Modified chain least squares method and some numerical results

Size: px
Start display at page:

Download "Modified chain least squares method and some numerical results"

Transcription

1 IJST (2015) 39A1: Iri Jourl of Sciece & Tecology ttp://ijsts.sirzu.c.ir Modified ci lest squres metod d some umericl results F. Goree 1, E. Boli 1 * d A. Adolli 2 1 Deprtmet of Mtemtics, College of Bsic Scieces, Ter Sciece d Reserc Brc, Islmic Azd Uiversity, Ter, Ir 2 Deprtmet of Mtemtics, Mrge Brc, Islmic Azd Uiversity, Mrge, Ir E-mil: fgoree@sriu.c.ir, oli@ku.c.ir &.dolli@iu-mrge.c.ir Astrct Recetly, i order to icrese te efficiecy of lest squres metod i umericl solutio of ill-posed prolems, te ci lest squres metod is preseted i recurret process y Boli et l. Despite te fct tt te give metod s my dvtges i terms of ccurcy d stility, it does ot ve y stoppig criterio d s ig computtiol cost. I tis rticle, te ttempt is to decrese te computtiol cost of ci lest squres metod y itroducig te modified lest squres metod sed o stoppig criterio. Numericl results sow tt te modified metod s ig ccurcy d stility d ecuse of its low computtiol cost, it c e cosidered s efficiet umericl metod. Keywords: Ci lest squres; Lgrge multipliers metod; Ill- posed prolem; Itegrl equtios; Sigulr secod order iitil vlue differetil equtios 1. Itroductio Lest squres metod is oe of te efficiet metods i te umericl solutio of my egieerig d pysics prolems (Aks et l. 2006; Alexder d George, 1990; Cig d Su- Yu, 2002; Jglur-Mo et l. 2013; Jike d Hugo, 2012; Jimig, 2012; Kig d Krueger, 2003; Leli d Mlek, 2012). I order to icrese te efficiecy of tis metod i umericl solutio of some ill-posed prolems, te ci lest squres metod is preseted i recurret form y Boli et l. (2014). I tis pproc, y reducig term lest squres prolem to te ( 1)-term oes d cotiutio of tis tred up to te lst stge (1-term prolem), te efficiecy of te lest squres metod i umericl solutio of ill-posed prolems s ee sigifictly icresed (Boli et l. 2014). Tus, for solvig -term prolem y ci lest squres metod, we ve to cotiue te recurret process up to te lst stge. I tis rticle, te ttempt is to prevet te cotiutio of te recurret process up to te lst stge y providig logicl d experimetl stoppig criterio. Besides decresig te computtiol cost of ci lest squres metod, te defiitio of te stoppig criterio mitis te stility d ccurcy of tis metod. Tis stoppig *Correspodig utor Received: 12 April 2014 / Accepted: 8 Octoer 2014 criterio is sed o te covergece of itermedite mtrix elemets of lest squres metod to zero. Tis is ispired y te covergece of te Glerki metod i umericl solutio of Fredolm itegrl equtio of te secod kid (Delves d Momed, 1985). It sould e metioed tt y itermedite mtrices, we me te coefficiet mtrix of system of equtio correspodig to te ci lest squres metod i turig k-term prolem (k,,2) to (k 1)- term oe. I te secod step, cosiderig te mi role of te rtificil trjectories i te defiitio of ci lest squres metod (Boli et l. 2014), i order to decrese te computtiol cost of tis metod, ew process is itroduced i defiig of rtificil trjectories. Accordig to te kids of prolems solved y te ci lest squres metod, t lest oe of te rtificil trjectories is decresed. I te ew tred, isted of reducig -term prolem to ( 1)-term oe, te ttempt is to cge -term prolem to ( l)-term oe (l 2) i suc wy tt te computtiol cost of tis metod is decresed. By presetig umericl exmples i ec sectio, te stility d ccurcy of te ew metod will e sow. Firstly, review of ci lest squres metod s ee give, te te modified ci lest squres metod is preseted. Filly, te efficiecy of te modified metods is ivestigted y solvig severl ill-posed fuctiol equtios.

2 IJST (2015) 39A1: A Review of te Ci Lest Squres Metod Let f L 2 [, ] d L i } e sis of L 2 [, ] d f (s) i L i (s), s [, ], e ordiry lest squres pproximtio of f i te sis L i }. For determiig te ukow coefficiets i } we must solve te followig miimiztio prolem mi 1,, e( 1,, ). (1) I order to determie te solutio of (1), it is sufficiet to solve te followig orml equtios i e( 1,, ) 0, i 1,,, (2) e( 1,, ) [ i L i (s) f(s)] ds. It is possile tt solvig (2) ecomes ill-posed prolem. I oter words, te coditio umer of (2) is lrge d its solutio is determied wit lrge error (Dtt, 2010). I order to get te pproximte solutio wit ig ccurcy i ci lest squres metod (Boli et l. 2014), it is supposed tt solutio of (2) is true for te followig coditios g i ( 1,, ) 0, i 1,, 1. I wic, rtificil costris g i re defied s 1 follows (for sclrs r i } elogig to R) (Boli et l., 2014) g i ( 1,, ) i i1 r i, i 1,, 1. (3) Terefore te miimiztio prolem (1) is equivlet to mi e( 1,, ) s. t g i ( 1,, ) 0, i 1,, 1. 2 (4) By te Lgrge multipliers metod (Ito d 1 Kuisc, 2008) tere exist rel sclrs λ i } suc tt te prolem (4) is equivlet to 1 e λ i g i g i ( 1, ) 0, i 1,, 1. (5) I wic, is Grdi opertor. From (5) oe gets 2c c c 1 2f 1 λ 1 2c c c 2 2f 2 λ 2 λ 1 2c 1 1 2c 2 2 2c 2f λ r 1 r 1, c ij L i (s)l j (s)ds, i, j 1,, }, f i L i (s)f(s)ds, i 1,,. By summig te first equtios, (for removig λ i } 1 ) we ve d d d r 1 r 1, f i, d j c ij, j 1,, }. (6) Filly, y (6) te coefficiets i } re determied s follows: Let DR, ( 1,, ) T, R (r 1,, r 1, 1) T, D 1 N ( N t 1 t 1 t 1 t 1 N N t 2 N t 2 t 2 t 2 d i, N t 1 N t 1 N t 1 t 1 t 1 d 1, t i t i1 d i, i 1,, 1. L(s) (L 1 (s),, L (s)),, ) By te ove ssumptios, te -term miimiztio prolem (1) trsforms to ( 1)- term oe s follows: i wic mi E(r 1,, r 1 ), r 1,,r 1 E(r 1,, r 1 ) [ 1 r i p i (s) f (s)] 2 ds,

