The magnetic field of the shim coils. Simon Schroeder

Size: px
Start display at page:

Download "The magnetic field of the shim coils. Simon Schroeder"

Transcription

1 The magnetic field of the shim coils. Simon Schroeder Septimiu Balascuta (09/18/2011) 1. Introduction. We report the calculation of the dependence between the direction of the magnetic field and one of the shim coil current starting from the measurements of the three field components for increasing current in one shim coil from 0 (A) to 1.2 (A). This was done with and without the main guide coils turned off. In the absence of the main coils, the magnetic field in the cave is due to the SMP, CM and the Earth magnetic field. With the current in the main guide coils turned on the field in the center of the guide coils is not completely aligned with the vertical Y axis. The angle between the field and the vertical axis can be decreased by changing the current in the lateral shim coils. The magnetic field measured at the two probes placed on top and bellow the spin flipper is measured for different currents in the shim coils. 2. The experimental setup. The field components were measured on September 10, The field was measured using the LabView interface and the two Barrington magnetic probes MAG1 and MAG2 located above and below the spin rotator like in figure 1. The directions of the X1, Y1 and Z1 fluxgate axes in the first magnetic probe MAG1 are along the beam axis (Z), opposite to the vertical axis (-Y) and along horizontal X axis respectively. The directions of the three fluxgates in the second magnetic probe (X2, Y2, Z2) are aligned with the axes of the lab X, Y and Z. The names of the measured field components is given by the names of the three fluxgates of the two magnetic probes placed above the spin rotator (X1, Y1 Z1) and bellow it (X2, Y2, Z2). The B y1 component measured by MAG1 is always negative while B y2 is positive. The angle between the direction of the fluxgate axis and the lab axes (X, Y and Z) is smaller than 0.02 degrees for MAG1 and smaller than 0.1 degree for MAG2. In biggest misalignment angle is between the Z2 axis and the Z axis of the coils.

2 SMP and CM MAG1 5.2 Spin Rotator x y 1 MAG2 Detector shield Y 28.5 Z Liquid Hydrogen target y z Figure 1. The position of the magnetic probes (MAG1, MAG2) is seen relative to the steel floor, the spin rotator, the four main coils, the liquid hydrogen target and the detector shield. In this picture the different components are projected on the vertical YZ plane passing through the center of the detector, spin rotator and liquid hydrogen target. The directions of the axes of coordinates Y and Z are along the direction of gravity and the beam axis respectively. The field was measured versus the current in each of the four shim coils and main coil to relate the change in the current with the change in the orientation and magnitude of the field. The orientation of the field is given by the two angles theta and psi defined in figure 2. The angle theta is between the direction of the B field vector projected in the XY plane (normal to the beam axis) and the vertical axis Y. Y θ B x, y Y ψ B y, z X Z Figure 2. The angles theta and psi define the direction of the magnetic field relative to the axes of the NPDGamma experiment. The beam axis is along Z, while Y is the vertical axis.

3 To calculate the change in the angle theta with the current in one of the shim coil, one can derivate tanθ with respect to the current. If the fields are measured at the first magnetic probe then one can Bx Bz1 write: tan θ = B = B (1) y y1 dθ cos db B B db db = + db = z1 z1 z1 z1 y1 2 2 y1 θ By1 By1 B y1 Bz1 By1 (2) d db db z1 y1 θ = sinθ cosθ B B z1 y1 d θ By1Bz1 1 db 1 1 db z y1 = 2 2 di Bz1 + B y1 Bz1 di By1 di (3) (4) With the approximation Bz1/By1<<1 equation 4 can be written: d θ B 1 db 1 db 1 db B db = = + di B B di B di B di B di z1 z1 y1 z1 z1 y1 2 1 y1 z1 y1 y1 y1 (5) The change in the angle with the current can be calculated also from the field components measured by the second magnetic probe: Bx Bx tan B B θ = = 2 (6) y y2 d θ B 1 db 1 db 1 db B db = = di B B di B di B di B di x2 x2 y2 x2 x2 y2 2 2 y 2 x2 y2 y 2 y2 (7) The vertical component is in general more than 10 times bigger than the horizontal components such that the second term on the right hand side of equation 5 or 7 can be neglected. The change in the angle ψ can be calculated from the field components measured at the first and second magnetic probes: dψ db B db = + di B di B di 1 x1 x1 y1 2 1 y1 y1 (8) dψ db = (9) di B di B di 1 dbz 2 Bz 2 2 y2 2 y2 y2

4 In section three, the field components are measured at the two magnetic probes when the current in the main coils and auxiliary coils are zero, and the current in only one of the four shim coils is increased from 0 (A) to 1.2 (A) with a 0.2 (A) increment. In section 4 the fields are measured for the same increase in the current in one shim coil, for the nominal currents of 23 (A) and 3.3 (A) in the main and auxiliary coils respectively. 3. The magnetic field of the four shim coils for zero current in the Main coils. The field of the current in one shim coil was measured while the current in the other three shim coils, the four main and auxiliary coils were zero. The dependence of the three field components on the currents in the lateral shim coils is presented in figure 2 and 3. The measurements were repeated twice in different days. Due to the change in the remnant magnetization of the shield there is a small systematic error in the field measurements. The two parameters of the linear fit are presented in table 1. The magnetic field for zero current in the coils is not zero because of the external Earth magnetic field, the fringe field of the SMP and CM, and the magnetic steel shield.

