Force and motion practice questions

Size: px
Start display at page:

Download "Force and motion practice questions"

Transcription

1 Force and motion practice questions Put another way: 1. A cart with very low friction wheels (pretend that there is no friction) has a mass of 750 grams (this is the mass of the cart and the fan combined). The fan on the cart can bring the cart from rest up to a speed of 1.2 m/s in 3.0 seconds. a. Under the conditions just described, what is the acceleration of the cart? The change in velocity was 1.2 m/s and this happened in a time period of 3.0 seconds. b. How long would it take the same fan to bring the same cart up to a speed of 1.8 m/s? 1.8 m/s is faster than 1.2 m/s by a factor of 1.5. So assuming the same fan would produce the same acceleration, it would take 1.5 times as long to get up to that speed. c. If the cart starts out with a speed of 0.6 m/s, how long will it take to get it up to a speed of 3.0 m/s? What matters is the change in velocity, not the velocity. The change in velocity is 3.0 m/s m/s = 2.4 m/s. That's exactly twice as fast as in the original experiment (taking 3.0 seconds), so it would take twice as long, or 6.0 seconds. d. If we could somehow get the fan to push the cart twice as hard, how long would it take to get this cart from rest up to 1.2 m/s? This is the same speed as in the original equation, but if the fan pushes twice as hard we should have twice as much acceleration which is 2 x 0.40 m/s 2 = 0.80 m/s 2. (exactly half as long) e. If a 250 gram weight is added to the cart, how long would it take the original fan (not the one that pushes twice as hard) to get this more massive cart from rest up to a speed of 1.2 m/s? Now the mass has been increased so the acceleration must decrease. This means it will take longer to get up to that speed.

2 Position in meters Velocity in m/s 2. The graphs below show the motion of a cart as a function of time during an eight second period: Position as a function of time Time in seconds Velocity as a function of time Time in seconds a. Using only the graph on the left, how would you find the average velocity of the cart during those eight seconds? (looking for an explanation here) Find the total change in position and divide it by the total time taken. This is the same as finding the slope of a straight line that connects the ends of that curved graph. b. Using only the chart on the left, what was the average velocity during those eight seconds? (looking for a number with units here) c. Does your answer from part b look reasonable in light of the graph on the right? Explain. Yep. The average velocity would have to be somewhere between the extremes of velocity in the velocity graph and since that graph is a straight line, it makes sense that the average would be the velocity right in the middle, at 4.0 seconds. That velocity is 1.5 m/s. d. Using the graph on the right, what was the acceleration of the cart during those eight seconds? The acceleration is the slope of the velocity vs. time graph. Since the graph is a straight line, you can find the slope from any two points on the graph. I'll use the velocities at 8 s and 4 s. e. If the cart had a mass of 500 grams, what was the unbalanced force on the cart in newtons? (careful, that says 500 grams) Wow. Does that say grams? That really almost tripped me up. The first thing you have to do is convert to consistent units and the only consistent units we know are newtons, meters, and kilograms. So we need to know that 500 grams is 0.5 kg.

3 3. Katrina and Alexei are ice skaters. Alexei has a mass of 72 kg. Katrina has a mass of 54 kg. At one point in their pairs skating routine, Alexei skates up behind Katrina, they stand dramatically still for a moment and then he pushes firmly on her back. (Assume that they are both good enough skaters that neither one of them falls down as a result!) a. Alexei pushes on Katrina's back for 0.90 seconds with a constant force of 96 newtons. Assuming we can pretend that there is no friction between the skates and the ice, how fast would Katrina be moving at the end of those 0.90 seconds? The unbalanced force is 96 newtons. Her mass is 54 kg. So Her change in velocity will be this acceleration times the time: b. Under the same assumptions, what is happening to Alexei during those same 0.90 seconds? Why? He would accelerate in the other direction because she pushes on him just as hard as he pushes on her. c. Under the same assumptions, what would Alexei be doing at the end of those 0.90 seconds? (You should come up with a number if you can.) His acceleration is less since his mass is greater. As a result his final speed will be less by the ratio of their masses (and he will be moving in the opposite direction). d. It isn't really reasonable to assume that there is no friction between the skates and the ice. There is less friction than there would be, say, between sneakers and a tile floor, but not zero friction. It turns out that during the time Alexei pushed her, there was a friction force of a little less than 30 newtons on her skates in the direction opposite the push. What was the effect of that friction force? You don't need to calculate how fast she was going. Simply explain in words what is the result of a 96 newton force in one direction when there is a 30 newton force in the other direction. Since the friction force points in the direction opposite the way that he was pushing, it has the effect of diminishing the unbalanced force by 30 newtons. The actual unbalanced force would be 66 N, not 96 N.

