Experiment 2-6. Magnetic Field Induced by Electric Field

Size: px
Start display at page:

Download "Experiment 2-6. Magnetic Field Induced by Electric Field"

Transcription

1 Experiment 2-6. Magnetic Field Induced by Electric Field - Biot-Savart law and Ampere s Law - Purpose of Experiment We introduce concept called charge to describe electrical phenomenon. The simplest electrical phenomenon is electrostatic(deal with only static charge) problem. Before 19C, we recognized that electrical and magnetic phenomenon don t have any relation each other because what we could do is only dealing with electrostatic problem. But, in 1820, Orsted observed that a magnetic needle around electric wire which is flowing current is affected. Thus the currents were sources of magnetic field. We can get direction and magnitude of magnetic field induced around wire which is flowing currents by Biot-Savart law. But if wire s shape is slightly complicated, it is almost impossible to calculate magnetic field. In this experiment, we examine how the magnetic field is formed around the most simple shaped conductor when there is current flowing through it. You do not need to check it quantitatively, but you can check to see if the magnetic field follows the Biot-Savart law while changing the distance from the wire or changing the current flowing. Outline of Experiment

2 When a current flow through a square coil, a magnetic field is formed around the square coil. In this experiment, it is aimed to confirm what kind of magnetic field forms on the radial plane. There are various ways to measure the magnetic field. In this experiment, the Hall sensor is used to measure the magnetic field and display it on the screen. In order to use the Hall sensor, it is necessary to go through a process called calibration every time the program is initialized. It is the goal of the experiment to measure the magnetic field at each point while varying the angle and distance. Experimental Method These equipments are prepared in the laboratory. (Parentheses mean the number of them.) - Square coil (1) - Power supply (1) - Solenoid (500 turns, 1) - Magnet (1) - Compass (1) - Hall sensor (1)

3 - Hall sensor source (1) - Computer (1) - Radial plane (1) - 30cm ruler (1) If you need more stuff, inquire to your teaching assistant or experiment preparation room (19-114), or prepare yourself. The following is a recommended experiment method. The recommended standard test method is as follows. Ⅰ. Calibration Unlike with Gauss meter, Hall sensor doesn t measure precise magnitude of magnetic field as an absolute value in initiated phase. You should specify the initial value and this course is called the calibration a) Offset calibration : : this is exist to make sensor output 0 in the non-magnetic field region. (1). Switch the hall sensor source and computer, and drive a measuring program. Fix the position of hall sensor far from electric equipment(computer, monitor, power source, etc.). (2). Confirm the x, y, z number appearing monitor are below 0.1V and press Zero in the Calibration menu, then computer remember this value and will subtract from measured value. (3). If number exceeds 0.1V, rotate the corresponding adjustment grid to make number below 0.1V and calibrate.

4 CH1, CH2, CH3 correspond x, y, z component respectively. Caution : If you use a sensor which numbered differently with amp you may couldn t blow 0.1V, so be careful. If you can t make below 0.1V, inquire the experiment preparation room and take complementary measure. Already offset calibration may did. But if someone handled the power source, you should this course again. b) Hall sensor calibration : Although hall sensor generates the hall voltage in proportion to magnetic field, proportion constant can be differ by kind of sensor, current flowing in the sensor, and temperature of sensor. So calibration is needed to convert voltage to magnetic field. Objective of this course is to output 20G magnitude when 20G magnetic field is applied. Hall sensor calibration should be done after doing (a). ⅰ. Get a winding number density from length and winding number of solienoid(500), and calculate the current making magnetic field inside of the solenoid to be 2mT((= T = 20 G). ⅱ. Inside of the solenoid, flow the current to make a 20 G magnetic field with outward-to-hall sensor direction, put a hall sensor inside solenoid parallel with axis of solenoid and press Z-axis in the Calibration menu in the monitor. [Video : Magnetic Field] Using the compass, confirm the direction of magnetic field made by solenoid. ⅲ. Wait 2~3 seconds until z-direction magnetic field indicates 20G. Reading that fields value, computer remember the constant which transfer z- direction magnetic field measuring hall-sensor voltage to 20, and it will apply this constant measuring of x, y, z hall-sensor. These measured values will have G(gauss) unit. If you calibrate other magnetic field value is not 20G in any reason, computer also read that wrong magnetic field as 20G. So to get right magnetic field value you should multiply the ratio of initial magnetic value(computer remember as 20G) and

5 measuring value. Ⅱ. Measuring the magnetic field in the solenoid a) Measure the magnetic field at center of the solenoid with varying currents and confirm dependent of currents. Measure with varying direction of currents Measure the magnetic field at center of the solenoid with varying currents and confirm dependent of currents. Measure with varying direction of currents. b) Fix the current and measure the magnetic field on the solenoid axis. Is it applied well with theoretical result? Ⅲ. Measuring the magnetic field on the radial plane. a) Connect the wire to the rectangular coil equipment and make the currents flowing. Connect the wire to the rectangular coil equipment and make the currents flowing. b) Take the hall sensor which calibrated any desired point on the radial plane and click the corresponded point on the monitor using mouse. If you take the sensor on the radial plane without consideration, you couldn t get a good result. You can see the three projections if you see the tip of sensor, then you can think that direction of projection indicates x, y, z direction, respectively See the below, left picture) Like the below, right picture, when you measure, at any point make the y point indicates an experimenter and you can get good result on the monitor.