3 93 IJST (2015) 39A1: d p i (s) L(s)D i, i 1,,, f (s) f(s) p (s), D i i t colum of D. I ci lest squres metod (Boli, 2014), te ( 1)-term prolem is tured ito te ( 2)-term oe y te sme tred. Tis process s ee cotiued up to te fil stge (1-term prolem). 3. Coditiol Ci Lest Squres Metod Suppose tt te purpose is to determie te lest squres pproximtio of f L 2 [, ] o te sis of L i }. If tis prolem is to e solved y ci lest squres metod, te we ve to solve -term, ( 1)-term,, 1-term prolems. I oter words, te ci lest squres metod will e cotiued up to te lst stge d tis process s very ig computtiol cost. I tis sectio, te purpose is to preset experimetl stoppig criterio for ci lest squres metod i suc wy tt its recurret process is fiised efore recig to 1-term prolem. By tis tred, ot oly is te computtiol cost of tis metod decresed, ut lso its stility will e icresed sigifictly. For expliig stoppig criterio, suppose tt te purpose is to determie te ci lest squres of te followig exmples o te sis of s i } 14 i0. Exmple 1. f(s) e s, s [0,1]. Exmple 2. f(s) si(s), s [0,1]. I order to determie tese pproximtios, we ve to solve (15)-term, (14)-term,, 1-term prolems for ec exmple. Suppose tt te lier system of equtios of k-term prolems (k 15,,1) is sow y A k k F k. A k d F k mtrices re clled itermedite mtrices of ci lest squres metod. Also, we defie MA k Mx 1 i,j k (A k ) i,j, k 15,,1, MF k Mx 1 j k (F k ) j, k 15,,1. 15 To sow te evior of MA k } k1 d MF k } 15 k1, tese prmeters re computed for Exmples 1 d 2 d te umericl results re preseted i Tles 1 d 2, respectively. Tle 1. Vlues of MA k d MF k for Exmple 1 k MA k MF k Tle 2. Vlues of MA k d MF k for Exmple 2 k MA k MF k Accordig to te preseted umericl results i Tles 1 d 2, it is cocluded tt lim k 1 MA k 0, lim k 1 MF k 0. I oter words, te followig coclusio is otied experimetlly. Coclusio 1. I determiig te ci lest squres pproximtio of f L 2 [, ] i te sis L i }, te elemets of itermedite mtrices A k d F k coverge to zero. It sould e metioed tt suc stte occurs i pproximtig te solutio of te Fredolm itegrl equtio of secod kid o ortogol sis y Glerki metod (Delves d Momed, 1985). I oter words, if B is te lier system of equtios correspodig to tis prolem, te we ve lim 0, lim B j 0, j 1,,, i wic, B j } j1 re te elemets of 't row of mtrix B. Now suppose tt te purpose is to determie te ci lest squres pproximtio of f L 2 [, ] i te sis L}. Also suppose tt A k k F k, k 1,,1, is te itermedite lier system of equtios of tis

4 IJST (2015) 39A1: metod. By te coclusio 1, it is logicl tt we cotiue te lgoritm of ci lest squres up to te stge tt (eps ) MA k > eps d MF k > eps. Becuse oterwise, te cotiutio of ci metod will ot oly improve te solutio of te prolem, ut lso te ccurcy of te otied pproximtios will e decresed y itroducig roud off errors d dditiol oises to te prolem's solutio. Note 1. I te ci lest squres metod, for determiig te pproximtio of fuctio f i te sis of L i }, we ecouter ( 1)-term prolem i te first stge, -term prolem i te secod stge,, ( k 1)-term prolem i te k't stge. I oter words, tis metod is doe i ( 1) stges. By te ove expltios d ccordig to te fct tt i every stge MA k MF k (Tles 1 d 2), te followig stoppig criterio is preseted for ci lest squres metod. Coclusio 2. I determiig te pproximtio of f L 2 [, ] i te sis L i } y ci lest squres metod, te lgoritm of tis metod i te k't stge will e cotiued we MA k eps. We me tis ew metod, coditiol ci lest squres metod (CCLSM). Terefore, if te ci lest squres metod is cotiued up to te k't stge (k N), te term, ( 1)-term,, ( k 1)-term prolems will e solved y tis metod d we will ot eed to solve ( k)-term,,1-term prolems. So its computtiol cost will e decresed sigifictly. I order to compre te ccurcy of coditiol ci lest squres metod wit ordiry lest squres metod (OLSM) d ci lest squres metod (CLSM), te exmples 1 d 2 re pproximted y tese metods i te sis s i } i0. Te umericl results re give i Tles 3 d 4. Tle 3. Mximum solute errors for Exmple 1 OLSM CLSM CCLSM Tle 4. Mximum solute errors for Exmple 2 OLSM CLSM CCLSM For exmple, i determiig te pproximtio of f(s) e s, s [0,1] i te sis s i 14 } i0 y CCLSM, tis metod is cotiued up to te 11't stge. So solvig 4-term,,1-term prolems re voided. Accordig to te umericl results i Tles 3 d 4, it is cler tt te coditiol ci lest squres metod esides decresig te computtiol cost, s te desirle ccurcy d stility. 4. Modified Ci Lest Squres Metod Suppose tt te im is to oti te umericl solutio of ill-posed prolem. Fredolm itegrl equtio of te first kid (Bitsdze, 1995; Delves d Momed, 1985) d determitio of te lest squres pproximtio of ritrry fuctio o te sis s i } i0 (Dtt, 2010; Kicid d Wrd, 2002) re some exmples of tis kid of ill-posed prolem. If ill-posed prolems re pproximted y lest squres metod o te sis s i } i0 te we will ecouter ( 1)-term prolem. Let A F e te correspodig lier system of equtios of tis prolem i te sis s i } i0, y icresig, te coditio umer of te mtrix A will e elrged (Dtt, 2010; Kicid d Wrd, 2002) d te solutio of te correspodig system is determied y lrge errors. I te ci lest squres metod for solvig -term prolem (Boli et l. 2014), ( 1) rtificil trjectories re defied. By cotiuig tis process up to 1-term prolem, we overcome te ill-posedess d ccurte pproximte solutios re otied. I umericl solutio of ill-posed prolem, te first equtios of te system A F do ot ve mi role i ill-posedess of tis system (Delves d Momed, 1985). Te ill-posedess ppers mily o fil equtios of tis system. By tis rgumet, i ci lest squres metod, rtificil trjectories re defied i suc wy tt te structure of te few first equtios of te system

