HSC Mathematics. Workshop 4

Size: px
Start display at page:

Download "HSC Mathematics. Workshop 4"

Transcription

1 HSC Mathematics Workshop 4 Presented by Richard D. Kenderdine BSc, GradDipAppSc(IndMaths), SurvCert, MAppStat, GStat School of Mathematics and Applied Statistics University of Wollongong Moss Vale Centre October 2009

2 HSC Mathematics - Workshop 4 Richard D Kenderdine University of Wollongong October Applications of Calculus to the Physical World General Rates of Change For most of this topic we differentiate with respect to time. Derivatives are rates of change. So if a question asks for a rate of change it means find the derivative. If a questions gives the rate of change then the integral is probably required. We can interpret an integral as an accumulator - it adds up all the changes given by the rate of change. 1. Exercise: Over a 10-year period commencing on 1 January 1995 the population P (t) in a certain town was modelled by the equation P (t) = t where t is time in years, 0 t 10. Find: (a) the population on 1 January 1995 (b) the population on 31 December 2004 (c) the rate of change in the population on 1 January Exercise: After a thunderstorm the rate of increase in water stored in a dam is given by R(t) = 500 t+1 litres/day where t is in days. (a) If the dam contained 2000 litres before the storm calculate the amount of water in the dam when t = 6. (b) What is the maximum rate of flow and for what value of t does this occur? 1 rdk301@uow.edu.au 1

3 3. Exercise: (1985 HSC) At time t minutes after a jet engine starts the rate of fuel burn, R kg/min, is given by R = t (a) Sketch a graph of R as a function of t. (b) What is the rate of burn after 7 minutes? (c) What value does R approach as t becomes very large? (d) Calculate the total amount of fuel burned in the first 7 minutes. Exponential growth and decay There are numerous situations in which the rate of change in a quantity is proportional to the quantity itself. A discrete example is compound interest where the amount of interest in dollars is proportional to the amount invested. Now thinking of the continuous case we derive the appropriate function. We want to find a function Q(t) such that dq(t) t = kq(t) for some constant k. 4. Exercise: The rate of growth in the number of bacteria is proportional to the number present. If the initial population of 100 grew to 200 after 3 hours find: (a) the population after 5 hours (b) the population after 9 hours (c) the time, to the nearest minute, for the population to reach 1000 (d) the rate of growth in the population after 5 hours 5. Exercise: The half-life of a radioactive material is 50 years. How long will it take until only 10% of the original material is present, assuming exponential decay? 6. Exercise: The rate of growth in the number of locusts in a colony is proportional to the population present. If there were 5000 locusts 2 days after observations 2

4 began and after 5 days, calculate (a) the number of locusts in the population when observations began (b) the number of locusts after 10 days (c) how long it will take for the population to reach (d) whether the model used to answer the previous questions is applicable over an extended period of time. Motion of a Particle The motion of a particle considers three aspects of its movement in a line: displacement (x) from a fixed origin (+ve or -ve) velocity, the rate of change in displacement (v = dx dt = ẋ) acceleration, the rate of change in velocity (a = dv dt = d2 x dt 2 = ẍ) Note that velocity and acceleration are vectors, that is they have magnitude and direction. Speed only has magnitude so two particles can have the same speed but different velocities since they are travelling in different directions. 7. Exercise: The displacement of a particle in metres at time t seconds is given by x = ln(t 2 3t + 4). Find: (a) the initial displacement (b) the initial velocity (c) the direction in which the particle is initially moving (d) whether the particle comes to rest and if so, its location (e) the distance travelled in the first 2 seconds (f) the acceleration at t = 1 (g) a description of the velocity as time increases. It is useful to remember that the distance travelled between two times is the area under the velocity-time graph between those times. 8. Exercise: Find the distance travelled by a particle between t = π 6 velocity is given by v = sin 4t cm/s. 5π and 12 if the 3

5 9. Exercise: The acceleration of a particle is given by ẍ = 6 cos 2t m/s 2. If the particle momentarily stopped at x = π metres when t = π 4 the exact displacement at t = π sec. sec, find 10. Exercise: The displacement of a particle in metres is given by x = 4t 3 sin 2t. Find the maximum velocity of the particle. 11. Exercise: The velocity, in metres/sec, of a body that is initially at the origin is given by Find: ẋ = e2t 9 + e 2t (a) an expression for acceleration (b) an expression for displacement (c) the initial velocity (d) a full description the motion as time increases (e) graph velocity against time Probability The main things to remember with Probability questions are: Multi-stage events: tree diagrams. Multiply probabilities going out the tree, add going down. Complementary event: P (E) = 1 P (Ē). Use with the words at least one. Venn diagrams. 12. Exercise: There are 22 employees in a small business. Eight of those employees did not work elsewhere before joining the business and do not have a tertiary education. Of the remainder, 10 worked elsewhere and 6 have a tertiary education. If an employee is selected at random, what is the probability that the employee both worked elsewhere and has a tertiary education? 4