6 c) Do a course of (b) varying angle and distance. Measure as many as data points. [Axis setting] -> Axis configuration menu can vary the interval of length and angle. If vector sign is too big, adjustment in the [Axis setting] -> Axis configuration menu. Ⅳ. Measuring the magnetic field on the center of rectangular coil. a) Lay down hall sensor horizontally and place at one point of axis of rectangular coil. Read the z-direction magnetic field value. b) Measure with varying point and confirm the change of magnetic field from the distance of plane of the coil. Compare with magnetic field of infinitely long wire. Is there any difference? If there exists difference, can you explain it?? Compare with magnetic field of finitely long wire. Is there any difference? Does difference get smaller compared with case of infinitely long wire? Where comes from additional difference? Compare with magnetic field of two serial long wire in perpendicular direction. If you can, compare with magnetic field of outside of solenoid, magnetic field of at any point on the rectangular coil, and magnetic field of magnet..

7 It is recommended to write experiment notes in the following way. 1. Calibration of hall detector or 3CH Hall Sensor AMP, and measuring of magnetic field on the center of solenoid Current of solenoid I = A (@Magnetic field B = 20 G) Solenoid turns N = Length of solenoid L = cm Current i(a) Axis-component magnetic field B z(g) 2. Measurement of magnetic field according to the position on the solenoid axis Current of solenoid I = A (@Magnetic field B = 20 G) Solenoid turns N = Length of solenoid L = Distance from center d(cm) cm angle θ l( o ) angle θ r( o ) Axis-component magnetic field B z(g)

8 3. Measurement of magnetic field according to position on the axis of a square wire loop Current of leading wire I = 1 A Wound number of leading wire N = Distance from ring face d(cm) Axis-component magnetic field B z(g) Magnetic field according to theoretical formula B(G) [cf] [cf : Use the equation for the circle (9) or for the square ring.] Backgrounds theory Investigating the character of magnetic field made around the currents flowing wire, you can know that like pic 1., magnitude of the magnetic field db in the point P from portion of wire ds is proportionate to currents i flowing in the wire, inverse proportionate to square of distance from wire(ds) r, and proportionate to sine value of angle theta between currents and displacement vector. And, direction of magnetic field is the propagation direction of righthanded screw when turn a screw in the direction of displacement vector.

9 Fig.1 This is Biot-Savart law and expressed by : 0 ids r db 3 4 r [cf : Considerate this law is inverse square of distance r]. magnetic permeability. (1) T.m/A we call it We can get magnetic field from whole portion of wire from sum magnetic field of the each portion vector : B db 0 ids r 3 4 r (2) Specially, a magnitude of magnetic field from infinitely long wire is : 0i B 2 d (3) And it depends only displacement from wire d and independent of other. And, direction of magnetic field is direction of tangent line of circle with d radius. It is right-hand screw propagation direction. Character of this magnetic field can be understand easily from geometrical symmetry had infinitely long wire currents.

10 Otherwise, characteristic of inverse-square-law magnetic field has convenient nature called Ampere s law. Ampere s law means that if you think arbitrary closed curve, whole currents pass inside of curve is proportionate to integrate the magnetic field vector tracing that curve, as shown in Fig 2 Bds i i i (4) Fig.2 We can confirm constant by thinking long infinite currents I and closed curve horizontal with wire. Fig.3 The magnetic field from each point of curve is given (3) and direction is tangential, so you can confirm from : i 2 r 0 Bds ds 0i (5)

11 Although Ampere s law tells same thing as Biot-Savart law, it can be used conveniently when distribution of magnetic field has symmetry. Using Ampere's law, you can easily find the magnetic field inside an infinitely long (ideal) solenoid. If a current i flows through an infinitely long and infinitely tight solenoid as shown in Fig. 4, the magnetic field inside the solenoid will be uniform regardless of its position, and the direction will be the axial direction to which the right-hand rule applies to the current. In addition, since the magnetic field outside the solenoid is 0, if we choose the rectangular ring with the length h as closed circuit, as shown by the dotted line in Fig. 4, we can derive Fig.4 b B ds Bds Bh nhi a 0 (6) So, we can know that the size of the magnetic field inside the solenoid is B ni 0 (7) Where n is the winding number per unit length, that is, the winding density of the solenoid. Since the actual solenoid is not infinitely long, the magnetic field outside the solenoid is not zero and is not uniform inside as shown in Fig. 5 (a).

12 Fig.5 At this time, the size of the magnetic field at the point P on the axis can be obtained easily by considering the solenoid as a group of circular rings. As shown in Fig. 5 (b) we can derive 1 B 0ni cosr cosl 2 (8) Here, the angles θr and θl are angles formed by the line segment connecting the right end and the left end of the solenoid to the center axis at point P, respectively. It can now be expected that the magnetic field at the point P on the vertical axis passing through the center of the bundle of square conductors will not be significantly different from that of the bundle of circular conductors if the position of the point P is very far from the ring size. In a general physics textbook, as shown in Fig. 6 (a), when a current I flows through a

13 bundle of circular conductors having a radius R and a number N of turns, the magnetic field at a distance of z from the conductor is parallel to the axis, As shown in Fig. 6 (b) B z 0INR R z 2 3/2 (9) is derived. Fig.6 For a square wire bundle of square shape with length L of each side and number N of turns, calculate the magnetic field at a distance z from the center axis as shown in the above equation (9). When the current I flows through this square wire bundle, the value of y-axis magnetic field at the point P spaced by a distance d on the bisector of one vertical straight line portion on the ring surface is 0INL B 4 d L / 2 d 2 2 1/2 (10) When we consider the magnetic field by the opposite direction current on other vertical straight portion part, for a point P outside the ring plane, the magnetic field is