5 95 IJST (2015) 39A1: A F is mitited i decresig te dimesio of lest squres prolem d isted, some of te rtificil trjectories re elimited. For exmple, if te first s rtificl trjectories re elimited, te i ci lest squres metod, term prolem will e cged to ( s 1)-term prolem. I oter words, i te ew metod, we will ot ve y eed to solve ( 1)-term,, ( s)-term prolems. So te computtiol cost of ci lest squres metod will e decresed sigifictly. If tis work is doe y mitiig ccurcy d stility of tis metod, it will e very vlule. To expli tis metod, we ct s follows. Let f e te lest squres pproximtio of f L 2 [, ] i te sis L i }, i.e., f (s) i L i (s), s [, ] Now, we must solve te followig miimiztio prolem mi 1,, e( 1,, ), (7) e( 1,, ) [ i L i (s) f(s)] 2 ds. (8) Assume tt te ukow coefficiets i } olds i te followig trjectories (for sclrs s1 r i } elogig to R) g i ( 1,, ) 0, i 1,, s 1, (9), s N, 0 s 1 d g i ( 1,, ) si si1 r i, i 1,, s 1. I oter words, we omit te followig s-rtificil trjectories 1 s 2 s1 Te y (9) d (7) we ve mi 1,, e( 1,, ), g i ( 1, ) 0, i 1,, s 1. ow y te Lgrge multipliers metod (Ito d Kuisc, 2008) oe gets s1 e λ i g i g i ( 1,, ) 0 i 1,, s 1 λ i } s1 re rel sclrs. Sice r 1 r s we ve c 11 1 e ( e e,, ), 1 c 12 2 c 1 c s1 1 c s2 2 c s f s 2(c s1,1 1 c s1,2 2 c s1, f s1 ) λ 1 2(c s2,1 1 c s2,2 2 c s2, f s2 λ 2 λ 1 2(c 1 1 c 2 2 c f λ s1 s1 s2 r 1 I wic 1 c ij L i (s)l j (s)ds f 1 r s1, i, j 1,, }, f i L i (s)f(s)ds, i 1,, }, y summig equtios (s 1),, (for removig λ i } s1 ) we ve c 11 1 c 12 2 c s1 1 c s2 2 d 1 1 d 2 2 s1 s2 I wic 1 c 1 c s d f 1 f s r 1 r s1 f i, d j c ij, j 1,,. is1 is1 (10) if D e te iverse of te coefficiet mtrix of system (10) te i } re determied s follows DF, (11) Let ( 1,, ) T, F (f 1,, f s,, r 1,, r s1 ) T. L(s) (L 1 (s),, L (s)) T from (8) d (11) we ve e( 1,, ) [L(s) f(s)] 2 ds Sice [L(s)DF f(s)] 2 ds (12)