5 Figure 2: The magnetic field component along X, -Y and Z axis, is measured by the Z1, Y1 and X1 fluxgate of the magnetic probe MAG1, versus the current in one of the four shim coils while the currents in the other three shim coils, the main and auxiliary coils is zero.

6 Figure 3: The field components measured at the magnetic probe MAG2 (bellow the spin rotator) as a function of the current in the four shim coils. The current in the main and auxiliary coils is zero. The above results indicate that the magnetic field components depend linearly on the current in one of the four shim coils. The coefficients of the fitting function B k =a + b*i are presented in the table 1 bellow. The three axis of the first magnetic probe MAG1 (X1, Y1, Z1) are almost aligned along the Z, X and Y directions respectively. For the second magnetic probes the three axes (X2, Y2, Z2) are almost aligned with the X, Y and Z axes respectively.

7 Table 1. The two coefficients of the linear fitting function are calculated from the experimental data measured at the two magnetic probes. The slope of the linear fit of the magnetic field components versus the current in the shim coil is b1 and b2 for magnetic fields read at MAG1 and MAG2 respectively. I(shim) Varied (A) a1 b1 Field read by MAG1 Fluxgat e directi on a2 b2 Field read by MAG2 Fluxgate direction Left Bx1 X1=Z Bx2 X2=X Right Bx1 X1=Z Bx2 X2=X Front Bx1 X1=Z E-4 Bx2 X2=X Back Bx1 X1=Z Bx2 X2=X Left By1 Y1=-Y By2 Y2=Y Right By1 Y1=-Y By2 Y2=Y Front By1 Y1=-Y By2 Y2=Y Back By1 Y1=-Y By2 Y2=Y Left Bz1 Z1=X Bz2 Z2=Z Right Bz1 Z1=X Bz2 Z2=Z Front Bz1 Z1=X Bz2 Z2=Z Back Bz1 Z1=X Bz2 Z2=Z The increase in the current in the left or right shim coil decreases the field component Bx because the slopes dbz1/di[left] and dbz1/di[right] (with Bz1 = Bx) and the slopes dbx2/di(left) and dbx2/di(right) (with Bx2=Bx) are negative. Therefore the fields of the right and left shim coils are both along the negative X axis. The field component along the Z axis (Bz2 or Bx1) also decreases with the increase in the current in the front or back shim coils (dbz2/di(front)= and dbz2/di(back)= ), (dbx1/di(front)= , dbx1/di(back)= ) proving that the Z components of the fields of the front and back shim currents are along the negative Z axis. 4. The magnetic field of the shim coils in the presence of the guide coils. The field components measured by the first magnetic versus the current in one of the four shim coils, while the current in the main and auxiliary coils are 23 (A) and 3.3 (A) are presented in figure 4. The first magnetic probe located above the Spin Rotator for an increasing current from 0 to 1.2 A in one of the four shim coils. The component of the field in the Y direction is measured by the Y1 fluxgate of the first magnetic probe located above the spin flipper, for increasing current in one of the shim coil (left, right, back or front) from 0 (A) to 1.2 (A). The fields were measured four times. The average and standard deviation are presented in figure 4.

8 Figure 4: The field components are measured at the first magnetic probe versus the current in one of the four shim coils, while the currents in the other three shim coils are zero and the current in the main and auxiliary coils are 23 A and 3.3 A respectively. The linear fitting parameters are presented in table 2 for each of the 12 sets of data.

9 Table 2: The two parameters of the linear fit B x, y, z = a + b*i are calculated for the measured fields versus the current in one of the four shim coils, when the current in the other three shim coils is zero and the current in the main and auxiliary coils are 23 (A) and 3.3 (A) respectively. Field Shim coil a b Field Shim coil a b component current (G) (G/A) component current (G) (G/A) Bx1 Left Bx2 Left Right Right Front Front Back Back By1 Left By2 Left Right Right Front Front Back Back Bz1 Left Bz2 Left Right Right Front Front Back Back The slopes of the linear fit of the measured field components versus the current of one of the four shim coils are measured in G/A: dbx1 /di (Left) = ; dby1/di (Left) = ; dbz1 /di (Left) = ; dbx1 /di (Right) = ; dby1/di (Right) = ; dbz1 /di (Right) = ; dbx1 /di (Front) = ; dby1 /di (Front) = ; Bz1/dI (Front) = ; dbx1/di (Back) = ; dby1/di (Back) = ; dbz1 /di (Back) = ;

10 Figure 4. The field components measured at the magnetic probe MAG2 below the spin flipper and the shim coil current. The three X2, Y2 and Z2 fluxgate axes are approximately aligned with the X, Y and Z axes of the experiment. The slopes of the linear fit in G/A are calculated for each of the four cases for both magnetic probes. dbx2 /di (Left) = ; dby2/di (Left) = ; dbz2 /di (Left) = ; dbx2 /di (Right) = ; dby2/di (Right) = ; dbz2/di (Right) = ; dbx2/di (Front) = ; dby2 /di (Front) = ; Bz2/dI (Front) = ; dbx2/di (Back) = ; dby2/di (Back) = ; dbz2/di (Back) = ; The change in the angle θ with the current in one of the shim coils is presented in table 3. In the calculations I considered the field component in the X direction equal with 0.15 Gauss, which is the

