; nano@nanogune.eu Basics: diamagnetism and paramagnetism Every material which is put in a magnetic

More information

Field Dependence of Blocking Temperature in Magnetite Nanoparticles

Field Dependence of Blocking Temperature in Magnetite Nanoparticles Journal of Metastable and Nanocrystalline Materials Vols. 2-21 (24) pp. 673-678 online at http://www.scientific.net Citation 24 Trans & Tech Publications, Switzerland Copyright (to be inserted by the publisher)

More information

Current-induced switching in a magnetic insulator

Current-induced switching in a magnetic insulator In the format provided by the authors and unedited. DOI: 10.1038/NMAT4812 Current-induced switching in a magnetic insulator Can Onur Avci, Andy Quindeau, Chi-Feng Pai 1, Maxwell Mann, Lucas Caretta, Astera

More information

Krasnoyarsk, Russia. Russia. Canada. Corresponding authors: Anna S. Kichkailo,

Krasnoyarsk, Russia. Russia. Canada. Corresponding authors: Anna S. Kichkailo, Supporting Information In Vivo Cancer Cells Elimination Guided by Aptamer-Functionalized Gold-Coated Magnetic Nanoparticles and Controlled with Low Frequency Alternating Magnetic Field Irina V. Belyanina

More information

Transition from the macrospin to chaotic behaviour by a spin-torque driven magnetization precession of a square nanoelement

Transition from the macrospin to chaotic behaviour by a spin-torque driven magnetization precession of a square nanoelement Transition from the macrospin to chaotic behaviour by a spin-torque driven magnetization precession of a square nanoelement D. Berkov, N. Gorn Innovent e.v., Prüssingstr. 27B, D-07745, Jena, Germany (Dated:

More information

THE INFLUENCE OF A SURFACE ON HYSTERESIS LOOPS FOR SINGLE-DOMAIN FERROMAGNETIC NANOPARTICLES

THE INFLUENCE OF A SURFACE ON HYSTERESIS LOOPS FOR SINGLE-DOMAIN FERROMAGNETIC NANOPARTICLES THE INFLUENCE OF A SURFACE ON HYSTERESIS LOOPS FOR SINGLE-DOMAIN FERROMAGNETIC NANOPARTICLES A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Saad Alsari

More information

SUPPLEMENTARY NOTE 1: ANISOTROPIC MAGNETORESISTANCE PHE-

SUPPLEMENTARY NOTE 1: ANISOTROPIC MAGNETORESISTANCE PHE- SUPPLEMENTARY NOTE 1: ANISOTROPIC MAGNETORESISTANCE PHE- NOMENOLOGY In the main text we introduce anisotropic magnetoresistance (AMR) in analogy to ferromagnets where non-crystalline and crystalline contributions

More information

Stress Overshoot of Polymer Solutions at High Rates of Shear

Stress Overshoot of Polymer Solutions at High Rates of Shear Stress Overshoot of Polymer Solutions at High Rates of Shear K. OSAKI, T. INOUE, T. ISOMURA Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan Received 3 April 2000; revised

More information

Superparamagnetic Iron Oxide Nanoparticles For Drug Delivery

Superparamagnetic Iron Oxide Nanoparticles For Drug Delivery Superparamagnetic Iron Oxide Nanoparticles For Drug Delivery Yana Petri C150 Special Topic SPION ferrofluid Background and Motivation Most promising magnetic iron oxide nanoparticles for biomedical applications:

More information

AC Magnetic Heating of Superparamagnetic Fe and Co Nanoparticles

AC Magnetic Heating of Superparamagnetic Fe and Co Nanoparticles Wright State University CORE Scholar Special Session 5: Carbon and Oxide Based Nanostructured Materials (2012) Special Session 5 6-2012 AC Magnetic Heating of Superparamagnetic Fe and Co Nanoparticles

More information

ELECTRODYNAMICS OF CONTINUOUS MEDIA

ELECTRODYNAMICS OF CONTINUOUS MEDIA ELECTRODYNAMICS OF CONTINUOUS MEDIA by L. D. LANDAU and E. M. LIFSHITZ Institute of Physical Problems, USSR Academy of Sciences Volume 8 of Course of Theoretical Physics Translated from the Russian by