14 0INL 1 1 B 4 d L /2 d L d L /2 L d /2 (11) And for the point P in the ring plane, the magnetic field is 0INL 1 1 B 4 d L /2 d L d L /2 L d /2 (12) And the magnetic field contributed by two straight lines in the horizontal direction is 0IN L d d B L L d L d /2 / /2 (13) on the outside the ring plane. On inside the ring plane the magnetic field is 0IN L d d B L L L d L d /2 / /2 (14) Is it possible to derive these equations by Biot-Sabert's law? What about other arbitrary points? Things to think about 3D Hall-sensor

15 The three-dimensional Hall-effect magnetic field detector used in this experiment is a method in which three Hall-sensors of the same size are attached to the surface of a small rectangular parallelepiped perpendicularly to each other to detect each magnetic field component. That is, if the components in the x, y, and z directions in the figure (a) are Bx, By, and Bz, respectively, the magnetic field vector B is B Bxi By j Bzk (15) If we denote the spherical coordinate system (B, θ, φ) for the magnetic field as shown in Figure (b), B is /2 x y z B B B B (16) B 1 z cos Bx By Bz 1/2 (17) 1 tan By / B x (18) Therefore, if you know only the x, y, and z directions of the hall sensor, you can find out the size and direction of the magnetic field without turning the Hall sensor. At this time, the same standard Hall sensors should be used as possible (i.e. When the same current flows, the same

16 Hall voltage is applied to the same magnetic field), and the direction of the three axes of the sensor should be known when measuring. References Hall magnetic field censor와 Hall effect Measured data processing method Analysis method by graph Andre-Marie Ampere Role model of theoretical physicist Edwin Herbert Hall - Unfortunate Modern Heroes of American Physics Jean-Baptiste Biot - An outstanding student who was interested in all aspects of physics Felix Savart Supporting role of Biot-Savart s law(?) History of compass The Magnetic Field Magnetic Field Measurements

Physics 202, Lecture 13. Today s Topics. Magnetic Forces: Hall Effect (Ch. 27.8)

Physics 202, Lecture 13. Today s Topics. Magnetic Forces: Hall Effect (Ch. 27.8) Physics 202, Lecture 13 Today s Topics Magnetic Forces: Hall Effect (Ch. 27.8) Sources of the Magnetic Field (Ch. 28) B field of infinite wire Force between parallel wires Biot-Savart Law Examples: ring,

More information

Chapter 27 Sources of Magnetic Field

Chapter 27 Sources of Magnetic Field Chapter 27 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

Chapter 30. Sources of the Magnetic Field Amperes and Biot-Savart Laws

Chapter 30. Sources of the Magnetic Field Amperes and Biot-Savart Laws Chapter 30 Sources of the Magnetic Field Amperes and Biot-Savart Laws F B on a Charge Moving in a Magnetic Field Magnitude proportional to charge and speed of the particle Direction depends on the velocity

More information

Magnetism. February 27, 2014 Physics for Scientists & Engineers 2, Chapter 27 1

Magnetism. February 27, 2014 Physics for Scientists & Engineers 2, Chapter 27 1 Magnetism February 27, 2014 Physics for Scientists & Engineers 2, Chapter 27 1 Force on a Current Carrying Wire! The magnitude of the magnetic force on a wire of length L carrying a current i is F = il

More information

EE 3324 Electromagnetics Laboratory

EE 3324 Electromagnetics Laboratory EE 3324 Electromagnetics Laboratory Experiment #3 Inductors and Inductance 1. Objective The objective of Experiment #3 is to investigate the concepts of inductors and inductance. Several inductor geometries

More information

Experiment 2-2. Equipotential Lines. - Electric Field and Gauss's Law

Experiment 2-2. Equipotential Lines. - Electric Field and Gauss's Law Experiment 2-2. Equipotential Lines - Electric Field and Gauss's Law Purpose of Experiment By introducing the concept of electric field, we can improve our understanding about force between separated charges.

More information

Magnetic Fields due to Currents

Magnetic Fields due to Currents Observation: a current of moving charged particles produces a magnetic field around the current. Chapter 29 Magnetic Fields due to Currents Magnetic field due to a current in a long straight wire a current

More information

Experiment No: EM 4 Experiment Name: Biot-Savart Law Objectives:

Experiment No: EM 4 Experiment Name: Biot-Savart Law Objectives: Experiment No: EM 4 Experiment Name: Biot-Savart Law Objectives: Measuring the magnetic field of a current passing through long straight and conductor wire as a function of the current. Measuring the magnetic

More information

Ch 30 - Sources of Magnetic Field

Ch 30 - Sources of Magnetic Field Ch 30 - Sources of Magnetic Field Currents produce Magnetism? 1820, Hans Christian Oersted: moving charges produce a magnetic field. The direction of the field is determined using a RHR. Oersted (1820)

More information

Magnetic Fields Part 2: Sources of Magnetic Fields

Magnetic Fields Part 2: Sources of Magnetic Fields Magnetic Fields Part 2: Sources of Magnetic Fields Last modified: 08/01/2018 Contents Links What Causes a Magnetic Field? Moving Charges Right Hand Grip Rule Permanent Magnets Biot-Savart Law Magnetic

More information

Handout 8: Sources of magnetic field. Magnetic field of moving charge

Handout 8: Sources of magnetic field. Magnetic field of moving charge 1 Handout 8: Sources of magnetic field Magnetic field of moving charge Moving charge creates magnetic field around it. In Fig. 1, charge q is moving at constant velocity v. The magnetic field at point

More information

Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II

Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II Physics 212 Jonathan Dowling Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II Jean-Baptiste Biot (1774-1862) Felix Savart (1791 1841) Electric Current: A Source of Magnetic Field Observation:

More information

You will return this handout to the instructor at the end of the lab period. Experimental verification of Ampere s Law.