6 13. Exercise: Two teams play a series of 3 matches. At the outset the probability that Team A will win the first match is 0.7. The probability of winning the second match increases/decreases by 0.05 according to whether the team won/lost the first match. The same process applies to the third match so Team A would have a probability of 0.6 of winning the third match if it lost the first two matches. Find the probability that (i) Team A wins the series (ie more matches that Team B). (ii) Team B wins at least one match. 14. Exercise: There are 8 pairs of identical twins in a school. A random sample of 3 students is to be taken from the 16 twins and asked questions about their experiences as a twin. What is the probability that there are no matching twins in the sample? 15. Exercise: A game is played with tetrahedral (four sided, with equilateral traingles as faces) dice. One of the die has faces marked (2,4,6,8) and the other (1,3,5,7). The score after each toss is obtained by adding the number on each die. What is the probability of a total score greater than 27 after two tosses? 5

HSC Mathematics - Extension 1. Workshop 2

HSC Mathematics - Extension 1. Workshop 2 HSC Mathematics - Extension 1 Workshop 2 Presented by Richard D. Kenderdine BSc, GradDipAppSc(IndMaths), SurvCert, MAppStat, GStat School of Mathematics and Applied Statistics University of Wollongong

More information

SAMPLE ASSESSMENT TASKS MATHEMATICS METHODS ATAR YEAR 12

SAMPLE ASSESSMENT TASKS MATHEMATICS METHODS ATAR YEAR 12 SAMPLE ASSESSMENT TASKS MATHEMATICS METHODS ATAR YEAR Copyright School Curriculum and Standards Authority, 08 This document apart from any third party copyright material contained in it may be freely copied,

More information

Section Exponential Functions

Section Exponential Functions 121 Section 4.1 - Exponential Functions Exponential functions are extremely important in both economics and science. It allows us to discuss the growth of money in a money market account as well as the

More information

The acceleration of gravity is constant (near the surface of the earth). So, for falling objects:

The acceleration of gravity is constant (near the surface of the earth). So, for falling objects: 1. Become familiar with a definition of and terminology involved with differential equations Calculus - Santowski. Solve differential equations with and without initial conditions 3. Apply differential

More information

AP CALCULUS AB 2007 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2007 SCORING GUIDELINES (Form B) AP CALCULUS AB 27 SCORING GUIDELINES (Form B) Question 2 A particle moves along the x-axis so that its velocity v at time 2 t is given by vt () = sin ( t ). The graph of v is shown above for t 5 π. The

More information

Transformations of Functions and Exponential Functions January 24, / 35

Transformations of Functions and Exponential Functions January 24, / 35 Exponential Functions January 24, 2017 Exponential Functions January 24, 2017 1 / 35 Review of Section 1.2 Reminder: Week-in-Review, Help Sessions, Oce Hours Mathematical Models Linear Regression Function

More information

Mathematics 2017 HSC ASSESSMENT TASK 3 (TRIAL HSC) Student Number Total Total. General Instructions. Mark

Mathematics 2017 HSC ASSESSMENT TASK 3 (TRIAL HSC) Student Number Total Total. General Instructions. Mark Mathematics 017 HSC ASSESSMENT TASK 3 (TRIAL HSC) General Instructions Reading time 5 minutes Working time 3 hours For Section I, shade the correct box on the sheet provided For Section II, write in the

More information

Exponential Growth (Doubling Time)

Exponential Growth (Doubling Time) Exponential Growth (Doubling Time) 4 Exponential Growth (Doubling Time) Suppose we start with a single bacterium, which divides every hour. After one hour we have 2 bacteria, after two hours we have 2

More information

Inverse Functions. Definition 1. The exponential function f with base a is denoted by. f(x) = a x

Inverse Functions. Definition 1. The exponential function f with base a is denoted by. f(x) = a x Inverse Functions Definition 1. The exponential function f with base a is denoted by f(x) = a x where a > 0, a 1, and x is any real number. Example 1. In the same coordinate plane, sketch the graph of

More information

Section 4.2 Logarithmic Functions & Applications

Section 4.2 Logarithmic Functions & Applications 34 Section 4.2 Logarithmic Functions & Applications Recall that exponential functions are one-to-one since every horizontal line passes through at most one point on the graph of y = b x. So, an exponential

More information

17 Exponential and Logarithmic Functions

17 Exponential and Logarithmic Functions 17 Exponential and Logarithmic Functions Concepts: Exponential Functions Power Functions vs. Exponential Functions The Definition of an Exponential Function Graphing Exponential Functions Exponential Growth

More information

7.1 Day 1: Differential Equations & Initial Value Problems (30L)

7.1 Day 1: Differential Equations & Initial Value Problems (30L) A P 7.1 Day 1: Differential Equations & Initial Value Problems (30L) Calculus 30 & 30L I CAN SOLVE DIFFERENTIAL EQUATIONS AND INITIAL VALUE PROBLEMS VIDEO LINKS: a) http://bit.ly/2bxsc6r b) http://bit.ly/2sshyyh