4 e. After the 0.90 second push, Katrina was actually moving with a speed of 1.1 m/s. (Give yourself a gold star if you can prove it.) She slides away from Alexei at a speed of 1.1 m/s, but she has a force of 30 newtons pointing in the opposite direction. Assuming that this friction force is the only force that matters at this time, what is the effect of the friction force on her motion? Her acceleration would be reduced by the ratio of 66 N (the actual unbalanced force) to 96 N (what we originally assumed to be the unbalanced force). Since the amount of time doesn't change, her velocity would be reduced by the same ratio. I want my gold star: (so there!) f. Under the same assumptions as in part e, after Alexei quits pushing her and she begins to glide away with a speed of 1.1 m/s with a friction force of 30 newtons in the other direction, how long does it take before she stops? Who wrote these problems, anyway? Now Alexei isn't pushing so the unbalanced force on her really is 30 newtons. Her acceleration will be She starts out moving 1.1 m/s and she slows down by the amount 0.55 m/s every second after that. So the amount of time it takes her to stop is... (do you understand the units?) g. If it was Alexei sliding away at a speed of 1.1 m/s with a force of 30 newtons in the other direction, would it take more time or less time for him to come to a stop? Why? More time! He has the same speed and the same force acting on him but he has more mass so he has more (wait for it) inertia! Since he has more inertia it will take longer for him to stop under dentical conditions.

5 4. In the musical, "Man of La Mancha", Don Quixote's friend Sancho Panza was describing what happens when a stone collides with a pitcher (meaning a ceramic or glass container for water, not a baseball pitcher). He said, "Whether the stone hits the pitcher, or the pitcher hits the stone, it's going to be bad for the pitcher." Newton might have agreed, but... a. Is this true because the stone hits the pitcher harder than the pitcher hits the stone? (Explain in terms of Newton's laws.) Nope. Newton's third law says the force that the stone exerts on the pitcher has got to be the same size as the force that the pitcher exerts on the stone. Yes, we should call it Newton's third "theory" but even so we would need to remember that scientists and engineers put the third law to the test millions of times every year and no violation has ever been observed. In this case things turn out worse for the pitcher because the pitcher is more fragile than the stone. (It might or might not have less mass, depending on the pitcher and the stone used for the experiment.) b. Would Newton have agreed that it doesn't matter whether the stone hits the pitcher, or the pitcher hits the stone? Yes. It makes no difference how you describe the collision. Newton might have gone so far as to say that these words are misleading because both stone and pitcher must hit each other simultaneously. 2. In the game of bowling, a bowling ball can knock down ten pins which go flying in all directions while the ball keeps moving through. a. Why is there this difference between the behavior of the ball and the behavior of the pins? The pins have less mass, typically less than about 1/4 the mass of the bowling ball. (Also, the ball is moving pretty fast so a change in the velocity of the ball is much less dramatic than a change of the same size in the velocity of a previously stationary pin.) b. Do you think the bowling ball changes velocity at all when it strikes a pin? Yes. Newton's third law says that both objects exert forces on each other and the second law says that these forces will result in changes in velocity of each object. c. When a 7.0 kg bowling ball hits a 1.5 kg bowling pin with a force of 350 newtons, the 1.5 kg bowling pin hits the bowling ball with a force of... what? (How great is the force that the pin exerts on the ball?) 350 newtons. It has to be the same size as the force that the ball exerts on the pin. The third law hasn't failed once in 320 years. So think about this. Newton's laws really are theories. The theories laid the foundation for the industrial revolution. You trust your life to the accuracy of these theories every time you get into an elevator, a car, or a plane. They explain tides, heart rates, and the weather. Think about that the next time you hear somebody say, "It's just a theory."

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Chapter 06 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The property of matter that resists changes in motion is: a. acceleration.

More information

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other.

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other. When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other. Newton s Third Law Action and Reaction Forces The force your bumper car exerts

More information

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other.