You will return this handout to the instructor at the end of the lab period. Experimental verification of Ampere s Law. PHY222 LAB 6 AMPERE S LAW Print Your Name Print Your Partners' Names Instructions Read section A prior to attending your lab section. You will return this handout to the instructor at the end of the lab

More information

Calculus Relationships in AP Physics C: Electricity and Magnetism

Calculus Relationships in AP Physics C: Electricity and Magnetism C: Electricity This chapter focuses on some of the quantitative skills that are important in your C: Mechanics course. These are not all of the skills that you will learn, practice, and apply during the

More information

Physics 4B Chapter 29: Magnetic Fields Due to Currents

Physics 4B Chapter 29: Magnetic Fields Due to Currents Physics 4B Chapter 29: Magnetic Fields Due to Currents Nothing can bring you peace but yourself. Ralph Waldo Emerson The foolish man seeks happiness in the distance, the wise man grows it under his feet.

More information

PHYS152 Lecture 8. Eunil Won Korea University. Ch 30 Magnetic Fields Due to Currents. Fundamentals of Physics by Eunil Won, Korea University

PHYS152 Lecture 8. Eunil Won Korea University. Ch 30 Magnetic Fields Due to Currents. Fundamentals of Physics by Eunil Won, Korea University PHYS152 Lecture 8 Ch 3 Magnetic Fields Due to Currents Eunil Won Korea University Calculating the Magnetic Field Due to a Current Recall that we had the formula for the electrostatic force: d E = 1 ɛ dq

More information

Every magnet has a north pole and south pole.

Every magnet has a north pole and south pole. Magnets - Intro The lodestone is a naturally occurring mineral called magnetite. It was found to attract certain pieces of metal. o one knew why. ome early Greek philosophers thought the lodestone had

More information

Chapter 30 Sources of the magnetic field

Chapter 30 Sources of the magnetic field Chapter 30 Sources of the magnetic field Force Equation Point Object Force Point Object Field Differential Field Is db radial? Does db have 1/r2 dependence? Biot-Savart Law Set-Up The magnetic field is

More information

Magnetostatics III. P.Ravindran, PHY041: Electricity & Magnetism 1 January 2013: Magntostatics

Magnetostatics III. P.Ravindran, PHY041: Electricity & Magnetism 1 January 2013: Magntostatics Magnetostatics III Magnetization All magnetic phenomena are due to motion of the electric charges present in that material. A piece of magnetic material on an atomic scale have tiny currents due to electrons

More information

Experiment 2-3. What s Happening Between Currents? -Lorenz Force-

Experiment 2-3. What s Happening Between Currents? -Lorenz Force- Experiment 2-3. What s Happening Between Currents? -Lorenz Force- Purpose of Experiment A current-carrying electric wire produces a magnetic field. When a closed current-carrying wire is placed in a magnetic

More information

INTRODUCTION MAGNETIC FIELD OF A MOVING POINT CHARGE. Introduction. Magnetic field due to a moving point charge. Units.

INTRODUCTION MAGNETIC FIELD OF A MOVING POINT CHARGE. Introduction. Magnetic field due to a moving point charge. Units. Chapter 9 THE MAGNETC FELD ntroduction Magnetic field due to a moving point charge Units Biot-Savart Law Gauss s Law for magnetism Ampère s Law Maxwell s equations for statics Summary NTRODUCTON Last lecture

More information

The Steady Magnetic Fields

The Steady Magnetic Fields The Steady Magnetic Fields Prepared By Dr. Eng. Sherif Hekal Assistant Professor Electronics and Communications Engineering 1/8/017 1 Agenda Intended Learning Outcomes Why Study Magnetic Field Biot-Savart

More information

Force between parallel currents Example calculations of B from the Biot- Savart field law Ampère s Law Example calculations

Force between parallel currents Example calculations of B from the Biot- Savart field law Ampère s Law Example calculations Today in Physics 1: finding B Force between parallel currents Example calculations of B from the Biot- Savart field law Ampère s Law Example calculations of B from Ampère s law Uniform currents in conductors?

More information

Physics / Higher Physics 1A. Electricity and Magnetism Revision

Physics / Higher Physics 1A. Electricity and Magnetism Revision Physics / Higher Physics 1A Electricity and Magnetism Revision Electric Charges Two kinds of electric charges Called positive and negative Like charges repel Unlike charges attract Coulomb s Law In vector

More information

cancel each other out. Thus, we only need to consider magnetic field produced by wire carrying current 2.

cancel each other out. Thus, we only need to consider magnetic field produced by wire carrying current 2. PC1143 2011/2012 Exam Solutions Question 1 a) Assumption: shells are conductors. Notes: the system given is a capacitor. Make use of spherical symmetry. Energy density, =. in this case means electric field

More information

Homework # Physics 2 for Students of Mechanical Engineering. Part A

Homework # Physics 2 for Students of Mechanical Engineering. Part A Homework #9 203-1-1721 Physics 2 for Students of Mechanical Engineering Part A 5. A 25-kV electron gun in a TV tube fires an electron beam having a diameter of 0.22 mm at the screen. The spot on the screen

More information

week 8 The Magnetic Field

week 8 The Magnetic Field week 8 The Magnetic Field General Principles General Principles Applications Start with magnetic forces on moving charges and currents A positive charge enters a uniform magnetic field as shown. What is

More information

Ampere s Law. Outline. Objectives. BEE-Lecture Notes Anurag Srivastava 1

Ampere s Law. Outline. Objectives. BEE-Lecture Notes Anurag Srivastava 1 Outline Introduce as an analogy to Gauss Law. Define. Applications of. Objectives Recognise to be analogous to Gauss Law. Recognise similar concepts: (1) draw an imaginary shape enclosing the current carrying