More information

Sec. 4.2 Logarithmic Functions

Sec. 4.2 Logarithmic Functions Sec. 4.2 Logarithmic Functions The Logarithmic Function with Base a has domain all positive real numbers and is defined by Where and is the inverse function of So and Logarithms are inverses of Exponential

More information

CHAPTER 9 MOTION ALONG A STRAIGHT LINE FORM 5 PAPER 2

CHAPTER 9 MOTION ALONG A STRAIGHT LINE FORM 5 PAPER 2 PPER. particle moves in a straight line and passes through a fixed point O, with a velocity of m s. Its acceleration, a m s, t seconds after passing through O is given by a 8 4t. The particle stops after

More information

The Definite Integral. Day 6 Motion Problems Strategies for Finding Total Area

The Definite Integral. Day 6 Motion Problems Strategies for Finding Total Area The Definite Integral Day 6 Motion Problems Strategies for Finding Total Area ARRIVAL---HW Questions Working in PODS Additional Practice Packet p. 13 and 14 Make good use of your time! Practice makes perfect!

More information

Unit 5 Exponential Functions. I know the laws of exponents and can apply them to simplify expressions that use powers with the same base.

Unit 5 Exponential Functions. I know the laws of exponents and can apply them to simplify expressions that use powers with the same base. Unit 5 Exponential Functions Topic : Goal : powers I know the laws of exponents and can apply them to simplify expressions that use powers with the same base. 5.1 The Exponent Rules Multiplying Powers

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Öğr. Gör. Volkan ÖĞER FBA 1021 Calculus 1/ 40 Exponential and Logarithmic Functions Exponential Functions The functions of the form f(x) = b x, for constant b, are important in mathematics, business, economics,

More information

Fundamentals of Mathematics (MATH 1510)

Fundamentals of Mathematics (MATH 1510) Fundamentals of Mathematics () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University February 3-5, 2016 Outline 1 growth (doubling time) Suppose a single bacterium

More information

APPLICATIONS OF INTEGRATION: MOTION ALONG A STRAIGHT LINE MR. VELAZQUEZ AP CALCULUS

APPLICATIONS OF INTEGRATION: MOTION ALONG A STRAIGHT LINE MR. VELAZQUEZ AP CALCULUS APPLICATIONS OF INTEGRATION: MOTION ALONG A STRAIGHT LINE MR. VELAZQUEZ AP CALCULUS UNDERSTANDING RECTILINEAR MOTION Rectilinear motion or motion along a straight line can now be understood in terms of

More information

1. The accumulated net change function or area-so-far function

1. The accumulated net change function or area-so-far function Name: Section: Names of collaborators: Main Points: 1. The accumulated net change function ( area-so-far function) 2. Connection to antiderivative functions: the Fundamental Theorem of Calculus 3. Evaluating

More information

AP Calculus AB. Free-Response Questions

AP Calculus AB. Free-Response Questions 2018 AP Calculus AB Free-Response Questions College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online

More information

Math 2930 Worksheet Introduction to Differential Equations

Math 2930 Worksheet Introduction to Differential Equations Math 2930 Worksheet Introduction to Differential Equations Week 2 February 1st, 2019 Learning Goals Solve linear first order ODEs analytically. Solve separable first order ODEs analytically. Questions

More information

Mathematics. Caringbah High School. Trial HSC Examination. Total Marks 100. General Instructions

Mathematics. Caringbah High School. Trial HSC Examination. Total Marks 100. General Instructions Caringbah High School 014 Trial HSC Examination Mathematics General Instructions Total Marks 100 Reading time 5 minutes Working time 3 hours Write using a blue or black pen. Black pen is preferred. Board

More information

Practice Questions for Final Exam - Math 1060Q - Fall 2014

Practice Questions for Final Exam - Math 1060Q - Fall 2014 Practice Questions for Final Exam - Math 1060Q - Fall 01 Before anyone asks, the final exam is cumulative. It will consist of about 50% problems on exponential and logarithmic functions, 5% problems on

More information

Math 131 Exam II "Sample Questions"

Math 131 Exam II Sample Questions Math 11 Exam II "Sample Questions" This is a compilation of exam II questions from old exams (written by various instructors) They cover chapters and The solutions can be found at the end of the document

More information

Solutionbank S1 Edexcel AS and A Level Modular Mathematics

Solutionbank S1 Edexcel AS and A Level Modular Mathematics Page 1 of 2 Exercise A, Question 1 As part of a statistics project, Gill collected data relating to the length of time, to the nearest minute, spent by shoppers in a supermarket and the amount of money

More information

(x! 4) (x! 4)10 + C + C. 2 e2x dx = 1 2 (1 + e 2x ) 3 2e 2x dx. # 8 '(4)(1 + e 2x ) 3 e 2x (2) = e 2x (1 + e 2x ) 3 & dx = 1