6 IJST (2015) 39A1: L(s)DF L(s)D 1 f 1 L(s)D s f s L(s)D s1 L(s)D s2 r 1 L(s)D r s1, d y tkig D i i t colum of D, p i (s) L(s)D s1i, i 1,, s 1. From (11) we ve E(r 1,, r s1 ) e( 1,, ) s1 [ p i (s)r i f (s) s f (s) f(s) L(s)D i f i L(s)D s1. So te miimiztio prolem (7) reduces to mi E(r 1, r 2,, r s1 ). r 1,r 2,,r s1 ] 2 ds, Now, for solvig te miimiztio prolem wit ( s 1)-term we use ci lest squres metod wic is itroduced i sectio 3. Defiitio 1. We cll, "trsformtio of te term lest squres prolem wit preseted lgoritm i tis sectio to te ( s 1)-term lest squres prolem d solvig y coditiol ci lest squres" s Modified Ci Lest Squres metod (MCLSM). We expect tt for smll d logicl vlues of s, te ccurcy d stility of te ove metod is te sme s CCLSM, ut computtiol cost of MCLSM is less t CCLSM. To cofirm tis, we compre te lest squres pproximtios of Exmples 1 d 2 i te sis s i } i0 y OLSM d MCLSM d CPU times of tese metods (CLSM, CCLSM, MCLSM) re compred for Exmple 1. We tke s 3 for MCLSM. Tles 5, 6 d 7 sow tt, te modified ci lest squres metod is lmost equl to coditiol ci lest squres metod ut te CPU time of MCLSM is less t CLSM d CCLSM. 5. Numericl Solutio of Some Ill-posed Fuctiol Equtios wit Modified Ci Lest Squres Metod I tis sectio, two cses of ill-posed fuctiol equtios re ivestigted d some exmples re solved y MCLSM. Tle 5. Compriso of mximum solute errors of OLSM d MCLSM for Exmple 1 OLSM MCLSM Tle 6. Compriso of mximum solute errors of OLSM d MCLSM for Exmple 2 OLSM MCLSM Tle 7. Compriso of CPU times (CLSM, CCLSM, MCLSM) for Exmple1 CLSM CCLSM MCLSM It sould e metioed tt ll of tese computtios re doe i Mtl 2011 wit 16 sigifict digits d Gussi qudrture rule of order 16 is used for computig te relted itegrls Cse 1. I tis cse, Fredolm itegrl equtios of te first kid re ivestigted. Tese equtios pper i my pysicl prolems (Blis, 1989). Becuse of te ill-poseess of tese fuctiol equtios, tese equtios re ivestigted y my resercers (Boli d Delves, 1979; Boli et l. 2007; Groetsc, 1984; Mlekejd et l. 2006; Nsed, 1976). Te geerl form of te itegrl equtios of te first kid is s follows. k(s, t)x(t)dt f(s), s [, ]. (13)

7 97 IJST (2015) 39A1: i wic f d k re kow fuctios d x is ukow fuctio. For solvig tese equtios wit lest squres metod o te sis t i } i0, let x(t) i0 i t i, t [, ], (14) y puttig pproximte solutio (14) i (13) we ve i q i (s) f(s) r (s), s [, ], i0 r (s) is residul fuctio d q i (s) k(s, t)t i dt, s [, ]. For determiig ukow coefficiets i } i0, it is sufficiet to determie lest squres of f i te set q i } i0. I tis sectio, we determie ukow coefficiets i } i0 wit (OLSM), (CLSM), (MCLSM) metods. We tke s 1 for MCLSM. Exmple 3. Exmple 4. 1 e st x(t)dt 0 e s1 1, s [0,1]. s 1 2 cos(st) x(t)dt 1 cos(s)2cos 2 (s)s(si(s)4 cos(s) si(s)1), s [1,2]. s 2 wit te exct solutios e t d t respectively. Te mximum solute errors of exmples 3 d 4 re reported i Tles 8 d 9. Tle 8. Mximum solute errors of (OLSM), (CLSM), (MCLSM) for Exmple 3 OLSM CLSM MCLSM Tle 9. Mximum solute errors of (OLSM), (CLSM), (MCLSM) for Exmple 4 OLSM CLSM MCLSM Cse 2. I tis cse, te sigulr secod order iitil vlue differetil equtios re ivestigted. Tese equtios pper i some models of pysicl prolems d re ivestigted y my resercers (Wzwz, 2002; Kiymz d Mirsyedioglu, 2005; Aslov d Au-Alsik, 2008). Sice tese equtios ve sigulr poits, teir umericl solutios re of prmout importce. Te geerl form of tese equtios re s follows: p(t)y q(t)y r(t)y f(t), t [0, T], y(0) y 0, y (0) y 1, (15) fuctio p s some zeros i [0,T]. To pproximte te solutio i te sis t i } i0 wit lest squres metod, let y(t) i0 i t i (16) y usig te iitil vlues, te ukow prmeters 0 d 1 re determied s follows: 0 y 0, 1 y 1. By puttig (16) i (15) we ve i2 i L i (t) f (t) r (t), (17) r (t) is residul fuctio d L i (t) p(t)(i(i 1))t i2 q(t)it i1 r(t)t i, i 2,,, f (t) f(t) ( 1 q(t) ( 0 1 t)r(t)). For determiig ukow coefficiet i } i2 it is sufficiet to determie lest squres of f i te sis L i } i2. Similr to cse 1 we clculte ukow coefficiets i } i2 wit (OLSM), (CLSM), (MCLSM). We tke s 2 for MCLSM. Exmple 5. t2 y (1 t)y si(t)y f(t), t [0,1]. y(0) 1, y (0) 1