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other. When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other. Newton s Third Law What is Newton s third law of motion? According to Newton

More information

Newton s Contributions. Calculus Light is composed of rainbow colors Reflecting Telescope Laws of Motion Theory of Gravitation

Newton s Contributions. Calculus Light is composed of rainbow colors Reflecting Telescope Laws of Motion Theory of Gravitation Newton s Contributions Calculus Light is composed of rainbow colors Reflecting Telescope Laws of Motion Theory of Gravitation Newton s First Law (law of inertia) An object at rest tends to stay at rest

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

More information

Sir Isaac Newton ( ) One of the world s greatest scientists Developed the 3 Laws of Motion

Sir Isaac Newton ( ) One of the world s greatest scientists Developed the 3 Laws of Motion Motion and Forces Sir Isaac Newton (1643 1727) One of the world s greatest scientists Developed the 3 Laws of Motion Newton s Laws of Motion 1 st Law Law of Inertia 2 nd Law Force = Mass x Acceleration

More information

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale 1. A 15-kilogram cart is at rest on a horizontal surface. A 5-kilogram box is placed in the cart. Compared to the mass and inertia of the cart, the cart-box system has A) more mass and more inertia B)

More information

A. true. 6. An object is in motion when

A. true. 6. An object is in motion when 1. The SI unit for speed is A. Miles per hour B. meters per second 5. Frictional forces are greatest when both surfaces are rough. A. true B. false 2. The combination of all of the forces acting on an

More information

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal. Name: 1) 2) 3) Two students are pushing a car. What should be the angle of each student's arms with respect to the flat ground to maximize the horizontal component of the force? A) 90 B) 0 C) 30 D) 45

More information

Forces. Brought to you by:

Forces. Brought to you by: Forces Brought to you by: Objects have force because of their mass and inertia Mass is a measure of the amount of matter/particles in a substance. Mass is traditionally measured with a balance. Inertia

More information

Physic 602 Conservation of Momentum. (Read objectives on screen.)

Physic 602 Conservation of Momentum. (Read objectives on screen.) Physic 602 Conservation of Momentum (Read objectives on screen.) Good. You re back. We re just about ready to start this lab on conservation of momentum during collisions and explosions. In the lab, we

More information

Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends on the amount of (a type of ) acting on it.

Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends on the amount of (a type of ) acting on it. Forces 12.1 Name 1 A is a push or a pull that on an. How do forces affect the motion of an object? Measuring Force You may have measured forces using a spring scale. The of the spring in the scale depends

More information

3rd Grade Motion and Stability

3rd Grade Motion and Stability Slide 1 / 106 Slide 2 / 106 3rd Grade Motion and Stability 2015-11-09 www.njctl.org Slide 3 / 106 Table of Contents Forces and Motion Review Balanced and Unbalanced Forces Motion prediction from patterns

More information

NEWTON S LAWS OF MOTION. Review

NEWTON S LAWS OF MOTION. Review NEWTON S LAWS OF MOTION Review BACKGROUND Sir Isaac Newton (1643-1727) an English scientist and mathematician famous for his discovery of the law of gravity also discovered the three laws of motion. He

More information

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

More information

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List:

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: No Push No Go No Push No Stop No Push No Speed Up No Push No Slow Down

More information

Motion, Forces, and Energy

Motion, Forces, and Energy Motion, Forces, and Energy What is motion? Motion - when an object changes position Types of Motion There are 2 ways of describing motion: Distance Displacement Distance Distance is the total path traveled.

More information

TEK 8.6C: Newton s Laws

TEK 8.6C: Newton s Laws Name: Teacher: Pd. Date: TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction such as in vehicle

More information

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv.

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv. Momentum The momentum of a single object is simply equal to the product of its mass and its velocity. The symbol for momentum is p. Since mass is a scalar and velocity is a vector, momentum is also a vector.

More information

Dynamics-Newton's 2nd Law

Dynamics-Newton's 2nd Law 1. A constant unbalanced force is applied to an object for a period of time. Which graph best represents the acceleration of the object as a function of elapsed time? 2. The diagram below shows a horizontal

More information

Newton s 3 rd Law. 3rd Six Weeks

Newton s 3 rd Law. 3rd Six Weeks Newton s 3 rd Law 3rd Six Weeks Golf and Newton s 3 rd Law Newton s 3 rd Law of Motion The Law states: Whenever one object exerts a force upon a second object, the second object exerts an equal and opposite

More information

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below. 1. Which statement about the movement of an object with zero acceleration is true? The object must be at rest. The object must be slowing down. The object may be speeding up. The object may be in motion.