More information

Magnetostatic Fields. Dr. Talal Skaik Islamic University of Gaza Palestine

Magnetostatic Fields. Dr. Talal Skaik Islamic University of Gaza Palestine Magnetostatic Fields Dr. Talal Skaik Islamic University of Gaza Palestine 01 Introduction In chapters 4 to 6, static electric fields characterized by E or D (D=εE) were discussed. This chapter considers

More information

Magnetostatics: Part 1

Magnetostatics: Part 1 Magnetostatics: Part 1 We present magnetostatics in comparison with electrostatics. Sources of the fields: Electric field E: Coulomb s law. Magnetic field B: Biot-Savart law. Charge Current (moving charge)

More information

The Steady Magnetic Field

The Steady Magnetic Field The Steady Magnetic Field Prepared By Dr. Eng. Sherif Hekal Assistant Professor Electronics and Communications Engineering 1/13/016 1 Agenda Intended Learning Outcomes Why Study Magnetic Field Biot-Savart

More information

Sources of Magnetic Field I

Sources of Magnetic Field I Sources of Magnetic Field I Physics 2415 Lecture 17 Michael Fowler, UVa Today s Topics Forces between currents Ampère s Law Fields inside wire and solenoid Magnetic Field from a Current in a Long Straight

More information

Cyclotron, final. The cyclotron s operation is based on the fact that T is independent of the speed of the particles and of the radius of their path

Cyclotron, final. The cyclotron s operation is based on the fact that T is independent of the speed of the particles and of the radius of their path Cyclotron, final The cyclotron s operation is based on the fact that T is independent of the speed of the particles and of the radius of their path K 1 qbr 2 2m 2 = mv = 2 2 2 When the energy of the ions

More information

March 11. Physics 272. Spring Prof. Philip von Doetinchem

March 11. Physics 272. Spring Prof. Philip von Doetinchem Physics 272 March 11 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Spring 14 - von Doetinchem - 32 Summary Magnetic

More information

Never switch on the equipment without the assistants explicit authorization!

Never switch on the equipment without the assistants explicit authorization! Biot Savart s law 1 Objective The objective of this experiment is to verify Biot-Savart s law for certain geometries. Over the course of the preparation, the actual experiment and the writing of the report

More information

Physics Lab 202P-9. Magnetic Fields & Electric Current NAME: LAB PARTNERS:

Physics Lab 202P-9. Magnetic Fields & Electric Current NAME: LAB PARTNERS: Physics Lab 202P-9 Magnetic Fields & Electric Current NAME: LAB PARTNERS: LAB SECTION: LAB INSTRUCTOR: DATE: EMAIL ADDRESS: Penn State University Created by nitin samarth Physics Lab 202P-9 Page 1 of 22

More information

General Physics II. Magnetic Fields and Forces

General Physics II. Magnetic Fields and Forces General Physics II Magnetic Fields and Forces 1 Magnetism Magnetism underlies the operation of the hard disk drive, which is the mainstay of modern electronic information storage, from computers to ipods.

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chapter 28 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

PHYS 1444 Section 501 Lecture #17

PHYS 1444 Section 501 Lecture #17 PHYS 1444 Section 501 Lecture #17 Wednesday, Mar. 29, 2006 Solenoid and Toroidal Magnetic Field Biot-Savart Law Magnetic Materials B in Magnetic Materials Hysteresis Today s homework is #9, due 7pm, Thursday,

More information

10/24/2012 PHY 102. (FAWOLE O.G.) Good day. Here we go..

10/24/2012 PHY 102. (FAWOLE O.G.) Good day. Here we go.. Good day. Here we go.. 1 PHY102- GENERAL PHYSICS II Text Book: Fundamentals of Physics Authors: Halliday, Resnick & Walker Edition: 8 th Extended Lecture Schedule TOPICS: Dates Ch. 28 Magnetic Fields 12

More information

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA

UNIT-I INTRODUCTION TO COORDINATE SYSTEMS AND VECTOR ALGEBRA SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : EMF(16EE214) Sem: II-B.Tech & II-Sem Course & Branch: B.Tech - EEE Year

More information

Question Bank 4-Magnetic effects of current

Question Bank 4-Magnetic effects of current Question Bank 4-Magnetic effects of current LEVEL A 1 Mark Questions 1) State Biot-Savart s law in vector form. 2) What is the SI unit of magnetic flux density? 3) Define Tesla. 4) A compass placed near

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : ELECTROMAGNETIC FIELDS SUBJECT CODE : EC 2253 YEAR / SEMESTER : II / IV UNIT- I - STATIC ELECTRIC

More information

The Direction of Magnetic Field. Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 16

The Direction of Magnetic Field. Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 16 The Direction of Magnetic Field Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 16 The Magnetic Field We introduced electric field to explain-away long-range electric

More information

(1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule.