8 IJST (2015) 39A1: Exmple 6. (t 0.5)(t 0.7)y ty e t y f(t), t [0,1], y(0) 1, y (0) 0. Te rigt d side of te ove equtios re so cosidered suc tt e t, cos (t) is te solutios respectively. Te mximum solute errors of (OLSM), (CLSM), (MCLS) for exmple 5, 6 re reported i Tles 10, 11. Tle 10. Mximum solute errors of (OLSM), (CLSM), (MCLSM) for Exmple 5 OLSM CLSM MCLSM Coclusios Accordig to te give umericl results, it is cocluded tt te preseted coditiol lest squres d modified lest squres metods, eside mitiig ccurcy d stility, ve low computtiol cost d tis is vlule dvtge for te ew metods. It sould e metioed tt te prmeter s itroduced i modified ci lest squres is cose experimetlly i suc wy tt y icresig te ill-posedess of te prolem, tis prmeter is cose close to 1. Of course, te preseted metod of sectio 4 c e expressed i oter formts tt will e discussed more i te ext rticles. Tle 11. Mximum solute errors of (OLSM), (CLSM), (MCLSM) for Exmple 6 OLSM CLSM MCLSM Refereces Aks, E. N., Ozdes, A., & Ozis, T. (2006). A umericl solutio of Burgers equtio sed o lest squres pproximtio. Applied Mtemtics d Computtio, 176, Alexder, P., & George, F. P. (1990). A prllel lest squres colloctio cojugte grdiet pproc for te dvectio diffusio equtio. Advces i Wter Resources, 13, Aslov, A., & Au-Alsik, I. (2008). Furter developmets to te decompositio metod for solvig sigulr iitil-vlue prolems. Mtemticl d Computer Modellig, 48, Boli, E., Adolli, A., & Smord, S. (2014). Ci lest squres metod d ill-posed prolems. Iri Jourl of Sciece & Tecology, 38A2, Boli, E., & Delves, L. M. (1979). A Augmeted Glerki Metod for First Kid Fredolm Equtios. J. Ist. Mts. Applics., 24, Boli, E., Lotfi, T., & Pripour, M. (2007). Wvelet momet metod for solvig Fredolm itegrl equtios of te first kid. Applied Mtemtics d Computtio, 186, Blis, C. A. (1989). Advced Egieerig Electromgetics. Wiley, New York. Bitsdze, A. V. (1995). Itegrl Equtios of First Kid. World Scietific Pulisig Co. Pte. Ltd. Cig, L. C., & Su-Yu Y. (2002). Alysis of te L 2 lest squres fiite elemet metod for te velocity vorticity pressure Stokes equtios wit velocity oudry coditios. Applied Mtemtics d Computtio, 130, Dtt, B. N. (2010). Numericl Lier Alger d Applictios. Secod Editio, SIAM. Delves, L. M., & Momed, J. L. (1985). Computtiol Metods for Itegrl Equtios. Cmridge Uiversity Press. Groetsc, C. W. (1984). Te Teory of Tikoov Regulriztio for Fredolm Equtios of te First Kid. Reserc Notes i Mtemtics, vol. 105, Pitm, Bosto. Ito, K., & Kuisc, K. (2008). Lgrge multipliers pproc to vritiol prolems d pplictios. SIAM. Jglur-Mo, J., Feijo, G., & Oeri, A. (2013). A Glerki, lest squres metod for time rmoic Mxwell equtios usig Ne de lec elemets. Jourl of Computtiol Pysics, 235, Jike, S., & Hugo, A. J. (2012). Effects of Jcoi polyomils o te umericl solutio of te pellet equtio usig te ortogol colloctio, Glerki, tu d lest squres metods. Computers & Cemicl Egieerig, 39, Jimig, W. (2012). Lest squres metods for solvig prtil differetil equtios y usig Bzier cotrol poits. Applied Mtemtics d Computtio, 219, Kicid, D. R., & Wrd, C. E. (2002). Numericl Alysis: Mtemtics of Scietific Computig. Americ Mtemticl Society. Kig, B. B., & Krueger, D. A. (2003). Burgers equtio: Glerki lest-squres pproximtios d feedck cotrol. Mtemticl d Computer Modellig, 38,

9 99 IJST (2015) 39A1: Kiymz, O., & Mirsyedioglu, S. (2005). Aew symolic computtiol pproc to sigulr iitil vlue prolems i te secod-order ordiry differetil equtios. Applied Mtemtics d Computtio, 171, Leli, D. H., & Mlek, G. F. M. (2012). Numericl solutio of Volterr Fredolm itegrl equtios y movig lest squre metod d Ceysev polyomils. Applied Mtemticl Modellig, 36, Mlekejd, K., Agzde, N., & Mollpoursl, R. (2006). Numericl solutio of Fredolm itegrl equtio of te first kid wit colloctio metod d estimtio of error oud. Applied Mtemtics d Computtio, 179, Nsed, M. N. (1976). O Momet-Discretiztio d Lest-Squres Solutios of Lier Itegrl Equtios of te First Kid. J. Mt. Al. Appl., 53, Wzwz, A. M. (2002). Aew metod for solvig sigulr iitil vlue prolems i te secod-order ordiry differetil equtios. Applied Mtemtics d Computtio, 171,

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials Jourl of Al-Nhri Uiversity Vol.5 (), Mrch,, pp.-9 Sciece Numericl Solutio of Fuzzy Fredholm Itegrl Equtios of the Secod Kid usig Berstei Polyomils Srmd A. Altie Deprtmet of Computer Egieerig d Iformtio

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind Ge. Mth. Notes, Vol. 2, No. 1, Jury 211, pp. 143-148 ISSN 2219-7184; Copyright ICSRS Publictio, 211 www.i-csrs.org Avilble free olie t http://www.gem.i Vritiol Itertio Method for Solvig Volterr d Fredholm

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

Angle of incidence estimation for converted-waves

Angle of incidence estimation for converted-waves Agle of icidece estimtio for coverted-wves Crlos E. Nieto d Robert R. tewrt Agle of icidece estimtio ABTRACT Amplitude-versus-gle AA lysis represets li betwee te geologicl properties of roc iterfces d

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

Titus Beu University Babes-Bolyai Department of Theoretical and Computational Physics Cluj-Napoca, Romania

Titus Beu University Babes-Bolyai Department of Theoretical and Computational Physics Cluj-Napoca, Romania 8. Systems of Lier Algeric Equtios Titus Beu Uiversity Bes-Bolyi Deprtmet of Theoreticl d Computtiol Physics Cluj-Npoc, Romi Biliogrphy Itroductio Gussi elimitio method Guss-Jord elimitio method Systems

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 3 Ver. IV (My - Jue 7), PP -8 www.iosrjourls.org Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol

More information

Numerical Integration - (4.3)

Numerical Integration - (4.3) Numericl Itegrtio - (.). Te Degree of Accurcy of Qudrture Formul: Te degree of ccurcy of qudrture formul Qf is te lrgest positive iteger suc tt x k dx Qx k, k,,,...,. Exmple fxdx 9 f f,,. Fid te degree

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

Autar Kaw Benjamin Rigsby. Transforming Numerical Methods Education for STEM Undergraduates