More information

Figure 5.1: Force is the only action that has the ability to change motion. Without force, the motion of an object cannot be started or changed.

Figure 5.1: Force is the only action that has the ability to change motion. Without force, the motion of an object cannot be started or changed. 5.1 Newton s First Law Sir Isaac Newton, an English physicist and mathematician, was one of the most brilliant scientists in history. Before the age of thirty he had made many important discoveries in

More information

Laws of Motion. What is force? What happens when you push or pull objects? Some examples of pushing and pulling. Definition Force:

Laws of Motion. What is force? What happens when you push or pull objects? Some examples of pushing and pulling. Definition Force: 1 Laws of Motion What is force? What happens when you push or pull objects? Some examples of pushing and pulling Kicking Pushing Lifting Squeezing Definition Force: Activity: Tug of war In a tug of war,

More information

Forces & Newton s Laws. Honors Physics

Forces & Newton s Laws. Honors Physics Forces & Newton s Laws Honors Physics Newton s 1 st Law An object in motion stays in motion, and an object at rest stays at rest, unless an unbalanced force acts on it. An object will maintain a constant

More information

A N D. c h a p t e r 1 2 M O T I O N F O R C E S

A N D. c h a p t e r 1 2 M O T I O N F O R C E S F O R C E S A N D c h a p t e r 1 2 M O T I O N What is a FORCE? A FORCE is a push or pull that acts on an object. A force can cause a resting object to move OR Accelerate a moving object by: changing

More information

3rd Grade. Forces and Motion Review. Slide 1 / 106 Slide 2 / 106. Slide 4 / 106. Slide 3 / 106. Slide 5 / 106. Slide 6 / 106. Motion and Stability

3rd Grade. Forces and Motion Review. Slide 1 / 106 Slide 2 / 106. Slide 4 / 106. Slide 3 / 106. Slide 5 / 106. Slide 6 / 106. Motion and Stability Slide 1 / 106 Slide 2 / 106 3rd Grade Motion and Stability 2015-11-09 www.njctl.org Slide 3 / 106 Slide 4 / 106 Table of Contents Forces and Motion Review Balanced and Unbalanced Forces Motion prediction

More information

Chapter 4 Force and Motion

Chapter 4 Force and Motion Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

More information

Part I Review Unit Review Name Momentum and Impulse

Part I Review Unit Review Name Momentum and Impulse Part I Review Unit Review Name Momentum and Impulse 1. A 5.00-kilogram block slides along a horizontal, frictionless surface at 10.0 meters per second for 4.00 seconds. The magnitude of the block's momentum

More information

Science 20 Physics Review

Science 20 Physics Review Science 20 Physics Review Name 1. Which velocity-time graph below best represents the motion of an object sliding down a frictionless slope? a. b. c. d. Numerical response 1 The roadrunner is moving at

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

Physics 11 (Fall 2012) Chapter 9: Momentum. Problem Solving

Physics 11 (Fall 2012) Chapter 9: Momentum. Problem Solving Physics 11 (Fall 2012) Chapter 9: Momentum The answers you receive depend upon the questions you ask. Thomas Kuhn Life is a mirror and will reflect back to the thinker what he thinks into it. Ernest Holmes

More information

Forces and Newton s Laws

Forces and Newton s Laws chapter 3 section 1 Forces Forces and Newton s Laws What You ll Learn how force and motion are related what friction is between objects the difference between mass and weight Before You Read When you hit

More information

Base your answers to questions 5 and 6 on the information below.

Base your answers to questions 5 and 6 on the information below. 1. A car travels 90. meters due north in 15 seconds. Then the car turns around and travels 40. meters due south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.-second

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

Newton s Third Law KEY IDEAS READING TOOLBOX. As you read this section keep these questions in mind: Name Class Date

Newton s Third Law KEY IDEAS READING TOOLBOX. As you read this section keep these questions in mind: Name Class Date CHAPTER 12 Forces 3 SECTION KEY IDEAS Newton s Third Law As you read this section keep these questions in mind: What happens when one object exerts a force on another object? How can you calculate the

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

More information

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION.