More information

Energy-Based Variational Model for Vector Magnetic Hysteresis

Energy-Based Variational Model for Vector Magnetic Hysteresis Energy-Based Variational Model for Vector Magnetic Hysteresis L. Prigozhin 1 V. Sokolovsky 1 J. W. Barrett 2 S. E. Zirka 3 1 Ben-Gurion University of the Negev, Israel 2 Imperial College London, UK 3 Dnepropetrovsk

More information

compound Cs 2 Cu 2 Mo 3 O 12

compound Cs 2 Cu 2 Mo 3 O 12 133 Cs-NMR study on aligned powder of competing spin chain compound A Yagi 1, K Matsui 1 T Goto 1, M Hase 2 and T Sasaki 3 1 2 Sophia University, Physics Division, Tokyo, 102-8554, Japan National Institute

More information

arxiv: v1 [cond-mat.mtrl-sci] 7 Nov 2012

arxiv: v1 [cond-mat.mtrl-sci] 7 Nov 2012 Spin torque switching in perpendicular films at finite temperature, HP-13 Ru Zhu and P B Visscher arxiv:12111665v1 [cond-matmtrl-sci] 7 Nov 212 MINT Center and Department of Physics and Astronomy University

More information

Spin pumping in magnetic trilayer structures with an MgO barrier Supplementary Information.

Spin pumping in magnetic trilayer structures with an MgO barrier Supplementary Information. Spin pumping in magnetic trilayer structures with an MgO barrier Supplementary Information. A. A. Baker, 1, 2 A. I. Figueroa, 2 D. Pingstone, 3 V. K. Lazarov, 3 G. van der Laan, 2 and 1, a) T. Hesjedal

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 2 Apr 1998

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 2 Apr 1998 Nonequilibrium Phase Transition in the Kinetic Ising model: Dynamical symmetry breaking by randomly varying magnetic field arxiv:cond-mat/979v2 [cond-mat.stat-mech] 2 Apr 998 Muktish Acharyya Institute

More information

Magnetic Nanoparticles for Self-Controlled Hyperthermia Applications

Magnetic Nanoparticles for Self-Controlled Hyperthermia Applications Magnetic Nanoparticles for Self-Controlled Hyperthermia Applications By Amin ur Rashid CIIT/FA09-PPH-002/ISB PhD Thesis In Physics COMSATS Institute of Information Technology, Islamabad-Pakistan Spring,

More information

ESSENTIALS OF PALEOMAGNETISM

ESSENTIALS OF PALEOMAGNETISM ESSENTIALS OF PALEOMAGNETISM LISA TAUXE With Contributions from Robert F. Butler, R. Van der Voo, and Subir K. Banerjee CONTENTS PREFACE xiii 1 THE PHYSICS OF MAGNETISM 1 1.1 What is a magnetic field?

More information

Thermal Properties of Magnetic Nanoparticles In External AC Magnetic Field

Thermal Properties of Magnetic Nanoparticles In External AC Magnetic Field Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2014 Thermal Properties of Magnetic Nanoparticles In External AC Magnetic Field Anna Beata Lukawska Wright

More information

Different experimental methods in stress and strain control to characterize non-linear behaviour

Different experimental methods in stress and strain control to characterize non-linear behaviour Different experimental methods in stress and strain control to characterize non-linear behaviour Jörg Läuger Anton ar Germany GmbH, Ostfildern / Germany Phone: +49-711-7291-6, info.de@anton-paar.com, www.anton-paar.com

More information

Supporting Information

Supporting Information Supporting Information Oscillatory normal forces of magnetorheological fluids Xinglong Gong *, Chaoyang Guo, Shouhu Xuan, Taixiang Liu, Luhang Zong, Chao Peng Department of Modern Mechanics, CAS Key Laboratory