Autar Kaw Benjamin Rigsby.   Transforming Numerical Methods Education for STEM Undergraduates Autr Kw Bejmi Rigsby http://m.mthforcollege.com Trsformig Numericl Methods Eductio for STEM Udergrdutes http://m.mthforcollege.com . solve set of simulteous lier equtios usig Nïve Guss elimitio,. ler the

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning Hdout # Title: FAE Course: Eco 8/ Sprig/5 Istructor: Dr I-Mig Chiu Itroductio to Mtrix: Mtrix opertios & Geometric meig Mtrix: rectgulr rry of umers eclosed i pretheses or squre rckets It is covetiolly

More information

The total number of permutations of S is n!. We denote the set of all permutations of S by

The total number of permutations of S is n!. We denote the set of all permutations of S by DETERMINNTS. DEFINITIONS Def: Let S {,,, } e the set of itegers from to, rrged i scedig order. rerrgemet jjj j of the elemets of S is clled permuttio of S. S. The totl umer of permuttios of S is!. We deote

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

Power Series Solutions to Generalized Abel Integral Equations

Power Series Solutions to Generalized Abel Integral Equations Itertiol Jourl of Mthemtics d Computtiol Sciece Vol., No. 5, 5, pp. 5-54 http://www.isciece.org/jourl/ijmcs Power Series Solutios to Geerlized Abel Itegrl Equtios Rufi Abdulli * Deprtmet of Physics d Mthemtics,

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Some New Iterative Methods Based on Composite Trapezoidal Rule for Solving Nonlinear Equations

Some New Iterative Methods Based on Composite Trapezoidal Rule for Solving Nonlinear Equations Itertiol Jourl of Mthemtics d Sttistics Ivetio (IJMSI) E-ISSN: 31 767 P-ISSN: 31-759 Volume Issue 8 August. 01 PP-01-06 Some New Itertive Methods Bsed o Composite Trpezoidl Rule for Solvig Nolier Equtios

More information

Definite Integral. The Left and Right Sums

Definite Integral. The Left and Right Sums Clculus Li Vs Defiite Itegrl. The Left d Right Sums The defiite itegrl rises from the questio of fidig the re betwee give curve d x-xis o itervl. The re uder curve c be esily clculted if the curve is give

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Numerical Integration by using Straight Line Interpolation Formula

Numerical Integration by using Straight Line Interpolation Formula Glol Jourl of Pure d Applied Mthemtics. ISSN 0973-1768 Volume 13, Numer 6 (2017), pp. 2123-2132 Reserch Idi Pulictios http://www.ripulictio.com Numericl Itegrtio y usig Stright Lie Iterpoltio Formul Mhesh

More information

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS

A GENERALIZATION OF GAUSS THEOREM ON QUADRATIC FORMS A GENERALIZATION OF GAU THEOREM ON QUADRATIC FORM Nicole I Brtu d Adi N Cret Deprtmet of Mth - Criov Uiversity, Romi ABTRACT A origil result cocerig the extesio of Guss s theorem from the theory of biry

More information

Linear Programming. Preliminaries

Linear Programming. Preliminaries Lier Progrmmig Prelimiries Optimiztio ethods: 3L Objectives To itroduce lier progrmmig problems (LPP To discuss the stdrd d coicl form of LPP To discuss elemetry opertio for lier set of equtios Optimiztio

More information

The limit comparison test

The limit comparison test Roerto s Notes o Ifiite Series Chpter : Covergece tests Sectio 4 The limit compriso test Wht you eed to kow lredy: Bsics of series d direct compriso test. Wht you c ler here: Aother compriso test tht does

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS RGMIA Reserch Report Collectio, Vol., No., 998 http://sci.vut.edu.u/ rgmi/reports.html AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS S.S. DRAGOMIR AND I.

More information

Using simple methods to derive EOQ and EPQ models with shortage. and imperfect quality

Using simple methods to derive EOQ and EPQ models with shortage. and imperfect quality Usig simple metods to derive EO d EP models wit sortge d imperfect qulity Yu-Ceg Tu Yug-Fu Hug * We-Kuo Ce 3 d Hsi-F Ce 4 34 eprtmet of Mretig d ogistics Mgemet Coyg Uiversity of Tecology Ticug Tiw strct

More information

Closed Newton-Cotes Integration

Closed Newton-Cotes Integration Closed Newto-Cotes Itegrtio Jmes Keeslig This documet will discuss Newto-Cotes Itegrtio. Other methods of umericl itegrtio will be discussed i other posts. The other methods will iclude the Trpezoidl Rule,

More information

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM Jourl of Applied Mthemtics d Computtiol Mechics () 57-6 SOUION O DIERENIA EQUAION OR HE EUER-ERNOUI EAM Izbel Zmorsk Istitute of Mthemtics Czestochow Uiversit of echolog Częstochow Pold izbel.zmorsk@im.pcz.pl

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

Solution of the exam in TMA4212 Monday 23rd May 2013 Time: 9:00 13:00

Solution of the exam in TMA4212 Monday 23rd May 2013 Time: 9:00 13:00 Norwegi Uiversity of Sciece d Techology Deprtmet of Mthemticl Scieces Cotct durig the exm: Ele Celledoi, tlf. 735 93541 Pge 1 of 7 of the exm i TMA4212 Mody 23rd My 2013 Time: 9:00 13:00 Allowed ids: Approved

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Canonical Form and Separability of PPT States on Multiple Quantum Spaces

Canonical Form and Separability of PPT States on Multiple Quantum Spaces Coicl Form d Seprbility of PPT Sttes o Multiple Qutum Spces Xio-Hog Wg d Sho-Mig Fei, 2 rxiv:qut-ph/050445v 20 Apr 2005 Deprtmet of Mthemtics, Cpitl Norml Uiversity, Beijig, Chi 2 Istitute of Applied Mthemtics,