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. MOTION & FORCES SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. A. CALCULATE VELOCITY AND ACCELERATION. B. APPLY NEWTON S THREE LAWS TO EVERYDAY SITUATIONS BY EXPLAINING THE

More information

Force and Motion Task Cards

Force and Motion Task Cards Force and Motion Task Cards Force and Motion Task Cards Follow the Science Teaching Junkie blog for classroom management tips, organizational strategies, project ideas, middle school science resources

More information

Skating. Question. Yes No

Skating. Question. Yes No Skating A rotary lawn mower spins its sharp blade rapidly over the lawn and cuts the tops off the grasses. Would the blade still cut the grasses if they weren t attached to the ground? Yes No Mike at the

More information

WHICH OF THE FOLLOWING IS AN EXAMPLE OF A CONTACT FORCE? A. ELECTRICAL FORCE B. APPLIED FORCE C. GRAVITATIONAL FORCE D.

WHICH OF THE FOLLOWING IS AN EXAMPLE OF A CONTACT FORCE? A. ELECTRICAL FORCE B. APPLIED FORCE C. GRAVITATIONAL FORCE D. WHICH OF THE FOLLOWING IS AN EXAMPLE OF A CONTACT FORCE? A. ELECTRICAL FORCE B. APPLIED FORCE C. GRAVITATIONAL FORCE D. MAGNETIC FORCE WHICH TWO MEASUREMENTS ARE NEEDED TO DETERMINE THE SPEED OF AN OBJECT?

More information

Name: Period: Date: 2. How is the ball s acceleration related to the force Julia applies to the ball?

Name: Period: Date: 2. How is the ball s acceleration related to the force Julia applies to the ball? Name: Period: Date: IMPULSE AND MOMENTUM CONTENTS Impulse and Momentum... 1 Background... 1 The Concepts of Impulse and Momentum... 2 Relationship to Newton s Second Law... 4 Journaling Assignment... 5

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion While most people know what Newton's Laws are, many people do not understand what they mean. Newton s Laws of Motion 1 st Law An object at rest will stay at rest, and an object

More information

Newton s Laws of Motion. Steve Case NMGK-8 University of Mississippi October 2005

Newton s Laws of Motion. Steve Case NMGK-8 University of Mississippi October 2005 Newton s Laws of Motion Steve Case NMGK-8 University of Mississippi October 2005 Background Sir Isaac Newton (1643-1727) an English scientist and mathematician famous for his discovery of the law of gravity

More information

Physics Momentum. CQ8. A train and a bird are both moving with the same velocity of 50 m/s. Compare their momenta.

Physics Momentum. CQ8. A train and a bird are both moving with the same velocity of 50 m/s. Compare their momenta. Homework Procedure: Read pages specified in Honors Physics Essentials by Dan Fullerton. Questions labeled TQ will be questions about the text you read. These TQ s can be answered in one word, one phrase,

More information

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion.

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion. Chapter 3 Newton s First Law of Motion Inertia Exercises 31 Aristotle on Motion (pages 29 30) Fill in the blanks with the correct terms 1 Aristotle divided motion into two types: and 2 Natural motion on

More information

Web practice Chapter 4 Newton's Laws of Motion

Web practice Chapter 4 Newton's Laws of Motion Name: Class: _ Date: _ Web practice Chapter 4 Newton's Laws of Motion Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If we know an object is moving at

More information

Dynamics-Newton's 2nd Law

Dynamics-Newton's 2nd Law 1. A constant unbalanced force is applied to an object for a period of time. Which graph best represents the acceleration of the object as a function of elapsed time? 2. The diagram below shows a horizontal

More information

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

More information

ACTIVITY 5: Changing Force-Strength and Mass

ACTIVITY 5: Changing Force-Strength and Mass UNIT FM Developing Ideas ACTIVITY 5: Changing Force-Strength and Mass Purpose In the previous activities of this unit you have seen that during a contact push/pull interaction, when a single force acts

More information

1d forces and motion

1d forces and motion Name: ate: 1. car accelerates uniformly from rest to a speed of 10 meters per second in 2 seconds. The acceleration of the car is 4. book weighing 20. newtons slides at constant velocity down a ramp inclined

More information

Reporting Category 2: Force, Motion, and Energy. A is a push or a pull in a specific direction.

Reporting Category 2: Force, Motion, and Energy. A is a push or a pull in a specific direction. Name: Science Teacher: Reporting Category 2: Force, Motion, and Energy Unbalanced Forces 8.6A A is a push or a pull in a specific direction. The combination of all forces acting on an object is called.