(x! 4) (x! 4)10 + C + C. 2 e2x dx = 1 2 (1 + e 2x ) 3 2e 2x dx. # 8 '(4)(1 + e 2x ) 3 e 2x (2) = e 2x (1 + e 2x ) 3 & dx = 1 33. x(x - 4) 9 Let u = x - 4, then du = and x = u + 4. x(x - 4) 9 = (u + 4)u 9 du = (u 0 + 4u 9 )du = u + 4u0 0 = (x! 4) + 2 5 (x! 4)0 (x " 4) + 2 5 (x " 4)0 ( '( = ()(x - 4)0 () + 2 5 (0)(x - 4)9 () =

More information

Foundation Mathematics. Sample. Examination Paper. Time: 2 hours

Foundation Mathematics. Sample. Examination Paper. Time: 2 hours Foundation Mathematics Sample Examination Paper Answer ALL questions. Clearly cross out surplus answers. Time: hours The maximum mark for this paper is 100. Any reference material brought into the examination

More information

Possible C4 questions from past papers P1 P3

Possible C4 questions from past papers P1 P3 Possible C4 questions from past papers P1 P3 Source of the original question is given in brackets, e.g. [P January 001 Question 1]; a question which has been edited is indicated with an asterisk, e.g.

More information

Algebra 2, Spring Semester Review 2013

Algebra 2, Spring Semester Review 2013 Class: Date: Algebra, Spring Semester Review 01 1. (1 point) Find the annual percent increase or decrease that y = 0.5(.) x models. 0% increase 0% decrease 10% increase d. 5% decrease. (1 point) An initial

More information

Position, Velocity, Acceleration

Position, Velocity, Acceleration 191 CHAPTER 7 Position, Velocity, Acceleration When we talk of acceleration we think of how quickly the velocity is changing. For example, when a stone is dropped its acceleration (due to gravity) is approximately

More information

Calculus Honors and Introduction to Calculus

Calculus Honors and Introduction to Calculus Calculus Honors and Introduction to Calculus Name: This summer packet is for students entering Calculus Honors or Introduction to Calculus in the Fall of 015. The material represents concepts and skills

More information

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I.

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I. Antiderivatives Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if F x f x for all x I. Theorem If F is an antiderivative of f on I, then every function of

More information

Algebra 2 Honors. Logs Test Review

Algebra 2 Honors. Logs Test Review Algebra 2 Honors Logs Test Review Name Date Let ( ) = ( ) = ( ) =. Perform the indicated operation and state the domain when necessary. 1. ( (6)) 2. ( ( 3)) 3. ( (6)) 4. ( ( )) 5. ( ( )) 6. ( ( )) 7. (

More information

THE EXPONENTIAL AND NATURAL LOGARITHMIC FUNCTIONS: e x, ln x

THE EXPONENTIAL AND NATURAL LOGARITHMIC FUNCTIONS: e x, ln x Mathematics Revision Guides The Exponential and Natural Log Functions Page 1 of 17 M.K. HOME TUITION Mathematics Revision Guides Level: A-Level Year 1 / AS THE EXPONENTIAL AND NATURAL LOGARITHMIC FUNCTIONS:

More information

CHAPTER 6. Exponential Functions

CHAPTER 6. Exponential Functions CHAPTER 6 Eponential Functions 6.1 EXPLORING THE CHARACTERISTICS OF EXPONENTIAL FUNCTIONS Chapter 6 EXPONENTIAL FUNCTIONS An eponential function is a function that has an in the eponent. Standard form:

More information

MATHEMATICS 2017 HSC Course Assessment Task 4 (Trial Examination) Thursday, 3 August 2017

MATHEMATICS 2017 HSC Course Assessment Task 4 (Trial Examination) Thursday, 3 August 2017 MATHEMATICS 2017 HSC Course Assessment Task 4 (Trial Examination) Thursday, 3 August 2017 General instructions Working time 3 hours. (plus 5 minutes reading time) Write using blue or black pen. Where diagrams

More information

Unit 2 Maths Methods (CAS) Exam 2013

Unit 2 Maths Methods (CAS) Exam 2013 Name: Teacher: Unit Maths Methods (CAS) Exam 013 Monday November 18-1.50 pm Reading time: 10 Minutes Writing time: 80 Minutes Instruction to candidates: Students are permitted to bring into the examination

More information

BETWEEN PAPERS PRACTICE (F&H)

BETWEEN PAPERS PRACTICE (F&H) BETWEEN PAPERS PRACTICE (F&H) Summer 2018 QUESTIONS Not A best Guess paper. Neither is it a prediction... only the examiners know what is going to come up! Fact! You also need to REMEMBER that just because

More information

The University of Sydney Math1003 Integral Calculus and Modelling. Semester 2 Exercises and Solutions for Week

The University of Sydney Math1003 Integral Calculus and Modelling. Semester 2 Exercises and Solutions for Week The University of Sydney Math3 Integral Calculus and Modelling Semester 2 Exercises and Solutions for Week 2 2 Assumed Knowledge Sigma notation for sums. The ideas of a sequence of numbers and of the limit

More information

Advanced Placement Calculus

Advanced Placement Calculus Advanced Placement Calculus Additional Definite Integral Topics Average Value of a Function Definite Integral as an Accumulator Average Value Problems 1-3: Use the property m(b a) integrals...without integrating!