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

Effect of Liquid Viscosity on Sloshing in A Rectangular Tank

Effect of Liquid Viscosity on Sloshing in A Rectangular Tank International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 5 Issue 8 ǁ August. 2017 ǁ PP. 32-39 Effect of Liquid Viscosity on Sloshing

More information

voltage measurement for spin-orbit torques"

voltage measurement for spin-orbit torques SUPPLEMENTARY for article "Accurate analysis for harmonic Hall voltage measurement for spin-orbit torques" Seok Jin Yun, 1 Eun-Sang Park, 2 Kyung-Jin Lee, 1,2 and Sang Ho Lim 1,* 1 Department of Materials

More information

DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT SUBJECT- PHYSICS (042) CLASS -XII

DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT SUBJECT- PHYSICS (042) CLASS -XII Chapter 1(Electric charges & Fields) DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT 2016-17 SUBJECT- PHYSICS (042) CLASS -XII 1. Why do the electric field lines never cross each other? [2014] 2. If the total

More information

Final Exam Physics 7b Section 2 Fall 2004 R Packard. Section Number:

Final Exam Physics 7b Section 2 Fall 2004 R Packard. Section Number: Final Exam Physics 7b Section 2 Fall 2004 R Packard Name: SID: Section Number: The relative weight of each problem is stated next to the problem. Work the easier ones first. Define physical quantities

More information

Giant-spin nonlinear response theory of magnetic nanoparticle hyperthermia: A field dependence study

Giant-spin nonlinear response theory of magnetic nanoparticle hyperthermia: A field dependence study JOURNAL OF APPLIED PHYSICS 121, 17391 (217) Giant-spin nonlinear response theory of magnetic nanoparticle hyperthermia: A field dependence study M. S. Carri~ao, 1,a) V. R. R. Aquino, 1 G. T. Landi, 2 E.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS2271 Two Ising-like magnetic excitations in a single-layer cuprate superconductor Yuan Li, G. Yu, M.K. Chan, V. Balédent, Yangmu Li, N. Barišić, X. Zhao, K.

More information

Contour Plots Electron assignments and Configurations Screening by inner and common electrons Effective Nuclear Charge Slater s Rules

Contour Plots Electron assignments and Configurations Screening by inner and common electrons Effective Nuclear Charge Slater s Rules Lecture 4 362 January 23, 2019 Contour Plots Electron assignments and Configurations Screening by inner and common electrons Effective Nuclear Charge Slater s Rules How to handle atoms larger than H? Effective

More information

The Effects of Particle Agglomeration in Magnetic Particle Imaging

The Effects of Particle Agglomeration in Magnetic Particle Imaging The Effects of Particle Agglomeration in Magnetic Particle Imaging Mathew Solomon Advisor: Dr. Michael Martens Department of Physics Case Western Reserve University Cleveland Ohio, 44106-7079 July 31 st,

More information

Calculation of the temperature dependent AC susceptibility of superconducting disks

Calculation of the temperature dependent AC susceptibility of superconducting disks University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2003 Calculation of the temperature dependent AC susceptibility of superconducting

More information

Supplementary Figure S1: Numerical PSD simulation. Example numerical simulation of the power spectral density, S(f) from a trapped particle

Supplementary Figure S1: Numerical PSD simulation. Example numerical simulation of the power spectral density, S(f) from a trapped particle Supplementary Figure S1: Numerical PSD simulation. Example numerical simulation of the power spectral density, S(f) from a trapped particle oscillating at Ω 0 /(2π) = f xy = 600Hz and subject to a periodic

More information

Title use of Bi-2223/Ag squirrel-cage rot IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY (2006), 16(2): 14.