More information

Laws of Force and Motion

Laws of Force and Motion Does anything happen without a cause? Many people would say yes, because that often seems to be our experience. A cup near the edge of a table suddenly crashes to the floor. An apple falls from a tree

More information

Go on to the next page.

Go on to the next page. Chapter 10: The Nature of Force Force a push or a pull Force is a vector (it has direction) just like velocity and acceleration Newton the SI unit for force = kg m/s 2 Net force the combination of all

More information

Chapter 12 Forces and Motion

Chapter 12 Forces and Motion Chapter 12 Forces and Motion GOAL: Students will be able to interpret and apply Newton s three laws of motion and analyze the motion of an object in terms of its position, velocity, and acceleration. Standard:

More information

UNIT 2G. Momentum & It s Conservation

UNIT 2G. Momentum & It s Conservation Name: Date:_ UNIT 2G Momentum & It s Conservation Momentum & Newton s 2 nd Law of Motion Newton s 2 nd Law states When an unbalanced force acts upon a body, it accelerates that body in the direction of

More information

Standard(s): 2.5 TA: Independence Level: % Assistance, coaching, prompting:

Standard(s): 2.5 TA: Independence Level: % Assistance, coaching, prompting: Name: Class: Date: / / Momentum Quiz Review KEY Introductory Physics (670) 1. What unit is momentum measured with? kilograms meters per second 2. Decide if the objects below have momentum or not. Write

More information

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force.

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. Force Test Review 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. 2. Define weight. The force of gravity on an object at the surface of

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

A hockey puck slides on ice at constant velocity. What is the net force acting on the puck?

A hockey puck slides on ice at constant velocity. What is the net force acting on the puck? A hockey puck slides on ice at constant velocity. What is the net force acting on the puck? A. Something more than its weight B. Equal to its weight C. Something less than its weight but more than zero

More information

What was Aristotle s view of motion? How did Galileo disagree with Aristotle? Which answers agrees with Aristotle s view? Eliminate the others.

What was Aristotle s view of motion? How did Galileo disagree with Aristotle? Which answers agrees with Aristotle s view? Eliminate the others. Quest Chapter 04 # Problem Hint 1 A ball rolls across the top of a billiard table and slowly comes to a stop. How would Aristotle interpret this observation? How would Galileo interpret it? 1. Galileo

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Broughton High School of Wake County

Broughton High School of Wake County Name: Section: 1 Section 1: Which picture describes Newton s Laws of Motion? 5. Newton s Law 1. Newton s Law 2. Newton s Law 6. Newton s Law 3. Newton s Law 7. Newton s Law 4. Newton s Law 8. Newton s

More information

Balanced forces do not cause an object to change its motion Moving objects will keep moving and stationary objects will stay stationary

Balanced forces do not cause an object to change its motion Moving objects will keep moving and stationary objects will stay stationary Newton s Laws Test 8.PS2.3) Create a demonstration of an object in motion and describe the position, force, and direction of the object. 8.PS2.4) Plan and conduct an investigation to provide evidence that

More information

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions 1 Yanbu University College General Studies Department Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions 2 Chapter 2 Worksheet Part 1 Matching: Match the definitions with the given concepts. 1.

More information

Momentum -- Conceptual Questions

Momentum -- Conceptual Questions Momentum Momentum -- Conceptual Questions 1.) A net force F stops a car in time t and distance d. If you multiply that force by the time over which it is applied, what will that quantity tell you? 2.)

More information

December 2015 Exam Review July :39 AM. Here are solutions to the December 2014 final exam.

December 2015 Exam Review July :39 AM. Here are solutions to the December 2014 final exam. December 2015 Exam Review July-15-14 10:39 AM Here are solutions to the December 2014 final exam. 1. [5 marks] A soccer ball is kicked from the ground so that it is projected at an initial angle of 39

More information

NEWTON S LAWS OF. Forces 1 st Law of Motion 2 nd Law of Motion 3 rd Law of Motion MOTION

NEWTON S LAWS OF. Forces 1 st Law of Motion 2 nd Law of Motion 3 rd Law of Motion MOTION NEWTON S LAWS OF Forces 1 st Law of Motion 2 nd Law of Motion 3 rd Law of Motion MOTION Forces Force: a push or a pull on an object *Force is measured in Newtons* Forces Balanced and Unbalanced Forces