(1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule. iclicker Quiz (1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule. a) True b) False Hint: pay attention to how

More information

CHAPTER 30. Answer to Checkpoint Questions. 1. (a), (c), (b) 2. b, c, a 3. d, tie of a and c, then b 4. (d), (a), tie of (b) and (c) (zero)

CHAPTER 30. Answer to Checkpoint Questions. 1. (a), (c), (b) 2. b, c, a 3. d, tie of a and c, then b 4. (d), (a), tie of (b) and (c) (zero) 800 CHAPTER 30 AMPERE S LAW CHAPTER 30 Answer to Checkpoint Questions. (a), (c), (b). b, c, a 3. d, tie of a and c, then b. (d), (a), tie of (b) and (c) (zero) Answer to Questions. (c), (d), then (a) and

More information

Ch. 28: Sources of Magnetic Fields

Ch. 28: Sources of Magnetic Fields Ch. 28: Sources of Magnetic Fields Electric Currents Create Magnetic Fields A long, straight wire A current loop A solenoid Slide 24-14 Biot-Savart Law Current produces a magnetic field The Biot-Savart

More information

Applications of Ampere s Law

Applications of Ampere s Law Applications of Ampere s Law In electrostatics, the electric field due to any known charge distribution ρ(x, y, z) may alwaysbeobtainedfromthecoulomblaw it sauniversal tool buttheactualcalculation is often

More information

Magnetic field of single coils / Biot-Savart's law

Magnetic field of single coils / Biot-Savart's law Principle The magnetic field along the axis of wire loops and coils of different dimensions is measured with a teslameter (Hall probe). The relationship between the maximum field strength and the dimensions

More information

/20 /20 /20 /60. Dr. Galeazzi PHY207 Test #3 November 20, I.D. number:

/20 /20 /20 /60. Dr. Galeazzi PHY207 Test #3 November 20, I.D. number: Signature: Name: I.D. number: You must do ALL the problems Each problem is worth 0 points for a total of 60 points. TO GET CREDIT IN PROBLEMS AND 3 YOU MUST SHOW GOOD WORK. CHECK DISCUSSION SECTION ATTENDED:

More information

Module 3: Electromagnetism

Module 3: Electromagnetism Module 3: Electromagnetism Lecture - Magnetic Field Objectives In this lecture you will learn the following Electric current is the source of magnetic field. When a charged particle is placed in an electromagnetic

More information

The Steady Magnetic Field LECTURE 7

The Steady Magnetic Field LECTURE 7 The Steady Magnetic Field LECTURE 7 Learning Objectives Understand the Biot-Savart Law Understand the Ampere s Circuital Law Explain the Application of Ampere s Law Motivating the Magnetic Field Concept:

More information

Chapter 19. Magnetism

Chapter 19. Magnetism Chapter 19 Magnetism Magnetic Fields and Forces Fundamentally they do not exist If we had special relativity we would find there is no such thing as a magnetic field. It is only a relativistic transformation

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chapter 28 Sources of Magnetic Field In this chapter we investigate the sources of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents), Ampere s Law is introduced

More information

1. A ring of radius α has a charge distribution on it that varies as λ(θ) = λ 0 sin(θ), where λ 0 > 0, as shown in the figure.

1. A ring of radius α has a charge distribution on it that varies as λ(θ) = λ 0 sin(θ), where λ 0 > 0, as shown in the figure. EACH OF THE LECTURE QUESTIONS 1-22 IS WORTH 5 POINTS I. COULOMB S LAW 1. A ring of radius α has a charge distribution on it that varies as λ(θ) = λ 0 sin(θ), where λ 0 > 0, as shown in the figure. What

More information

CHAPTER 20 Magnetism

CHAPTER 20 Magnetism CHAPTER 20 Magnetism Units Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on Electric Charge Moving in a Magnetic

More information

4. An electron moving in the positive x direction experiences a magnetic force in the positive z direction. If B x

4. An electron moving in the positive x direction experiences a magnetic force in the positive z direction. If B x Magnetic Fields 3. A particle (q = 4.0 µc, m = 5.0 mg) moves in a uniform magnetic field with a velocity having a magnitude of 2.0 km/s and a direction that is 50 away from that of the magnetic field.

More information

Key Contents. Magnetic fields and the Lorentz force. Magnetic force on current. Ampere s law. The Hall effect

Key Contents. Magnetic fields and the Lorentz force. Magnetic force on current. Ampere s law. The Hall effect Magnetic Fields Key Contents Magnetic fields and the Lorentz force The Hall effect Magnetic force on current The magnetic dipole moment Biot-Savart law Ampere s law The magnetic dipole field What is a

More information

Exp. #2-4 : Measurement of Characteristics of Magnetic Fields by Using Single Coils and a Computer Interface

Exp. #2-4 : Measurement of Characteristics of Magnetic Fields by Using Single Coils and a Computer Interface PAGE 1/17 Exp. #2-4 : Measurement of Characteristics of Magnetic Fields by Using Single Coils and a Computer Interface Student ID Major Name Team No. Experiment Lecturer Student's Mentioned Items Experiment

More information

1-1 Magnetism. q ν B.(1) = q ( ) (2)

1-1 Magnetism. q ν B.(1) = q ( ) (2) 1-1 Magnetism Magnets exert forces on each other just like charges. You can draw magnetic field lines just like you drew electric field lines. Magnetic north and south pole s behavior is not unlike electric

More information

Lecture Sound Waves Review. Physics Help Q&A: tutor.leiacademy.org. Force on a Charge Moving in a Magnetic Field

Lecture Sound Waves Review. Physics Help Q&A: tutor.leiacademy.org. Force on a Charge Moving in a Magnetic Field Lecture 1101 Sound Waves Review Physics Help Q&A: tutor.leiacademy.org Force on a Charge Moving in a Magnetic Field A charge moving in a magnetic field can have a magnetic force exerted by the B-field.

More information

AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

More information

Magnetic Fields; Sources of Magnetic Field

Magnetic Fields; Sources of Magnetic Field This test covers magnetic fields, magnetic forces on charged particles and current-carrying wires, the Hall effect, the Biot-Savart Law, Ampère s Law, and the magnetic fields of current-carrying loops

More information

Chapter 4: Magnetic Field

Chapter 4: Magnetic Field Chapter 4: Magnetic Field 4.1 Magnetic Field 4.1.1 Define magnetic field Magnetic field is defined as the region around a magnet where a magnetic force can be experienced. Magnetic field has two poles,

More information

A moving charge produces both electric field and magnetic field and both magnetic field can exert force on it.