Title use of Bi-2223/Ag squirrel-cage rot IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY (2006), 16(2): 14. Title Fabrication and characteristics of use of Bi-2223/Ag squirrel-cage rot Author(s) Nakamura, T; Miyake, H; Ogama, Y; M Hoshino, T Citation IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY (2006), 16(2):

More information

Transition from single-domain to vortex state in soft magnetic cylindrical nanodots

Transition from single-domain to vortex state in soft magnetic cylindrical nanodots Transition from single-domain to vortex state in soft magnetic cylindrical nanodots W. Scholz 1,2, K. Yu. Guslienko 2, V. Novosad 3, D. Suess 1, T. Schrefl 1, R. W. Chantrell 2 and J. Fidler 1 1 Vienna

More information

Micromagnetic simulation of dynamic and thermal effects

Micromagnetic simulation of dynamic and thermal effects Micromagnetic simulation of dynamic and thermal effects T. Schrefl, J. Fidler, D. Suess, W. Scholz, V. Tsiantos Institute of Applied and Technical Physics Vienna University of Technology Wiedner Haupstr.

More information

Heating magnetic fluid with alternating magnetic field

Heating magnetic fluid with alternating magnetic field Journal of Magnetism and Magnetic Materials 252 (22) 37 374 Heating magnetic fluid with alternating magnetic field R.E. Rosensweig* Exxon Research and Engineering Co. (ret.), 34 Gloucester Rd., Summit,

More information

Chain-configuration and rate dependent rheological properties in transient networks

Chain-configuration and rate dependent rheological properties in transient networks Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 204 Supplementary Information Chain-configuration and rate dependent rheological properties in transient

More information

Supplementary Figure 1. Optical and magneto-optical responses for 80 nm diameter particles

Supplementary Figure 1. Optical and magneto-optical responses for 80 nm diameter particles Supplementary Figure 1 Optical and magneto-optical responses for 80 nm diameter particles The schematics on the left illustrate the direction of incident polarization and the induced dipole moments that

More information

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko RHEOLOGY Principles, Measurements, and Applications I -56081-5'79~5 1994 VCH Publishers. Inc. New York Part I. CONSTITUTIVE RELATIONS 1 1 l Elastic Solid 5 1.1 Introduction 5 1.2 The Stress Tensor 8 1.2.1

More information

Fundamentals Physics. Chapter 15 Oscillations

Fundamentals Physics. Chapter 15 Oscillations Fundamentals Physics Tenth Edition Halliday Chapter 15 Oscillations 15-1 Simple Harmonic Motion (1 of 20) Learning Objectives 15.01 Distinguish simple harmonic motion from other types of periodic motion.

More information

Supporting information

Supporting information Supporting information Asymmetric Assembling of Iron Oxide Nanocubes for Improving Magnetic Hyperthermia Performance Dina Niculaes 1,2,*, Aidin Lak 1,*, George C. Anyfantis 1, Sergio Marras 1, Oliver Laslett

More information

Extrapolating Solar Dynamo Models throughout the Heliosphere

Extrapolating Solar Dynamo Models throughout the Heliosphere Extrapolating Solar Dynamo Models throughout the Heliosphere Taylor Cox Bridgewater College Mentors: Mark Miesch, Kyle Augustson, Nick Featherstone Solar Convection Convection arises from heat in the Sun

More information

MAGNETIC MATERIAL CHARACTERIZATION BY OPEN SAMPLE MEASUREMENTS

MAGNETIC MATERIAL CHARACTERIZATION BY OPEN SAMPLE MEASUREMENTS MAGNETIC MATERIAL CHARACTERIZATION BY OPEN SAMPLE MEASUREMENTS VALENTIN IONIŢĂ, LUCIAN PETRESCU Key words: Magnetic material characterization, Open sample measurements, Correction of experimental data.

More information

Numerical simulation of the Gailitis dynamo David Moss 1 School of Mathematics University of Manchester Oxford Rd Manchester M13 9PL UK

Numerical simulation of the Gailitis dynamo David Moss 1 School of Mathematics University of Manchester Oxford Rd Manchester M13 9PL UK Abstract Numerical simulation of the Gailitis dynamo David Moss 1 School of Mathematics University of Manchester Oxford Rd Manchester M13 9PL UK The linear magnetohydrodynamic equations are solved with

More information

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998. Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains arxiv:cond-mat/9803101v1 [cond-mat.mes-hall] 9 Mar 1998 A. D. Kent a, U. Ruediger a, J. Yu a, S. Zhang a, P. M. Levy a