More information

Bumper Cars. Question

Bumper Cars. Question Bumper Cars 1 You are riding on the edge of a spinning playground merry-goround. If you pull yourself to the center of the merry-go-round, what will happen to its rotation? A. It will spin faster. B. It

More information

St. Mary's H.S. Physics. Midterm Review

St. Mary's H.S. Physics. Midterm Review Name Midterm Review St. Mary's H.S. Physics 1. If a car accelerates uniformly from rest to 15 meters per second over a distance of 100. meters, the magnitude of the car s acceleration is A) 0.15 m/s 2

More information

Final Exam Review Answers

Final Exam Review Answers Weight (Pounds) Final Exam Review Answers Questions 1-8 are based on the following information: A student sets out to lose some weight. He made a graph of his weight loss over a ten week period. 180 Weight

More information

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30.

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is 34 m 30. m 17 m 24 m 2) The graph below represents the motion of a body that is moving with 6) Which

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam #3 Name 1) A 2000. kg car, traveling to the right at 30. m/s, collides with a brick wall and comes to rest in 0.20 s. 1) The average force the car exerts on the wall is A) 60. kn. B) 12. kn. C) 300

More information

Redhound Day 2 Assignment (continued)

Redhound Day 2 Assignment (continued) Redhound Day 2 Assignment (continued) Directions: Watch the power point and answer the questions on the last slide Which Law is It? on your own paper. You will turn this in for a grade. Background Sir

More information

Chapter 9 Momentum and Its Conservation

Chapter 9 Momentum and Its Conservation Chapter 9 Momentum and Its Conservation Chapter 9 Momentum and Its Conservation In this chapter you will: Describe momentum and impulse and apply them to the interactions between objects. Relate Newton

More information

Quest Chapter 09. Eliminate the obviously wrong answers. Consider what is changing: speed, velocity, some part of velocity? Choose carefully.

Quest Chapter 09. Eliminate the obviously wrong answers. Consider what is changing: speed, velocity, some part of velocity? Choose carefully. 1 A dragster maintains a speedometer reading of 100 km/h and passes through a curve with a constant radius. Which statement is true? 1. The dragster rounded the curve at a changing speed of 100 km/h. 2.

More information

3 Using Newton s Laws

3 Using Newton s Laws 3 Using Newton s Laws What You ll Learn how Newton's first law explains what happens in a car crash how Newton's second law explains the effects of air resistance 4(A), 4(C), 4(D), 4(E) Before You Read

More information

Newton s Laws: Force and Motion

Newton s Laws: Force and Motion Newton s Laws: Force and Motion The First Law: Force and Inertia The Second Law: Force, Mass and Acceleration The Third Law: Action and Reaction The First Law: Force and Inertia Investigation Key Question:

More information

Introduction to Dynamics: Forces and Newton's Laws What causes an object's motion to change? What is a Force? What are Newton's 3 Laws of Motion?

Introduction to Dynamics: Forces and Newton's Laws What causes an object's motion to change? What is a Force? What are Newton's 3 Laws of Motion? Introduction to Dynamics: Forces and Newton's Laws What causes an object's motion to change? What is a Force? What are Newton's 3 Laws of Motion? Physics 1 a When I drop a tennis ball, it accelerates downwards.

More information

Physics 130: Questions to study for midterm #1 from Chapter 7

Physics 130: Questions to study for midterm #1 from Chapter 7 Physics 130: Questions to study for midterm #1 from Chapter 7 1. Kinetic energy is defined to be one-half the a. mass times the speed. b. mass times the speed squared. c. mass times the acceleration. d.

More information

Impulse,Momentum, CM Practice Questions

Impulse,Momentum, CM Practice Questions Name: Date: 1. A 12.0-kilogram cart is moving at a speed of 0.25 meter per second. After the speed of the cart is tripled, the inertia of the cart will be A. unchanged B. one-third as great C. three times

More information

Chapter Seven Notes: Newton s Third Law of Motion Action and Reaction

Chapter Seven Notes: Newton s Third Law of Motion Action and Reaction Chapter Seven Notes: Newton s Third Law of Motion Action and Reaction A force is always part of a mutual action that involves another force. A mutual action is an interaction between one thing and another

More information

5 th Grade Force and Motion Study Guide

5 th Grade Force and Motion Study Guide Name: Date of Test: Vocabulary 5 th Grade Force and Motion Study Guide Motion- a change in position relative to a point of reference, a change in speed, or a change in distance. Point of Reference (Reference

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

More information

Chapter: Newton s Laws of Motion

Chapter: Newton s Laws of Motion Table of Contents Chapter: Newton s Laws of Motion Section 1: Motion Section 2: Newton s First Law Section 3: Newton s Second Law Section 4: Newton s Third Law 1 Motion What is motion? Distance and Displacement

More information

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons.