11 maximum value for this field component measured for shim currents between 0 (A) and 1.2 (A). This field component multiplied with the slope dby/di and divided with By 2 is less than 5E-5 (1/A). It is therefore negligible relative to the first term when the current in the left or right shim coils are changed. Table 3: The change in the angles θ and ψ with the current in one of the four shim coils is calculated when the currents in the main and auxiliary coils are respectively 23 A and 3.3 A and the currents in the other three shim coils are switched to zero. Fields read dθ /di(left) dθ /di(right) dθ /di(front) dθ /di(back) at: (rad/a) (rad/a) (rad/a) (rad/a) MAG E E-4 MAG E E-5 Fields read dψ /di(left) dψ /di(right) dψ/di(front) dψ/di(back) at: (rad/a) (rad/a) (rad/a) (rad/a) MAG1 1.72E E E E-3 MAG E E E E-3 Since the angle θ has to be smaller than 20E-3 radians, the change in this angle with 5E-3 is accepted. More stringent requirements are placed on the stability of the currents in the left and right shim coils. A change with only 0.1 A in one of left shim coil can increase (or decrease) the angle theta with about 1.2E-3 radians, if the currents in all the other coils are not changed. The current given by the main power supply (Dan Physics) can vary with up to 0.3% in the first 20 minutes after the power supply is switched on. In the next section, the change in the angle theta with the current in the main coils is calculated. 4. The magnetic field of the main and auxiliary coils measured for zero current in the shim coils. The three magnetic field components measured by the two magnetic probe, change also with the current of the main coil. The linear dependence is presented in figure 5.

12 Figure 5: The three field components of the magnetic field measured at the two magnetic probes are plotted versus the electric current in the main coils. The currents in the shim coils are zero. The current in the auxiliary coils is fixed at 3.3 (A). The relation is linear for all three field components: Bx = Bz1= *I[main] and Bx=Bx2= *I[main] By=By2= *I[main] and By= By1= *I[main] Bz = Bx1= E-3*I[main] and Bz = Bz2= *I[main] Since tan(θ) = Bx/By, the angle theta depends also in the current in the main guide coils.

13 The derivative of the angles θ and ψ with respect to the main coil current is presented in table 4. The change in the field magnitude with the current in the main coils is presented in the last column. The upper limit of the change in the field magnitude is given by the width of the resonance curve of the spin rotator. Table 4: The change of the angles theta and psi with the current in the main coil is calculated from the field measured at MAG1 and MAG2. The change in the field magnitude with the same current is also presented in the last column of this table. Fields read dθ /di(main) dψ /di(main) db/di(main) at probe (rad/a) (rad/a) (G/A) MAG E E MAG E E For a 1 Amp increase in the main current the two angles change with less than 1.1E-3 radians. The field magnitude changes with 0.4 Gauss for a 1 (A) variation in the main coil current. Since the Larmor frequency of the RF field in the spin rotator is fixed by the field magnitude, a 0.1 (G) change in the field magnitude can change the optimum RF frequency with 1.2 KHz. The resonance curve of the Spin Rotator has a width at half height equal with 0.4 KHz. Since the resonance frequency of the spin rotator is fixed but the Joerger module of the VME3 NIM crate, the variation in the vertical field magnitude has to be less than 0.04 Gauss to assure that the spin rotator works at the optimum frequency. This requires that the maximum variation in the main coil current is 0.1 (A). 5. Conclusion. The magnetic field was measured from May 30 to July 6 th 2011, during the data collection for Chlorine and Aluminum [1]. The field component in the vertical direction changed with less than 0.03 Gauss. This suggest that the main power supply assures that the main coil current is stable enough such that the angle theta changes with less than 1E-3 radians during about 6 weeks of data collection. If the angle theta has to be smaller than 20E-3 radians, a variation with 0.1 A in the intensity of the currents in the right and left shim coils is acceptable. 6. Reference [1] S. Balascuta, Simon Schroeder: The stability of the magnetic field during the Aluminum and Chlorine measuremets (May-July 2011), posted on:

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q

More information

Chem8028(1314) - Spin Dynamics: Spin Interactions

Chem8028(1314) - Spin Dynamics: Spin Interactions Chem8028(1314) - Spin Dynamics: Spin Interactions Malcolm Levitt see also IK m106 1 Nuclear spin interactions (diamagnetic materials) 2 Chemical Shift 3 Direct dipole-dipole coupling 4 J-coupling 5 Nuclear

More information

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles. » ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z

More information

CHAPTER 4 Stress Transformation

CHAPTER 4 Stress Transformation CHAPTER 4 Stress Transformation ANALYSIS OF STRESS For this topic, the stresses to be considered are not on the perpendicular and parallel planes only but also on other inclined planes. A P a a b b P z

More information

Purpose: This lab is an experiment to verify Malus Law for polarized light in both a two and three polarizer system.