A moving charge produces both electric field and magnetic field and both magnetic field can exert force on it. Key Concepts A moving charge produces both electric field and magnetic field and both magnetic field can exert force on it. Note: In 1831, Michael Faraday discovered electromagnetic induction when he found

More information

B r Solved Problems Magnetic Field of a Straight Wire

B r Solved Problems Magnetic Field of a Straight Wire (4) Equate Iencwith d s to obtain I π r = NI NI = = ni = l π r 9. Solved Problems 9.. Magnetic Field of a Straight Wire Consider a straight wire of length L carrying a current I along the +x-direction,

More information

Biot-Savart. The equation is this:

Biot-Savart. The equation is this: Biot-Savart When a wire carries a current, this current produces a magnetic field in the vicinity of the wire. One way of determining the strength and direction of this field is with the Law of Biot-Savart.

More information

May 08, Magnetism.notebook. Unit 9 Magnetism. This end points to the North; call it "NORTH." This end points to the South; call it "SOUTH.

May 08, Magnetism.notebook. Unit 9 Magnetism. This end points to the North; call it NORTH. This end points to the South; call it SOUTH. Unit 9 Magnetism This end points to the North; call it "NORTH." This end points to the South; call it "SOUTH." 1 The behavior of magnetic poles is similar to that of like and unlike electric charges. Law

More information

K2-04: FARADAY'S EXPERIMENT - EME K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS

K2-04: FARADAY'S EXPERIMENT - EME K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS K2-04: FARADAY'S EXPERIMENT - EME SET - 20, 40, 80 TURN COILS K2-62: CAN SMASHER - ELECTROMAGNETIC K2-43: LENZ'S LAW - PERMANENT MAGNET AND COILS K2-44: EDDY CURRENT PENDULUM K4-06: MAGNETOELECTRIC GENERATOR

More information

PHYS ND semester Dr. Nadyah Alanazi. Lecture 16

PHYS ND semester Dr. Nadyah Alanazi. Lecture 16 1 PHYS 104 2 ND semester 1439-1440 Dr. Nadyah Alanazi Lecture 16 2 Chapter 29 Magnetic Field 29.1 Magnetic Fields and Forces 29.2 Magnetic Force Acting on a Current-Carrying Conductor 29.4 Motion of a

More information

Topic 6.3 Magnetic Force and Field. 2 hours

Topic 6.3 Magnetic Force and Field. 2 hours Topic 6.3 Magnetic Force and Field 2 hours 1 Magnetic Fields A magnetic field is said to exist at a point if a compass needle placed there experiences a force. The appearance of a magnetic field can be

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM PHY294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 handwritten problem per week) Help-room hours: 12:40-2:40 Monday

More information

Magnetic Fields and Forces

Magnetic Fields and Forces Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 20 Magnetic Fields and Forces Marilyn Akins, PhD Broome Community College Magnetism Magnetic fields are produced by moving electric charges

More information

ELECTRO MAGNETIC FIELDS

ELECTRO MAGNETIC FIELDS SET - 1 1. a) State and explain Gauss law in differential form and also list the limitations of Guess law. b) A square sheet defined by -2 x 2m, -2 y 2m lies in the = -2m plane. The charge density on the

More information

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

More information

Magnetic field of single coils/ Biot-Savart s law with Cobra4

Magnetic field of single coils/ Biot-Savart s law with Cobra4 Magnetic field of single coils/ TEP Related topics Wire loop, Biot-Savart s law, Hall effect, magnetic field, induction, magnetic flux density. Principle The magnetic field along the axis of wire loops

More information

n Higher Physics 1B (Special) (PHYS1241) (6UOC) n Advanced Science n Double Degree (Science/Engineering) n Credit or higher in Physics 1A

n Higher Physics 1B (Special) (PHYS1241) (6UOC) n Advanced Science n Double Degree (Science/Engineering) n Credit or higher in Physics 1A Physics in Session 2: I n Physics / Higher Physics 1B (PHYS1221/1231) n Science, dvanced Science n Engineering: Electrical, Photovoltaic,Telecom n Double Degree: Science/Engineering n 6 UOC n Waves n Physical

More information

Set of sure shot questions of Magnetic effect of Current for class XII CBSE Board Exam Reg.

Set of sure shot questions of Magnetic effect of Current for class XII CBSE Board Exam Reg. Set of sure shot questions of Magnetic effect of Current for class XII CBSE Board Exam. 2016- Reg. 1 Two Parallel Conducting wires carrying current in the same direction attract each other.why? I 1 A B

More information

B = 8 0 NI/[r (5) 3/2 ],

B = 8 0 NI/[r (5) 3/2 ], ELECTRON BEAM IN A MAGNETIC FIELD Introduction: A charged body moving relative to a magnetic field experiences a force which is perpendicular to both the velocity of the particle and to the magnetic field.

More information

CHAPTER 30: Sources of Magnetic Fields

CHAPTER 30: Sources of Magnetic Fields CHAPTER 30: Sources of Magnetic Fields Cern s singlewalled coil operates at 7600 amps and produces a 2.0 Tesla B-fld. http://atlasmagnet.web.ce rn.ch/atlasmagnet/info/ project/ ATLAS_Magn et_leafletds.pdf

More information

Lab 4, part one: Electric and magnetic fields

Lab 4, part one: Electric and magnetic fields Astronomy 102 Name: Lab 4, part one: Electric and magnetic fields Learning outcome: Ultimately, to understand how a changing electric field induces a magnetic field, and how a changing magnetic field induces

More information

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field.