(f ) From the graph, obtain the height of the tube given the mass of the dart is 20 grams and the constant force applied in the tube is 2 newtons. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Newton s 3 Laws. Explain Newton s 3 Laws of Motion. Cite observed evidence for each law of motion.

Newton s 3 Laws. Explain Newton s 3 Laws of Motion. Cite observed evidence for each law of motion. Name: Date: 1/16 Period: Unit 3 Newton s 3 Laws Essential Questions: How do forces affect motion? What can you conclude about net force on an object when you don t observe it accelerate? When a mosquito

More information

Name Period Date. (m 1 + m 2. m 1. v 2i. v 1i

Name Period Date. (m 1 + m 2. m 1. v 2i. v 1i Example Problems 8.2 Conservation of Momentum Brake Apart: p i p f ( )v 1,2i v 1f v 2 f Stick Together: p i p f v 1i v 2i ( )v 1,2 f Bouncing/Pass Through: p i p f v 1i v 2i v 1f v 2 f Example 1: - A monkey

More information

AP Physics II Summer Packet

AP Physics II Summer Packet Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch

More information

PH105 Exam 1 Solution

PH105 Exam 1 Solution PH105 Exam 1 Solution 1. The graph in the figure shows the position of an object as a function of time. The letters A-E represent particular moments of time. At which moment shown (A, B, etc.) is the speed

More information

Activity 8. Conservation of Momentum. What Do You Think? For You To Do GOALS. The outcome of a collision between two objects is predictable.

Activity 8. Conservation of Momentum. What Do You Think? For You To Do GOALS. The outcome of a collision between two objects is predictable. Activity 8 Conservation of Momentum Activity 8 Conservation of Momentum GOALS In this activity you will: Understand and apply the Law of Conservation of Momentum. Measure the momentum before and after

More information

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN 2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN Topics: Forces Motion Momentum Gravity Electrostatics DATE: TIME: ROOM: PROCTOR: YOU ARE REQUIRED TO BRING: 1. CALCULATOR (YOUR OWN NO SHARING) 2. PENCIL

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

Conceptual Physical Science

Conceptual Physical Science Hewitt/Suchocki/Hewitt Conceptual Physical Science Fourth Edition Chapter 1: PATTERNS OF MOTION AND EQUILIBRIUM This lecture will help you understand: Aristotle on Motion Galileo s Concept of Inertia Mass

More information

Momentum and Collisions. Resource Class/momentum/momtoc.html

Momentum and Collisions. Resource  Class/momentum/momtoc.html Momentum and Collisions Resource http://www.physicsclassroom.com/ Class/momentum/momtoc.html Define Inertia The property of any body to resist changes in its state of motion. The measure of Inertia is:

More information

MITOCW 18. Quiz Review From Optional Problem Set 8

MITOCW 18. Quiz Review From Optional Problem Set 8 MITOCW 18. Quiz Review From Optional Problem Set 8 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational

More information

Ch.8: Forces as Interactions

Ch.8: Forces as Interactions Name: Lab Partners: Date: Ch.8: Forces as Interactions Investigation 1: Newton s Third Law Objective: To learn how two systems interact. To identify action/reaction pairs of forces. To understand and use

More information

Physics Semester 1 Review

Physics Semester 1 Review Physics Semester 1 Review Name: 1. Define: Speed Velocity Acceleration Use the graph to the right to answer questions 2-4. 2. How far did the object travel in 3 seconds? 3. How long did it take for the

More information

Vocabulary. The resistance of a body to changes to its state of motion. The sum of all forces acting on an object.

Vocabulary. The resistance of a body to changes to its state of motion. The sum of all forces acting on an object. Vocabulary Term A push or pull. Definition Inertia Newton The resistance of a body to changes to its state of motion. The metric unit of force. Net The sum of all forces acting on an object. Newton s 1

More information