Purpose: This lab is an experiment to verify Malus Law for polarized light in both a two and three polarizer system. Purpose: This lab is an experiment to verify Malus Law for polarized light in both a two and three polarizer system. The basic description of Malus law is given as I = I 0 (cos 2 θ ) Where I is the transmitted

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

review To find the coefficient of all the terms in 15ab + 60bc 17ca: Coefficient of ab = 15 Coefficient of bc = 60 Coefficient of ca = -17

review To find the coefficient of all the terms in 15ab + 60bc 17ca: Coefficient of ab = 15 Coefficient of bc = 60 Coefficient of ca = -17 1. Revision Recall basic terms of algebraic expressions like Variable, Constant, Term, Coefficient, Polynomial etc. The coefficients of the terms in 4x 2 5xy + 6y 2 are Coefficient of 4x 2 is 4 Coefficient

More information

Exercise 1: Inertia moment of a simple pendulum

Exercise 1: Inertia moment of a simple pendulum Exercise : Inertia moment of a simple pendulum A simple pendulum is represented in Figure. Three reference frames are introduced: R is the fixed/inertial RF, with origin in the rotation center and i along

More information

' Liberty and Umou Ono and Inseparablo "

' Liberty and Umou Ono and Inseparablo 3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <

More information

10.4 Continuous Wave NMR Instrumentation

10.4 Continuous Wave NMR Instrumentation 10.4 Continuous Wave NMR Instrumentation coherent detection bulk magnetization the rotating frame, and effective magnetic field generating a rotating frame, and precession in the laboratory frame spin-lattice

More information

MANY BILLS OF CONCERN TO PUBLIC

MANY BILLS OF CONCERN TO PUBLIC - 6 8 9-6 8 9 6 9 XXX 4 > -? - 8 9 x 4 z ) - -! x - x - - X - - - - - x 00 - - - - - x z - - - x x - x - - - - - ) x - - - - - - 0 > - 000-90 - - 4 0 x 00 - -? z 8 & x - - 8? > 9 - - - - 64 49 9 x - -

More information

An introduction to Solid State NMR and its Interactions

An introduction to Solid State NMR and its Interactions An introduction to Solid State NMR and its Interactions From tensor to NMR spectra CECAM Tutorial September 9 Calculation of Solid-State NMR Parameters Using the GIPAW Method Thibault Charpentier - CEA

More information

CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer

CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Monday October 3: Discussion Assignment

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer

CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016 Announcements Project 1 due next Friday at

More information

Overview of Experiments for Magnetic Torque

Overview of Experiments for Magnetic Torque Overview of Experiments for Magnetic Torque General Description of Apparatus The Magnetic Torque instrument consists of a pair of Helmholtz like coils with a brass air bearing mounted in the middle. (The

More information

Progress on the Design of the Magnetic Field Measurement System for elisa

Progress on the Design of the Magnetic Field Measurement System for elisa Progress on the Design of the Magnetic Field Measurement System for elisa Ignacio Mateos Instituto de Ciencias del Espacio (CSIC-IEEC) Barcelona 10 th International LISA Symposium University of Florida,

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

Homework 1/Solutions. Graded Exercises

Homework 1/Solutions. Graded Exercises MTH 310-3 Abstract Algebra I and Number Theory S18 Homework 1/Solutions Graded Exercises Exercise 1. Below are parts of the addition table and parts of the multiplication table of a ring. Complete both

More information

A. H. Hall, 33, 35 &37, Lendoi

A. H. Hall, 33, 35 &37, Lendoi 7 X x > - z Z - ----»»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < - - 7 - x -X - -- 6 97 9

More information

CHAPTER 2 BOOLEAN ALGEBRA

CHAPTER 2 BOOLEAN ALGEBRA CHAPTER 2 BOOLEAN ALGEBRA This chapter in the book includes: Objectives Study Guide 2.1 Introduction 2.2 Basic Operations 2.3 Boolean Expressions and Truth Tables 2.4 Basic Theorems 2.5 Commutative, Associative,

More information

Invessel Calibration of the Alcator C-Mod MSE Diagnostic

Invessel Calibration of the Alcator C-Mod MSE Diagnostic Invessel Calibration of the Alcator C-Mod MSE Diagnostic Steve Scott (PPPL) Howard Yuh, Bob Granetz, Jinseok Ko, Ian Hutchinson (MIT/PSFC) APS/DPP Meeting Savannah, GA November 2004 Introduction Previously,

More information

Physics Spring 2010 Lab 1 - Electron Spin Resonance

Physics Spring 2010 Lab 1 - Electron Spin Resonance Physics 24 -- Spring 2010 Lab 1 - Electron Spin Resonance Theory The application of an external magnetic field to an atom will split the atomic energy levels due to an interaction between the magnetic

More information

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics LECTURE OUTLINE CHAPTER 3 Vectors in Physics 3-1 Scalars Versus Vectors Scalar a numerical value (number with units). May be positive or negative. Examples: temperature, speed, height, and mass. Vector

More information

DuVal High School Summer Review Packet AP Calculus

DuVal High School Summer Review Packet AP Calculus DuVal High School Summer Review Packet AP Calculus Welcome to AP Calculus AB. This packet contains background skills you need to know for your AP Calculus. My suggestion is, you read the information and

More information

Lab 10 - Harmonic Motion and the Pendulum

Lab 10 - Harmonic Motion and the Pendulum Lab 10 Harmonic Motion and the Pendulum L10-1 Name Date Partners Lab 10 - Harmonic Motion and the Pendulum L (measured from the suspension point to the center of mass) Groove marking the center of mass

More information

1. A moving kaon decays into two pions, one of which is left at rest. (m K

1. A moving kaon decays into two pions, one of which is left at rest. (m K Physics Qualifying Examination Part I September 12, 2015 7-Minute Questions 1. A moving kaon decays into two pions, one of which is left at rest. (m K 500 MeV, m π = 140 MeV). a. What is the total energy

More information

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients)