More information

*** Sorry...no solutions will be posted*** University of Toronto at Scarborough Department of Computer and Mathematical Sciences

*** Sorry...no solutions will be posted*** University of Toronto at Scarborough Department of Computer and Mathematical Sciences *** Sorry...no solutions will be posted*** University of Toronto at Scarborough Department of Computer and Mathematical Sciences FINAL EXAMINATION MATA32F - Calculus for Management I Examiners: N. Cheng

More information

1 /30. APPM 1235 Final Exam Fall 2014 December 17, /30 3 /25

1 /30. APPM 1235 Final Exam Fall 2014 December 17, /30 3 /25 Name Section # Page Score 1 /30 APPM 1235 Final Exam Fall 2014 December 17, 2014 AT THE TOP OF THE PAGE write your name and your section number. Textbooks, class notes and electronic devices of any kind

More information

Notes for exponential functions The week of March 6. Math 140

Notes for exponential functions The week of March 6. Math 140 Notes for exponential functions The week of March 6 Math 140 Exponential functions: formulas An exponential function has the formula f (t) = ab t, where b is a positive constant; a is the initial value

More information

Example (#1) Example (#1) Example (#2) Example (#2) dv dt

Example (#1) Example (#1) Example (#2) Example (#2) dv dt 1. Become familiar with a definition of and terminology involved with differential equations Calculus - Santowski. Solve differential equations with and without initial conditions 3. Apply differential

More information

Name: Block: Unit 2 Inequalities

Name: Block: Unit 2 Inequalities Name: Block: Unit 2 Inequalities 2.1 Graphing and Writing Inequalities 2.2 Solving by Adding and Subtracting 2.3 Solving by Multiplying and Dividing 2.4 Solving Two Step and Multi Step Inequalities 2.5

More information

Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary

Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary physicsandmathstutor.com Centre No. Candidate No. Paper Reference(s) 6683/01 Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary Friday 18 January 2013 Afternoon Time: 1 hour 30 minutes Materials required

More information

You identified, graphed, and described several parent functions. (Lesson 1-5)

You identified, graphed, and described several parent functions. (Lesson 1-5) You identified, graphed, and described several parent functions. (Lesson 1-5) Evaluate, analyze, and graph exponential functions. Solve problems involving exponential growth and decay. algebraic function

More information

Chapter 2 Functions and Graphs

Chapter 2 Functions and Graphs Chapter 2 Functions and Graphs Section 5 Exponential Functions Objectives for Section 2.5 Exponential Functions The student will be able to graph and identify the properties of exponential functions. The

More information

Two-Year Algebra 2 A Semester Exam Review

Two-Year Algebra 2 A Semester Exam Review Semester Eam Review Two-Year Algebra A Semester Eam Review 05 06 MCPS Page Semester Eam Review Eam Formulas General Eponential Equation: y ab Eponential Growth: A t A r 0 t Eponential Decay: A t A r Continuous

More information

Chapter 5 Review. 1. [No Calculator] Evaluate using the FTOC (the evaluation part) 2. [No Calculator] Evaluate using geometry

Chapter 5 Review. 1. [No Calculator] Evaluate using the FTOC (the evaluation part) 2. [No Calculator] Evaluate using geometry AP Calculus Chapter Review Name: Block:. [No Calculator] Evaluate using the FTOC (the evaluation part) a) 7 8 4 7 d b) 9 4 7 d. [No Calculator] Evaluate using geometry a) d c) 6 8 d. [No Calculator] Evaluate

More information

CfE Higher Mathematics Course Materials Topic 10: Logs and exponentials

CfE Higher Mathematics Course Materials Topic 10: Logs and exponentials SCHOLAR Study Guide CfE Higher Mathematics Course Materials Topic 10: Logs and exponentials Authored by: Margaret Ferguson Reviewed by: Jillian Hornby Previously authored by: Jane S Paterson Dorothy A

More information

Algebra II. Slide 1 / 261. Slide 2 / 261. Slide 3 / 261. Linear, Exponential and Logarithmic Functions. Table of Contents

Algebra II. Slide 1 / 261. Slide 2 / 261. Slide 3 / 261. Linear, Exponential and Logarithmic Functions. Table of Contents Slide 1 / 261 Algebra II Slide 2 / 261 Linear, Exponential and 2015-04-21 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 261 Linear Functions Exponential Functions Properties

More information

Mth 65 Section 3.4 through 3.6

Mth 65 Section 3.4 through 3.6 Section 3.4 Square Root Functions The key to identifying the equation of a square root function is that the independent variable is under the radical. Which functions are square root functions? g( x) x