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0 Q1. The free vibrtio of the plte is give by By ssumig h w w D t, si cos w W x y t B t Substitutig the deflectio ito the goverig equtio yields For the plte give, the mode shpe W hs the form h D W W W si

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

THE SOLUTION OF THE FRACTIONAL DIFFERENTIAL EQUATION WITH THE GENERALIZED TAYLOR COLLOCATIN METHOD

THE SOLUTION OF THE FRACTIONAL DIFFERENTIAL EQUATION WITH THE GENERALIZED TAYLOR COLLOCATIN METHOD IJRRAS August THE SOLUTIO OF THE FRACTIOAL DIFFERETIAL EQUATIO WITH THE GEERALIZED TAYLOR COLLOCATI METHOD Slih Ylçıbş Ali Kourlp D. Dömez Demir 3* H. Hilmi Soru 4 34 Cell Byr Uiversity Fculty of Art &

More information

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem Secod Me Vlue Theorem for Itegrls By Ng Tze Beg This rticle is out the Secod Me Vlue Theorem for Itegrls. This theorem, first proved y Hoso i its most geerlity d with extesio y ixo, is very useful d lmost

More information

Lesson 4 Linear Algebra

Lesson 4 Linear Algebra Lesso Lier Algebr A fmily of vectors is lierly idepedet if oe of them c be writte s lier combitio of fiitely my other vectors i the collectio. Cosider m lierly idepedet equtios i ukows:, +, +... +, +,

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

Elementary Linear Algebra

Elementary Linear Algebra Elemetry Lier Alger Ato & Rorres, th Editio Lecture Set Chpter : Systems of Lier Equtios & Mtrices Chpter Cotets Itroductio to System of Lier Equtios Gussi Elimitio Mtrices d Mtri Opertios Iverses; Rules

More information

{ } { S n } is monotonically decreasing if Sn

{ } { S n } is monotonically decreasing if Sn Sequece A sequece is fuctio whose domi of defiitio is the set of turl umers. Or it c lso e defied s ordered set. Nottio: A ifiite sequece is deoted s { } S or { S : N } or { S, S, S,...} or simply s {

More information

Test Info. Test may change slightly.

Test Info. Test may change slightly. 9. 9.6 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

Quadrature Methods for Numerical Integration

Quadrature Methods for Numerical Integration Qudrture Methods for Numericl Itegrtio Toy Sd Istitute for Cle d Secure Eergy Uiversity of Uth April 11, 2011 1 The Need for Numericl Itegrtio Nuemricl itegrtio ims t pproximtig defiite itegrls usig umericl

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

Section 6.3: Geometric Sequences

Section 6.3: Geometric Sequences 40 Chpter 6 Sectio 6.: Geometric Sequeces My jobs offer ul cost-of-livig icrese to keep slries cosistet with ifltio. Suppose, for exmple, recet college grdute fids positio s sles mger erig ul slry of $6,000.

More information

Numerical method for solving system of Fredhlom integral equations using Chebyshev cardinal functions

Numerical method for solving system of Fredhlom integral equations using Chebyshev cardinal functions 2014 2014) 1-13 Avilble olie t www.ispcs.com/cte Volume 2014, Yer 2014 Article ID cte-00165, 13 Pges doi:10.5899/2014/cte-00165 Reserch Article umericl method for solvig system of Fredhlom itegrl equtios

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December ISSN Itertiol Jourl o Scietiic & Egieerig Reserc, Volume 6, Issue, December-0 0 ISSN -8 A Clss o New Bloc Geerlized Adms Implicit Ruge-Kutt Colloctio Metods Kumleg G.M., Collom J. P, Omgwu S. Abstrct I tis

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1 Mth 44 Activity 7 (Due with Fil Exm) Determie covergece or divergece of the followig ltertig series: l 4 5 6 4 7 8 4 {Hit: Loo t 4 } {Hit: } 5 {Hit: AST or just chec out the prtil sums} {Hit: AST or just

More information

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction Ot 0 006 Euler s little summtio formul d speil vlues of te zet futio Toms J Osler temtis Deprtmet Row Uiversity Glssboro J 0608 Osler@rowedu Itrodutio I tis ote we preset elemetry metod of determiig vlues

More information

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices Mlysi Jourl of Librry & Iformtio Sciece, Vol. 9, o. 3, 04: 4-49 A geerl theory of miiml icremets for Hirsch-type idices d pplictios to the mthemticl chrcteriztio of Kosmulski-idices L. Egghe Uiversiteit

More information

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006 Sttistics for Ficil Egieerig Sessio : Lier Algebr Review rch 8 th, 6 Topics Itroductio to trices trix opertios Determits d Crmer s rule Eigevlues d Eigevectors Quiz The cotet of Sessio my be fmilir to

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA

COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA itli jourl of pure d pplied mthemtics. 5 015 (11 18) 11 COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA Weijig Zho 1 College of Air Trffic Mgemet Civil

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and Sec. 7., Boyce & DiPrim, p. Sectio 7., Systems of Lier Algeric Equtios; Lier Idepedece, Eigevlues, Eigevectors I. Systems of Lier Algeric Equtios.. We c represet the system...... usig mtrices d vectors

More information

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg ymmetricl Compoets equece impedces Although the followig focuses o lods, the results pply eqully well to lies, or lies d lods. Red these otes together with sectios.6 d.9 of text. Cosider the -coected lced

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n. Sclrs-9.0-ADV- Algebric Tricks d Where Tylor Polyomils Come From 207.04.07 A.docx Pge of Algebric tricks ivolvig x. You c use lgebric tricks to simplify workig with the Tylor polyomils of certi fuctios..