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients) ELEC0047 - Power system dynamics, control and stability (a simple example of electromagnetic transients) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 25 Objectives

More information

Polynomials. In many problems, it is useful to write polynomials as products. For example, when solving equations: Example:

Polynomials. In many problems, it is useful to write polynomials as products. For example, when solving equations: Example: Polynomials Monomials: 10, 5x, 3x 2, x 3, 4x 2 y 6, or 5xyz 2. A monomial is a product of quantities some of which are unknown. Polynomials: 10 + 5x 3x 2 + x 3, or 4x 2 y 6 + 5xyz 2. A polynomial is a

More information

NMR Spectroscopy Laboratory Experiment Introduction. 2. Theory

NMR Spectroscopy Laboratory Experiment Introduction. 2. Theory 1. Introduction 64-311 Laboratory Experiment 11 NMR Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful and theoretically complex analytical tool. This experiment will introduce to

More information

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

Using a Microwave Interferometer to Measure Plasma Density Mentor: Prof. W. Gekelman. P. Pribyl (UCLA)

Using a Microwave Interferometer to Measure Plasma Density Mentor: Prof. W. Gekelman. P. Pribyl (UCLA) Using a Microwave Interferometer to Measure Plasma Density Avital Levi Mentor: Prof. W. Gekelman. P. Pribyl (UCLA) Introduction: Plasma is the fourth state of matter. It is composed of fully or partially

More information

Kinematics Lab. 1 Introduction. 2 Equipment. 3 Procedures

Kinematics Lab. 1 Introduction. 2 Equipment. 3 Procedures Kinematics Lab 1 Introduction An object moving in one dimension and undergoing constant or uniform acceleration has a position given by: x(t) =x 0 +v o t +1/2at 2 where x o is its initial position (its

More information

3.2 Projectile Motion

3.2 Projectile Motion Motion in 2-D: Last class we were analyzing the distance in two-dimensional motion and revisited the concept of vectors, and unit-vector notation. We had our receiver run up the field then slant Northwest.

More information

Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. Fall 2004

Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. Fall 2004 Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. 1. A beam is loaded as shown. The dimensions of the cross section appear in the insert. the figure. Draw a complete free body diagram showing an equivalent

More information

ACS MATHEMATICS GRADE 10 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS

ACS MATHEMATICS GRADE 10 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS ACS MATHEMATICS GRADE 0 WARM UP EXERCISES FOR IB HIGHER LEVEL MATHEMATICS DO AS MANY OF THESE AS POSSIBLE BEFORE THE START OF YOUR FIRST YEAR IB HIGHER LEVEL MATH CLASS NEXT SEPTEMBER Write as a single

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

10.1 Curves Defined by Parametric Equation

10.1 Curves Defined by Parametric Equation 10.1 Curves Defined by Parametric Equation 1. Imagine that a particle moves along the curve C shown below. It is impossible to describe C by an equation of the form y = f (x) because C fails the Vertical

More information

Jitter and Basic Requirements of the Reaction Wheel Assembly in the Attitude Control System

Jitter and Basic Requirements of the Reaction Wheel Assembly in the Attitude Control System Jitter and Basic Requirements of the Reaction Wheel Assembly in the Attitude Control System Lulu Liu August, 7 1 Brief Introduction Photometric precision is a major concern in this space mission. A pointing

More information

Optical pumping of rubidium

Optical pumping of rubidium Optical pumping of rubidium Quinn Pratt, John Prior, Brennan Campbell a) (Dated: 25 October 2015) The effects of a magnetic field incident on a sample of rubidium were examined both in the low-field Zeeman

More information

The Influence of Outbreak Magnetic Field by a Superconducting Magnet for the surrounding devices and environment

The Influence of Outbreak Magnetic Field by a Superconducting Magnet for the surrounding devices and environment The Influence of Outbreak Magnetic Field by a Superconducting Magnet for the surrounding devices and environment High Energy Accelerator Research Organization(KEK) / Tesuya Yokoo, Ph.D Tohoku University

More information

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

Lab 5: Measuring Magnetic Field of Earth

Lab 5: Measuring Magnetic Field of Earth Dr. W. Pezzaglia Physics B, Spring 010 Page 1 Las Positas College Lab 5: Magnetic Field 010Mar01 Lab 5: Measuring Magnetic Field of Earth Mar 1, Monday: Lab 5 (today) Lab # due Video: Mechanical Universe

More information

11.1 Three-Dimensional Coordinate System

11.1 Three-Dimensional Coordinate System 11.1 Three-Dimensional Coordinate System In three dimensions, a point has three coordinates: (x,y,z). The normal orientation of the x, y, and z-axes is shown below. The three axes divide the region into

More information

Earth s Magnetic Field Adapted by MMWaite from Measurement of Earth's Magnetic Field [Horizontal Component] by Dr. Harold Skelton

Earth s Magnetic Field Adapted by MMWaite from Measurement of Earth's Magnetic Field [Horizontal Component] by Dr. Harold Skelton Adapted by MMWaite from Measurement of Earth's Magnetic Field [Horizontal Component] by Dr. Harold Skelton Object: The purpose of this lab is to determine the horizontal component of the Earth s Magnetic

More information

Lecture AC-1. Aircraft Dynamics. Copy right 2003 by Jon at h an H ow

Lecture AC-1. Aircraft Dynamics. Copy right 2003 by Jon at h an H ow Lecture AC-1 Aircraft Dynamics Copy right 23 by Jon at h an H ow 1 Spring 23 16.61 AC 1 2 Aircraft Dynamics First note that it is possible to develop a very good approximation of a key motion of an aircraft