More information

UNIT 4 MATHEMATICAL METHODS SAMPLE REFERENCE MATERIALS

UNIT 4 MATHEMATICAL METHODS SAMPLE REFERENCE MATERIALS UNIT 4 MATHEMATICAL METHODS SAMPLE REFERENCE MATERIALS EXTRACTS FROM THE ESSENTIALS EXAM REVISION LECTURES NOTES THAT ARE ISSUED TO STUDENTS Students attending our mathematics Essentials Year & Eam Revision

More information

IB Mathematics SL Topical Review. Algebra, Functions, and Equations

IB Mathematics SL Topical Review. Algebra, Functions, and Equations I Mathematics SL Topical Review All numbered problems are required and are to be worked ON YOUR OWN PAPER and turned in as specified on your assignment sheet. You must show your work. On questions marked

More information

motionalongastraightlinemotionalon gastraightlinemotionalongastraightli nemotionalongastraightlinemotional ongastraightlinemotionalongastraigh

motionalongastraightlinemotionalon gastraightlinemotionalongastraightli nemotionalongastraightlinemotional ongastraightlinemotionalongastraigh motionalongastraightlinemotionalon Additional Mathematics NR/GC/ Addmaths gastraightlinemotionalongastraightli nemotionalongastraightlinemotional ongastraightlinemotionalongastraigh MOTION ALONG A STRAIGHT

More information

INTERMEDIATE VALUE THEOREM

INTERMEDIATE VALUE THEOREM THE BIG 7 S INTERMEDIATE VALUE If f is a continuous function on a closed interval [a, b], and if k is any number between f(a) and f(b), where f(a) f(b), then there exists a number c in (a, b) such that

More information

Unit IV Derivatives 20 Hours Finish by Christmas

Unit IV Derivatives 20 Hours Finish by Christmas Unit IV Derivatives 20 Hours Finish by Christmas Calculus There two main streams of Calculus: Differentiation Integration Differentiation is used to find the rate of change of variables relative to one

More information

Unit IV Derivatives 20 Hours Finish by Christmas

Unit IV Derivatives 20 Hours Finish by Christmas Unit IV Derivatives 20 Hours Finish by Christmas Calculus There two main streams of Calculus: Differentiation Integration Differentiation is used to find the rate of change of variables relative to one

More information

Higher Mathematics Course Notes

Higher Mathematics Course Notes Higher Mathematics Course Notes Equation of a Line (i) Collinearity: (ii) Gradient: If points are collinear then they lie on the same straight line. i.e. to show that A, B and C are collinear, show that

More information

Level 3 Calculus, 2005

Level 3 Calculus, 2005 For Supervisor s 3 9 0 6 3 5 Level 3 Calculus, 2005 90635 Differentiate and use derivatives to solve problems Credits: Six 9.30 am Wednesday 16 November 2005 Check that the National Student Number (NSN)

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

Unit 2 Maths Methods (CAS) Exam

Unit 2 Maths Methods (CAS) Exam Name: Teacher: Unit Maths Methods (CAS) Exam 1 014 Monday November 17 (9.00-10.45am) Reading time: 15 Minutes Writing time: 90 Minutes Instruction to candidates: Students are permitted to bring into the

More information

B O. Year 12 Trial HSC Examination - Mathematics (2U) Question 2. Marks . 2. Simplify: (b) (c) Solve 2sinθ = 1

B O. Year 12 Trial HSC Examination - Mathematics (2U) Question 2. Marks . 2. Simplify: (b) (c) Solve 2sinθ = 1 Year Trial HSC Examination - Mathematics (U) 008 Question Solve for t: 7 4t >. Simplify: x 5 x +. 6 (c) Solve sinθ = for 0 θ. (d) Differentiate with respect to x: 6 y =. x y = x ln x. 5 (e) Evaluate +

More information

2016 HSC Mathematics Marking Guidelines

2016 HSC Mathematics Marking Guidelines 06 HSC Mathematics Marking Guidelines Section I Multiple-choice Answer Key Question Answer B C 3 B 4 A 5 B 6 A 7 A 8 D 9 C 0 D Section II Question (a) Provides correct sketch Identifies radius, or equivalent

More information

AP Calculus AB. Review for Test: Applications of Integration

AP Calculus AB. Review for Test: Applications of Integration Name Review for Test: Applications of Integration AP Calculus AB Test Topics: Mean Value Theorem for Integrals (section 4.4) Average Value of a Function (manipulation of MVT for Integrals) (section 4.4)

More information

Level 3 Calculus, 2017

Level 3 Calculus, 2017 91579 915790 3SUPERVISOR S Level 3 Calculus, 2017 91579 Apply integration methods in solving problems 9.30 a.m. Thursday 23 November 2017 Credits: Six Achievement Achievement with Merit Achievement with