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

Comparison of B-spline Method and Finite Difference Method to Solve BVP of Linear ODEs

Comparison of B-spline Method and Finite Difference Method to Solve BVP of Linear ODEs JOURNAL OF COMPUTERS VOL. 6 NO. OCTOER Compriso of -splie Metod d Fiite Differece Metod to Solve VP of Lier ODEs Jici Cg Qili Yg Log Zo College of ScieceHebei Uited Uiversit Tgs Hebei 6Ci {ici@eut.edu.c}

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 SUTCLIFFE S NOTES: CALCULUS SWOKOWSKI S CHAPTER Ifiite Series.5 Altertig Series d Absolute Covergece Next, let us cosider series with both positive d egtive terms. The simplest d most useful is ltertig

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

Numerical Methods (CENG 2002) CHAPTER -III LINEAR ALGEBRAIC EQUATIONS. In this chapter, we will deal with the case of determining the values of x 1

Numerical Methods (CENG 2002) CHAPTER -III LINEAR ALGEBRAIC EQUATIONS. In this chapter, we will deal with the case of determining the values of x 1 Numericl Methods (CENG 00) CHAPTER -III LINEAR ALGEBRAIC EQUATIONS. Itroductio I this chpter, we will del with the cse of determiig the vlues of,,..., tht simulteously stisfy the set of equtios: f f...

More information

The Elementary Arithmetic Operators of Continued Fraction

The Elementary Arithmetic Operators of Continued Fraction Americ-Eursi Jourl of Scietific Reserch 0 (5: 5-63, 05 ISSN 88-6785 IDOSI Pulictios, 05 DOI: 0.589/idosi.ejsr.05.0.5.697 The Elemetry Arithmetic Opertors of Cotiued Frctio S. Mugssi d F. Mistiri Deprtmet

More information

SOLUTION OF SYSTEM OF LINEAR EQUATIONS. Lecture 4: (a) Jacobi's method. method (general). (b) Gauss Seidel method.

SOLUTION OF SYSTEM OF LINEAR EQUATIONS. Lecture 4: (a) Jacobi's method. method (general). (b) Gauss Seidel method. SOLUTION OF SYSTEM OF LINEAR EQUATIONS Lecture 4: () Jcobi's method. method (geerl). (b) Guss Seidel method. Jcobi s Method: Crl Gustv Jcob Jcobi (804-85) gve idirect method for fidig the solutio of system

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digitl Sigl Processig, Fll 6 Lecture 6: Sstem structures for implemettio Zeg-u T Deprtmet of Electroic Sstems Alorg Uiversit, Demr t@om.u.d Digitl Sigl Processig, VI, Zeg-u T, 6 Course t glce Discrete-time

More information

Interpolation. 1. What is interpolation?

Interpolation. 1. What is interpolation? Iterpoltio. Wht is iterpoltio? A uctio is ote give ol t discrete poits such s:.... How does oe id the vlue o t other vlue o? Well cotiuous uctio m e used to represet the + dt vlues with pssig through the

More information

10.5 Test Info. Test may change slightly.

10.5 Test Info. Test may change slightly. 0.5 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow sum)

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem Lecture 4 Recursive Algorithm Alysis Merge Sort Solvig Recurreces The Mster Theorem Merge Sort MergeSortA, left, right) { if left < right) { mid = floorleft + right) / 2); MergeSortA, left, mid); MergeSortA,

More information

Prior distributions. July 29, 2002

Prior distributions. July 29, 2002 Prior distributios Aledre Tchourbov PKI 357, UNOmh, South 67th St. Omh, NE 688-694, USA Phoe: 4554-64 E-mil: tchourb@cse.ul.edu July 9, Abstrct This documet itroduces prior distributios for the purposes

More information

Advanced Algorithmic Problem Solving Le 6 Math and Search

Advanced Algorithmic Problem Solving Le 6 Math and Search Advced Algorithmic Prolem Solvig Le Mth d Serch Fredrik Heitz Dept of Computer d Iformtio Sciece Liköpig Uiversity Outlie Arithmetic (l. d.) Solvig lier equtio systems (l. d.) Chiese remider theorem (l.5

More information

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS Appedi A Emples for Ls,,. FACTORING POLYNOMIALS Tere re m stdrd metods of fctorig tt ou ve lered i previous courses. You will uild o tese fctorig metods i our preclculus course to ele ou to fctor epressios

More information

Name of the Student:

Name of the Student: Egieerig Mthemtics 5 NAME OF THE SUBJECT : Mthemtics I SUBJECT CODE : MA65 MATERIAL NAME : Additiol Prolems MATERIAL CODE : HGAUM REGULATION : R UPDATED ON : M-Jue 5 (Sc the ove QR code for the direct

More information

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple Chpter II CALCULUS II.4 Sequeces d Series II.4 SEQUENCES AND SERIES Objectives: After the completio of this sectio the studet - should recll the defiitios of the covergece of sequece, d some limits; -

More information

Numbers (Part I) -- Solutions

Numbers (Part I) -- Solutions Ley College -- For AMATYC SML Mth Competitio Cochig Sessios v.., [/7/00] sme s /6/009 versio, with presettio improvemets Numbers Prt I) -- Solutios. The equtio b c 008 hs solutio i which, b, c re distict

More information

Simplification and Strengthening of Weyl s Definition of Asymptotic Equal Distribution of Two Families of Finite Sets

Simplification and Strengthening of Weyl s Definition of Asymptotic Equal Distribution of Two Families of Finite Sets Simplifictio d Stregtheig of Weyl s Defiitio of Asymptotic Equl Distributio of Two Fmilies of Fiite Sets Willim F. Trech Triity Uiversity, S Atoio, Texs, USA; wtrech@triity.edu Milig ddress: 95 Pie Le,

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem The Weierstrss Approximtio Theorem Jmes K. Peterso Deprtmet of Biologicl Scieces d Deprtmet of Mthemticl Scieces Clemso Uiversity Februry 26, 2018 Outlie The Wierstrss Approximtio Theorem MtLb Implemettio

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information