More information

Q SON,' (ESTABLISHED 1879L

Q SON,' (ESTABLISHED 1879L ( < 5(? Q 5 9 7 00 9 0 < 6 z 97 ( # ) $ x 6 < ( ) ( ( 6( ( ) ( $ z 0 z z 0 ) { ( % 69% ( ) x 7 97 z ) 7 ) ( ) 6 0 0 97 )( 0 x 7 97 5 6 ( ) 0 6 ) 5 ) 0 ) 9%5 z» 0 97 «6 6» 96? 0 96 5 0 ( ) ( ) 0 x 6 0

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

physics 590 ruslan prozorov magnetic measurements Nov 9,

physics 590 ruslan prozorov magnetic measurements Nov 9, physics 590 ruslan prozorov magnetic measurements Nov 9, 2009 - magnetic moment of free currents Magnetic moment of a closed loop carrying current I: Magnetic field on the axis of a loop of radius R at

More information

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Chapter 7. Nuclear Magnetic Resonance Spectroscopy Chapter 7 Nuclear Magnetic Resonance Spectroscopy I. Introduction 1924, W. Pauli proposed that certain atomic nuclei have spin and magnetic moment and exposure to magnetic field would lead to energy level

More information

Parity violation in the hadronic weak interaction. Septimiu Balascuta

Parity violation in the hadronic weak interaction. Septimiu Balascuta Parity violation in the hadronic weak interaction by Septimiu Balascuta A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April 2012 by the

More information

Compendium of concepts you should know to understand the Optical Pumping experiment. \ CFP Feb. 11, 2009, rev. Ap. 5, 2012, Jan. 1, 2013, Dec.28,2013.

Compendium of concepts you should know to understand the Optical Pumping experiment. \ CFP Feb. 11, 2009, rev. Ap. 5, 2012, Jan. 1, 2013, Dec.28,2013. Compendium of concepts you should know to understand the Optical Pumping experiment. \ CFP Feb. 11, 2009, rev. Ap. 5, 2012, Jan. 1, 2013, Dec.28,2013. What follows is specialized to the alkali atoms, of

More information

Helmholtz Galvanometer

Helmholtz Galvanometer Helmholtz Galvanometer To plot a graph showing the variation of magnetic field with distance along the axis of a Helmholtz galvanometer and determine the reduction factor k. B.Tech-I, Physics Laboratory

More information

Stress, Strain, Mohr s Circle

Stress, Strain, Mohr s Circle Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected

More information

Answers to Sample Exam Problems

Answers to Sample Exam Problems Math Answers to Sample Exam Problems () Find the absolute value, reciprocal, opposite of a if a = 9; a = ; Absolute value: 9 = 9; = ; Reciprocal: 9 ; ; Opposite: 9; () Commutative law; Associative law;

More information

Stress transformation and Mohr s circle for stresses

Stress transformation and Mohr s circle for stresses Stress transformation and Mohr s circle for stresses 1.1 General State of stress Consider a certain body, subjected to external force. The force F is acting on the surface over an area da of the surface.

More information

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso MECH 5312 Solid Mechanics II Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso Table of Contents Preliminary Math Concept of Stress Stress Components Equilibrium

More information

Module Two: Differential Calculus(continued) synopsis of results and problems (student copy)

Module Two: Differential Calculus(continued) synopsis of results and problems (student copy) Module Two: Differential Calculus(continued) synopsis of results and problems (student copy) Srikanth K S 1 Syllabus Taylor s and Maclaurin s theorems for function of one variable(statement only)- problems.

More information

There seems to be three different groups of students: A group around 6 A group around 12 A group around 16

There seems to be three different groups of students: A group around 6 A group around 12 A group around 16 10 5 0 0 5 10 15 20 25 30 There seems to be three different groups of students: A group around 6 A group around 12 A group around 16 Altuğ Özpineci ( METU ) Phys109-MECHANICS PHYS109 55 / 67 10 5 0 0 5

More information

The (hopefully) Definitive Guide to Coordinate Systems and Transformation in the Low Energy Hall A Experiments

The (hopefully) Definitive Guide to Coordinate Systems and Transformation in the Low Energy Hall A Experiments The (hopefully) Definitive Guide to Coordinate Systems and Transformation in the Low Energy Hall A Experiments Guy Ron Tel Aviv University July 22, 2006 1 Introduction In the upcoming polarized beam Hall

More information

Earth s Magnetic Field Measurements for the LCLS Undulators

Earth s Magnetic Field Measurements for the LCLS Undulators LCLS-TN-05-04 Earth s Magnetic Field Measurements for the LCLS Undulators Kirsten Hacker, Zachary Wolf SLAC February 16, 2005 Abstract Measurements of the earth s magnetic field at several locations at

More information

Graphical Analysis and Errors MBL

Graphical Analysis and Errors MBL Graphical Analysis and Errors MBL I Graphical Analysis Graphs are vital tools for analyzing and displaying data Graphs allow us to explore the relationship between two quantities -- an independent variable

More information

Chapter 7: Exponents

Chapter 7: Exponents Chapter : Exponents Algebra Chapter Notes Name: Algebra Homework: Chapter (Homework is listed by date assigned; homework is due the following class period) HW# Date In-Class Homework M / Review of Sections.-.