More information

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY International Journal of Modern Physics B Vol. 19, Nos. 15, 16 & 17 (2005) 2562-2567 World Scientific Publishing Company World Scientific V www.worldscientific.com ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES

More information

Magnetic properties of Co nanocolumns fabricated by oblique-angle deposition

Magnetic properties of Co nanocolumns fabricated by oblique-angle deposition JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 7 1 APRIL 2003 Magnetic properties of Co nanocolumns fabricated by oblique-angle deposition F. Tang, a) D.-L. Liu, D.-X. Ye, Y.-P. Zhao, T.-M. Lu, and G.-C.

More information

Effective Field Theory of Dissipative Fluids

Effective Field Theory of Dissipative Fluids Effective Field Theory of Dissipative Fluids Hong Liu Paolo Glorioso Michael Crossley arxiv: 1511.03646 Conserved quantities Consider a long wavelength disturbance of a system in thermal equilibrium non-conserved

More information

Optimization of Bias Magnetic Tape in a Remote Readable Data-Carrier using Amorphous Magnetostrictive Strip

Optimization of Bias Magnetic Tape in a Remote Readable Data-Carrier using Amorphous Magnetostrictive Strip Optimization of Bias Magnetic Tape in a Remote Readable Data-Carrier using Amorphous Magnetostrictive Strip SUENAGA Wataru The magnetic characteristics of a magnetic tag device composed of a magnetostrictive

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

EasyChair Preprint. Analysis of electromagnetic heating in magnetic fluid deep hyperthermia

EasyChair Preprint. Analysis of electromagnetic heating in magnetic fluid deep hyperthermia EasyChair Preprint 5 Analysis of electromagnetic heating in magnetic fluid deep hyperthermia Eugeniusz Kurgan and Piotr Gas EasyChair preprints are intended for rapid dissemination of research results

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Large voltage-induced netic anisotropy change in a few atomic layers of iron T. Maruyama 1, Y. Shiota 1, T. Noaki 1, K. Ohta 1, N. Toda 1, M. Miuguchi 1, A. A. Tulapurkar 1, T.

More information

Magnetic iron nanoparticles in carbon nanotubes

Magnetic iron nanoparticles in carbon nanotubes Magnetic iron nanoparticles in carbon nanotubes Author: Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisors: Dr.Javier Tejada Palacios & Jaume Calvo de la Rosa

More information

GEM4 Summer School OpenCourseWare

GEM4 Summer School OpenCourseWare GEM4 Summer School OpenCourseWare http://gem4.educommons.net/ http://www.gem4.org/ Lecture: Microrheology of a Complex Fluid by Dr. Peter So. Given August 10, 2006 during the GEM4 session at MIT in Cambridge,

More information

Magnetic properties of spherical fcc clusters with radial surface anisotropy

Magnetic properties of spherical fcc clusters with radial surface anisotropy Magnetic properties of spherical fcc clusters with radial surface anisotropy D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 66506-2601 (December 6, 1994) We

More information

Numerical simulations of the edge tone

Numerical simulations of the edge tone Numerical simulations of the edge tone I. Vaik, G. Paál Department of Hydrodynamic Systems, Budapest University of Technology and Economics, P.O. Box 91., 1521 Budapest, Hungary, {vaik, paal}@vizgep.bme.hu

More information

Lecture 39. PHYC 161 Fall 2016

Lecture 39. PHYC 161 Fall 2016 Lecture 39 PHYC 161 Fall 016 Announcements DO THE ONLINE COURSE EVALUATIONS - response so far is < 8 % Magnetic field energy A resistor is a device in which energy is irrecoverably dissipated. By contrast,

More information

Physics 102 Spring 2006: Final Exam Multiple-Choice Questions

Physics 102 Spring 2006: Final Exam Multiple-Choice Questions Last Name: First Name: Physics 102 Spring 2006: Final Exam Multiple-Choice Questions For questions 1 and 2, refer to the graph below, depicting the potential on the x-axis as a function of x V x 60 40

More information