More information

MATHEMATICAL METHODS (CAS) PILOT STUDY

MATHEMATICAL METHODS (CAS) PILOT STUDY Victorian CertiÞcate of Education 2005 SUPERVISOR TO ATTACH PROCESSING LABEL HERE STUDENT NUMBER Letter Figures Words MATHEMATICAL METHODS (CAS) PILOT STUDY Written examination 2 (Analysis task) Monday

More information

7.1 Integral as Net Change Calculus. What is the total distance traveled? What is the total displacement?

7.1 Integral as Net Change Calculus. What is the total distance traveled? What is the total displacement? 71 INTEGRAL AS NET CHANGE Distance versus Displacement We have already seen how the position of an object can be found by finding the integral of the velocity function The change in position is a displacement

More information

Mathematics Second Practice Test 1 Levels 6-8 Calculator not allowed

Mathematics Second Practice Test 1 Levels 6-8 Calculator not allowed Mathematics Second Practice Test 1 Levels 6-8 Calculator not allowed Please read this page, but do not open your booklet until your teacher tells you to start. Write your name and the name of your school

More information

v ( t ) = 5t 8, 0 t 3

v ( t ) = 5t 8, 0 t 3 Use the Fundamental Theorem of Calculus to evaluate the integral. 27 d 8 2 Use the Fundamental Theorem of Calculus to evaluate the integral. 6 cos d 6 The area of the region that lies to the right of the

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 2/3 UNIT (COMMON) Time allowed Three hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 2/3 UNIT (COMMON) Time allowed Three hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 998 MATHEMATICS / UNIT (COMMON) Time allowed Three hours (Plus 5 minutes reading time) DIRECTIONS TO CANDIDATES Attempt ALL questions. ALL questions are of equal value.

More information

sec x dx = ln sec x + tan x csc x dx = ln csc x cot x

sec x dx = ln sec x + tan x csc x dx = ln csc x cot x Name: Instructions: The exam will have eight problems. Make sure that your reasoning and your final answers are clear. Include labels and units when appropriate. No notes, books, or calculators are permitted

More information

1. Graph each of the given equations, state the domain and range, and specify all intercepts and symmetry. a) y 3x

1. Graph each of the given equations, state the domain and range, and specify all intercepts and symmetry. a) y 3x MATH 94 Final Exam Review. Graph each of the given equations, state the domain and range, and specify all intercepts and symmetry. a) y x b) y x 4 c) y x 4. Determine whether or not each of the following

More information

University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes

University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes Please complete this cover page with ALL CAPITAL LETTERS. Last name......................................................................................

More information

( ) - 4(x -3) ( ) 3 (2x -3) - (2x +12) ( x -1) 2 x -1) 2 (3x -1) - 2(x -1) Section 1: Algebra Review. Welcome to AP Calculus!

( ) - 4(x -3) ( ) 3 (2x -3) - (2x +12) ( x -1) 2 x -1) 2 (3x -1) - 2(x -1) Section 1: Algebra Review. Welcome to AP Calculus! Welcome to AP Calculus! Successful Calculus students must have a strong foundation in algebra and trigonometry. The following packet was designed to help you review your algebra skills in preparation for

More information

MATH 236 ELAC FALL 2017 CA 10 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MATH 236 ELAC FALL 2017 CA 10 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MATH 36 ELAC FALL 7 CA MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) In a certain country, the rate of increase of the population is proportional

More information

Module 8 Probability

Module 8 Probability Module 8 Probability Probability is an important part of modern mathematics and modern life, since so many things involve randomness. The ClassWiz is helpful for calculating probabilities, especially those

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) u = - x15 cos (x15) + C

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) u = - x15 cos (x15) + C AP Calculus AB Exam Review Differential Equations and Mathematical Modelling MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the general solution

More information

Section I Multiple Choice 45 questions. Section II Free Response 6 questions

Section I Multiple Choice 45 questions. Section II Free Response 6 questions Section I Multiple Choice 45 questions Each question = 1.2 points, 54 points total Part A: No calculator allowed 30 questions in 60 minutes = 2 minutes per question Part B: Calculator allowed 15 questions

More information

Unit 1 Maths Methods (CAS) Exam 2014 Thursday June pm

Unit 1 Maths Methods (CAS) Exam 2014 Thursday June pm Name: Teacher: Unit 1 Maths Methods (CAS) Exam 2014 Thursday June 5-1.50 pm Reading time: 10 Minutes Writing time: 80 Minutes Instruction to candidates: Students are permitted to bring into the examination

More information

Topic Subtopics Essential Knowledge (EK)

Topic Subtopics Essential Knowledge (EK) Unit/ Unit 1 Limits [BEAN] 1.1 Limits Graphically Define a limit (y value a function approaches) One sided limits. Easy if it s continuous. Tricky if there s a discontinuity. EK 1.1A1: Given a function,

More information

A2 MATHEMATICS HOMEWORK C3

A2 MATHEMATICS HOMEWORK C3 Name Teacher A2 MATHEMATICS HOMEWORK C3 Mathematics Department September 2016 Version 1 Contents Contents... 2 Introduction... 3 Week 1 Trigonometric Equations 1... 4 Week 2 Trigonometric Equations 2...