More information

Experiment 2-6. Magnetic Field Induced by Electric Field

Experiment 2-6. Magnetic Field Induced by Electric Field Experiment 2-6. Magnetic Field Induced by Electric Field - Biot-Savart law and Ampere s Law - Purpose of Experiment We introduce concept called charge to describe electrical phenomenon. The simplest electrical

More information

NMR Instrumentation BCMB/CHEM Biomolecular NMR

NMR Instrumentation BCMB/CHEM Biomolecular NMR NMR Instrumentation BCMB/CHEM 8190 Biomolecular NMR Instrumental Considerations - Block Diagram of an NMR Spectrometer Magnet Sample B 0 Lock Probe Receiver Computer Transmit Superconducting Magnet systems

More information

There are some trigonometric identities given on the last page.

There are some trigonometric identities given on the last page. MA 114 Calculus II Fall 2015 Exam 4 December 15, 2015 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all your electronic devices and do not wear ear-plugs during

More information

SOLUTIONS FOR PROBLEMS 1-30

SOLUTIONS FOR PROBLEMS 1-30 . Answer: 5 Evaluate x x + 9 for x SOLUTIONS FOR PROBLEMS - 0 When substituting x in x be sure to do the exponent before the multiplication by to get (). + 9 5 + When multiplying ( ) so that ( 7) ( ).

More information

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension)

Force 10/01/2010. (Weight) MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236. (Tension) Force 10/01/2010 = = Friction Force (Weight) (Tension), coefficient of static and kinetic friction MIDTERM on 10/06/10 7:15 to 9:15 pm Bentley 236 2008 midterm posted for practice. Help sessions Mo, Tu

More information

Vectors for Physics. AP Physics C

Vectors for Physics. AP Physics C Vectors for Physics AP Physics C A Vector is a quantity that has a magnitude (size) AND a direction. can be in one-dimension, two-dimensions, or even three-dimensions can be represented using a magnitude

More information

Excerpt from the Proceedings of the COMSOL Conference 2010 Boston

Excerpt from the Proceedings of the COMSOL Conference 2010 Boston Excerpt from the Proceedings of the COMSOL Conference 21 Boston Uncertainty Analysis, Verification and Validation of a Stress Concentration in a Cantilever Beam S. Kargar *, D.M. Bardot. University of

More information

The n- 3 He Experiment at SNS A Study of Hadronic Weak Interaction

The n- 3 He Experiment at SNS A Study of Hadronic Weak Interaction The n- 3 He Experiment at SNS A Study of Hadronic Weak Interaction A measurement of the parity conserving asymmetry in the neutron capture on 3 He at SNS Latiful Kabir University of Kentucky for the n-

More information

Spin Interactions. Giuseppe Pileio 24/10/2006

Spin Interactions. Giuseppe Pileio 24/10/2006 Spin Interactions Giuseppe Pileio 24/10/2006 Magnetic moment µ = " I ˆ µ = " h I(I +1) " = g# h Spin interactions overview Zeeman Interaction Zeeman interaction Interaction with the static magnetic field

More information

P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,.

P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,. ? ( # [ ( 8? [ > 3 Q [ ««> » 9 Q { «33 Q> 8 \ \ 3 3 3> Q»«9 Q ««« 3 8 3 8 X \ [ 3 ( ( Z ( Z 3( 9 9 > < < > >? 8 98 ««3 ( 98 < # # Q 3 98? 98 > > 3 8 9 9 ««««> 3 «>

More information

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort - 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [

More information

Stress/Strain. Outline. Lecture 1. Stress. Strain. Plane Stress and Plane Strain. Materials. ME EN 372 Andrew Ning

Stress/Strain. Outline. Lecture 1. Stress. Strain. Plane Stress and Plane Strain. Materials. ME EN 372 Andrew Ning Stress/Strain Lecture 1 ME EN 372 Andrew Ning aning@byu.edu Outline Stress Strain Plane Stress and Plane Strain Materials otes and News [I had leftover time and so was also able to go through Section 3.1

More information

Physical Background Of Nuclear Magnetic Resonance Spectroscopy

Physical Background Of Nuclear Magnetic Resonance Spectroscopy Physical Background Of Nuclear Magnetic Resonance Spectroscopy Michael McClellan Spring 2009 Department of Physics and Physical Oceanography University of North Carolina Wilmington What is Spectroscopy?

More information

Composites Design and Analysis. Stress Strain Relationship

Composites Design and Analysis. Stress Strain Relationship Composites Design and Analysis Stress Strain Relationship Composite design and analysis Laminate Theory Manufacturing Methods Materials Composite Materials Design / Analysis Engineer Design Guidelines

More information

Sec. 14.3: Partial Derivatives. All of the following are ways of representing the derivative. y dx

Sec. 14.3: Partial Derivatives. All of the following are ways of representing the derivative. y dx Math 2204 Multivariable Calc Chapter 14: Partial Derivatives I. Review from math 1225 A. First Derivative Sec. 14.3: Partial Derivatives 1. Def n : The derivative of the function f with respect to the

More information

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line

Physics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line Physics for Scientists and Engineers Chapter 6 Dynamics I: Motion Along a Line Spring, 008 Ho Jung Paik Applications of Newton s Law Objects can be modeled as particles Masses of strings or ropes are negligible