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field. MAGNETIC DEFLECTION OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field. THEORY: Moving charges exert forces on one another that are not observed

More information

AP Physics C. Electricity - Term 3

AP Physics C. Electricity - Term 3 AP Physics C Electricity - Term 3 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the

More information

Chapter 29. Magnetic Fields due to Currentss

Chapter 29. Magnetic Fields due to Currentss Chapter 29 Magnetic Fields due to Currentss Refresher: The Magnetic Field Permanent bar magnets have opposite poles on each end, called north and south. Like poles repel; opposites attract. If a magnet

More information

MAGNETIC PROBLEMS. (d) Sketch B as a function of d clearly showing the value for maximum value of B.

MAGNETIC PROBLEMS. (d) Sketch B as a function of d clearly showing the value for maximum value of B. PHYS2012/2912 MAGNETC PROBLEMS M014 You can investigate the behaviour of a toroidal (dough nut shape) electromagnet by changing the core material (magnetic susceptibility m ) and the length d of the air

More information

1 Fundamentals. 1.1 Overview. 1.2 Units: Physics 704 Spring 2018

1 Fundamentals. 1.1 Overview. 1.2 Units: Physics 704 Spring 2018 Physics 704 Spring 2018 1 Fundamentals 1.1 Overview The objective of this course is: to determine and fields in various physical systems and the forces and/or torques resulting from them. The domain of

More information

ST.JOSEPH COLLEGE OF ENGINEERING,DEPARTMENT OF ECE

ST.JOSEPH COLLEGE OF ENGINEERING,DEPARTMENT OF ECE EC6403 -ELECTROMAGNETIC FIELDS CLASS/SEM: II ECE/IV SEM UNIT I - STATIC ELECTRIC FIELD Part A - Two Marks 1. Define scalar field? A field is a system in which a particular physical function has a value

More information

Magnetic Fields due to Currents

Magnetic Fields due to Currents s s Water, fire, air and dirt, [freaking] magnets, how do they work? - Insane Clown Posse David J. Starling Penn State Hazleton PHYS 212 Moving charges are affected by magnetic fields: F B = q v B But

More information

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT.

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH-67, TRICHY MAIN ROAD, PULIYUR, C.F. 639 114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name: Electromagnetic

More information

Introduction to Electromagnetism

Introduction to Electromagnetism Introduction to Electromagnetism Electric Field Lines If a charge feels an electrostatic force (Coulombic Force), it is said to be in an electric field. We like to represent electric fields with lines.

More information

Magnetic inductance & Solenoids. P.Ravindran, PHY041: Electricity & Magnetism 22 February 2013: Magnetic inductance, and Solenoid

Magnetic inductance & Solenoids. P.Ravindran, PHY041: Electricity & Magnetism 22 February 2013: Magnetic inductance, and Solenoid Magnetic inductance & Solenoids Changing Magnetic Flux A changing magnetic flux in a wire loop induces an electric current. The induced current is always in a direction that opposes the change in flux.

More information

AP Physics C. Magnetism - Term 4

AP Physics C. Magnetism - Term 4 AP Physics C Magnetism - Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world

More information

Chapter 5. Magnetostatics

Chapter 5. Magnetostatics Chapter 5. Magnetostatics 5.1 The Lorentz Force Law 5.1.1 Magnetic Fields Consider the forces between charges in motion Attraction of parallel currents and Repulsion of antiparallel ones: How do you explain

More information

Torque on a Current Loop

Torque on a Current Loop Today Chapter 19 Magnetism Torque on a current loop, electrical motor Magnetic field around a current carrying wire. Ampere s law Solenoid Material magnetism Clicker 1 Which of the following is wrong?

More information

Chapter 22, Magnetism. Magnets

Chapter 22, Magnetism. Magnets Chapter 22, Magnetism Magnets Poles of a magnet (north and south ) are the ends where objects are most strongly attracted. Like poles repel each other and unlike poles attract each other Magnetic poles

More information

Magnetic Force Acting on a Current- Carrying Conductor IL B

Magnetic Force Acting on a Current- Carrying Conductor IL B Magnetic Force Acting on a Current- Carrying Conductor A segment of a current-carrying wire in a magnetic field. The magnetic force exerted on each charge making up the current is qvd and the net force

More information

Spring 2015 Eugene V. Colla

Spring 2015 Eugene V. Colla Spring 015 Eugene V. Colla The main goals of the Lab: Study of the magnetic field distribution created by various systems using Hall probe and Gauss meter. Calculating for simple systems the magnetic field

More information

18. Ampere s law and Gauss s law (for B) Announcements: This Friday, Quiz 1 in-class and during class (training exam)

18. Ampere s law and Gauss s law (for B) Announcements: This Friday, Quiz 1 in-class and during class (training exam) 18. Ampere s law and Gauss s law (for B) Announcements: This Friday, Quiz 1 in-class and during class (training exam) Where does a B-field come from? Facts: Electrical current produces a magnetic field

More information

Electromagnetic Induction

Electromagnetic Induction Electromagnetic Induction 1 The magnet is very fragile. Exercise caution while dealing with the bar magnet. Introduction A current flow creates the magnetic field that is shown by the previous lab. Then,

More information

Section 11: Magnetic Fields and Induction (Faraday's Discovery)

Section 11: Magnetic Fields and Induction (Faraday's Discovery) Section 11: Magnetic Fields and Induction (Faraday's Discovery) In this lesson you will describe Faraday's law of electromagnetic induction and tell how it complements Oersted's Principle express an understanding

More information