More information

Mathematics. Girraween High School

Mathematics. Girraween High School Girraween High School 06 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION Mathematics General Instructions Reading time - 5 minutes Working time - 3 hours Write using a black or blue pen Board - approved calculators

More information

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 HW#1 Name Unit 4B Logarithmic Functions HW #1 Algebra II Mrs. Dailey 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 2) If the graph of y =6 x is reflected

More information

Core Mathematics C12

Core Mathematics C12 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C12 Advanced Subsidiary Tuesday 10 January 2017 Morning Time: 2 hours

More information

MATHEMATICS. NORTH SYDNEY BOYS HIGH SCHOOL 2008 Trial HSC Examination STUDENT NUMBER:... QUESTION Total %

MATHEMATICS. NORTH SYDNEY BOYS HIGH SCHOOL 2008 Trial HSC Examination STUDENT NUMBER:... QUESTION Total % 008 Trial HSC Eamination MATHEMATICS General instructions Working time 3 hours. plus 5 minutes reading time) Write on the lined paper in the booklet provided. Each question is to commence on a new page.

More information

Section 6.8 Exponential Models; Newton's Law of Cooling; Logistic Models

Section 6.8 Exponential Models; Newton's Law of Cooling; Logistic Models Section 6.8 Exponential Models; Newton's Law of Cooling; Logistic Models 197 Objective #1: Find Equations of Populations that Obey the Law of Uninhibited Growth. In the last section, we saw that when interest

More information

Math 1313 Experiments, Events and Sample Spaces

Math 1313 Experiments, Events and Sample Spaces Math 1313 Experiments, Events and Sample Spaces At the end of this recording, you should be able to define and use the basic terminology used in defining experiments. Terminology The next main topic in

More information

8.1 Apply Exponent Properties Involving Products. Learning Outcome To use properties of exponents involving products

8.1 Apply Exponent Properties Involving Products. Learning Outcome To use properties of exponents involving products 8.1 Apply Exponent Properties Involving Products Learning Outcome To use properties of exponents involving products Product of Powers Property Let a be a real number, and let m and n be positive integers.

More information

Newington College Mathematics Trial HSC 2012 (D) 2 2

Newington College Mathematics Trial HSC 2012 (D) 2 2 Section I Attempt Questions 1-10 All questions are equal value. Use the multiple choice answer sheet for Questions 1-10 1 Evaluated to three significant figures, 1 e 0.1 is (A) 0.095 (B) 0.095 (C) 0.0951

More information

5.3 Interpretations of the Definite Integral Student Notes

5.3 Interpretations of the Definite Integral Student Notes 5. Interpretations of the Definite Integral Student Notes The Total Change Theorem: The integral of a rate of change is the total change: a b F This theorem is used in many applications. xdx Fb Fa Example

More information

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4 Limits and Continuity t+ 1. lim t - t + 4. lim x x x x + - 9-18 x-. lim x 0 4-x- x 4. sinq lim - q q 5. Find the horizontal asymptote (s) of 7x-18 f ( x) = x+ 8 Summer Packet AP Calculus BC Page 4 6. x

More information

Math 493 Final Exam December 01

Math 493 Final Exam December 01 Math 493 Final Exam December 01 NAME: ID NUMBER: Return your blue book to my office or the Math Department office by Noon on Tuesday 11 th. On all parts after the first show enough work in your exam booklet

More information

Mathematics 105 Calculus I. December 11, 2008

Mathematics 105 Calculus I. December 11, 2008 Mathematics 105 Calculus I FINAL EXAM December 11, 2008 Your Name: There are 9 problems in this exam. Please complete only eight, clearly crossing out the one you do not wish to be graded. If you do not

More information

Motion Part 2: Uniform Linear Motion

Motion Part 2: Uniform Linear Motion Motion Part 2: Uniform Linear Motion Last modified: 13/03/2018 Links Motion Quantities Uniform Velocity in One Dimension Uniform Acceleration in One Dimension Notation Extra Equations Uniform Acceleration

More information

Applications of Exponential Functions Group Activity 7 STEM Project Week #10

Applications of Exponential Functions Group Activity 7 STEM Project Week #10 Applications of Exponential Functions Group Activity 7 STEM Project Week #10 In the last activity we looked at exponential functions. We looked at an example of a population growing at a certain rate.

More information

AP Calculus Prep Session Handout. Table Problems

AP Calculus Prep Session Handout. Table Problems AP Calculus Prep Session Handout The AP Calculus Exams include multiple choice and free response questions in which the stem of the question includes a table of numerical information from which the students

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes Paper Reference(s) 6664/01 Edexcel GCE Core Mathematics C Silver Level S4 Time: 1 hour 0 minutes Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil

More information