More information

CALCULUS ASSESSMENT REVIEW

CALCULUS ASSESSMENT REVIEW CALCULUS ASSESSMENT REVIEW DEPARTMENT OF MATHEMATICS CHRISTOPHER NEWPORT UNIVERSITY 1. Introduction and Topics The purpose of these notes is to give an idea of what to expect on the Calculus Readiness

More information

Math Final Exam Review

Math Final Exam Review Math - Final Exam Review. Find dx x + 6x +. Name: Solution: We complete the square to see if this function has a nice form. Note we have: x + 6x + (x + + dx x + 6x + dx (x + + Note that this looks a lot

More information

INVERSE TRIGONOMETRY: SA 4 MARKS

INVERSE TRIGONOMETRY: SA 4 MARKS INVERSE TRIGONOMETRY: SA MARKS To prove Q. Prove that sin - tan - 7 = π 5 Ans L.H.S = Sin - tan - 7 5 = A- tan - 7 = tan - 7 tan- let A = Sin - 5 Sin A = 5 = tan - ( ( ) ) tan - 7 9 6 tan A = A = tan-

More information

Week 14 The Simple Pendulum

Week 14 The Simple Pendulum Week 14 The Simple Pendulum 1. Scope 1.1 Goal Conduct experiment to study the simple harmonic motion of an oscillatory pendulum and analyze and interpret the data 1.2 Units of measurement to use United

More information

UNC Charlotte Super Competition Level 3 Test March 4, 2019 Test with Solutions for Sponsors

UNC Charlotte Super Competition Level 3 Test March 4, 2019 Test with Solutions for Sponsors . Find the minimum value of the function f (x) x 2 + (A) 6 (B) 3 6 (C) 4 Solution. We have f (x) x 2 + + x 2 + (D) 3 4, which is equivalent to x 0. x 2 + (E) x 2 +, x R. x 2 + 2 (x 2 + ) 2. How many solutions

More information

Time-Dependent Perturbation Theory. Absorption and Emission of Radiation. Band Shapes and Convolution

Time-Dependent Perturbation Theory. Absorption and Emission of Radiation. Band Shapes and Convolution Lecture 1 Perturbation Theory Lecture 2 Time-Dependent Perturbation Theory Lecture 3 Absorption and Emission of Radiation Lecture 4 Raman Scattering Workshop Band Shapes and Convolution Lecture 1 Perturbation

More information

LAB 10: HARMONIC MOTION AND THE PENDULUM

LAB 10: HARMONIC MOTION AND THE PENDULUM 163 Name Date Partners LAB 10: HARMONIC MOION AND HE PENDULUM Galileo reportedly began his study of the pendulum in 1581 while watching this chandelier swing in Pisa, Italy OVERVIEW A body is said to be

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

AP Calculus Summer Packet

AP Calculus Summer Packet AP Calculus Summer Packet Writing The Equation Of A Line Example: Find the equation of a line that passes through ( 1, 2) and (5, 7). ü Things to remember: Slope formula, point-slope form, slopeintercept

More information

Announcements Wednesday, September 27

Announcements Wednesday, September 27 Announcements Wednesday, September 27 The midterm will be returned in recitation on Friday. You can pick it up from me in office hours before then. Keep tabs on your grades on Canvas. WeBWorK 1.7 is due

More information

Section 1.8/1.9. Linear Transformations

Section 1.8/1.9. Linear Transformations Section 1.8/1.9 Linear Transformations Motivation Let A be a matrix, and consider the matrix equation b = Ax. If we vary x, we can think of this as a function of x. Many functions in real life the linear

More information

COMP 175 COMPUTER GRAPHICS. Lecture 04: Transform 1. COMP 175: Computer Graphics February 9, Erik Anderson 04 Transform 1

COMP 175 COMPUTER GRAPHICS. Lecture 04: Transform 1. COMP 175: Computer Graphics February 9, Erik Anderson 04 Transform 1 Lecture 04: Transform COMP 75: Computer Graphics February 9, 206 /59 Admin Sign up via email/piazza for your in-person grading Anderson@cs.tufts.edu 2/59 Geometric Transform Apply transforms to a hierarchy

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

A Double Cosine Theta Coil Prototype

A Double Cosine Theta Coil Prototype A Double Cosine Theta Coil Prototype Elise Martin and Chris Crawford October 28, 21 1 Introduction A cosine theta coil is a coil that produces a dipole field by arranging current density on a shell in

More information

MEASUREMENTS ON TESLA "LAMBERTSON" CORRECTOR

MEASUREMENTS ON TESLA LAMBERTSON CORRECTOR K K DAΦNE TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, July 3, 1996 Note: MM-18 MEASUREMENTS ON TESLA "LAMBERTSON" CORRECTOR PROTOTYPE FOR THE DAΦNE MAIN RINGS B. Bolli, N. Ganlin, F. Iungo,

More information

Learn how reflection at interfaces with different indices of refraction works and how interfaces can change the polarization states of light.

Learn how reflection at interfaces with different indices of refraction works and how interfaces can change the polarization states of light. Slide 1 Goals of the Lab: Learn how reflection at interfaces with different indices of refraction works and how interfaces can change the polarization states of light. Learn how to measure the influence

More information

Study Guide for Math 095

Study Guide for Math 095 Study Guide for Math 095 David G. Radcliffe November 7, 1994 1 The Real Number System Writing a fraction in lowest terms. 1. Find the largest number that will divide into both the numerator and the denominator.

More information