P -spline ANOVA-type interaction models for spatio-temporal smoothing

Size: px
Start display at page:

Download "P -spline ANOVA-type interaction models for spatio-temporal smoothing"

Transcription

1 P -spline ANOVA-type interaction models for spatio-temporal smoothing Dae-Jin Lee 1 and María Durbán 1 1 Department of Statistics, Universidad Carlos III de Madrid, SPAIN. dae-jin.lee@uc3m.es and mdurban@est-econ.uc3m.es Abstract: In recent years, spatial and spatio-temporal modelling have become an important area of research in many fields (epidemiology, environmental studies, disease mapping,...). However, most of the models developed are constrained by the large amounts of data available. We propose the use of Penalized splines (P -splines) in a mixed model framework for smoothing spatio-temporal data. Our approach allows the consideration of interaction terms which can be decomposed as a sum of smooth functions similarly as an ANOVA decomposition. The properties of the basis used for regression allow the use of algorithms that can handle large amount of data. We show that imposing the same constraints as in a factorial design it is possible to avoid identifiability problems. We illustrate the methodology for Europe ozone levels in the period Keywords: P -splines; Mixed Models; Spatio-temporal data; space-time interactions; Smooth-ANOVA models. 1 Spatio-temporal smoothing with P -splines Suppose we have normal spatio-temporal data which are located in geographical locations, s = (x 1, x 2 ), and measured over time periods, x t. The response y ijt is then indexed in their spatial locations and over time. A smooth model for the data would be given by: y = Bθ + ɛ, ɛ N (0, σ 2 I), (1) where θ is the vector of coefficients, and B is a regression basis constructed from B-spline basis products. Currie et al. (2006) developed an approach based on Kronecker products, known as generalized linear array methods (GLAM) for data in a grid. When data are scattered (as is the case of spatial data), Eilers et al. (2006) proposed the use of the row-wise Kronecker or box-product of individual basis (denoted as ). Most of the common approaches in spatio-temporal smoothing assume an additive function for the temporal dimension, ignoring the interaction between space and time (MacNab, 2001; Kneib, 2006). This formulation implies a spatio-temporal covariance structure given by separable terms for a

2 2 P -spline ANOVA models for spatio-temporal smoothing spatial and temporal components respectively. This could be too simplistic in some situations. As an alternative, we propose non-separable models of the form: ŷ = f(x 1, x 2, x t ), (2) which explicitly considers the interaction between space and time. The regression basis for a 3d interaction model (2) is: B = (B 1 B 2 ) s B t = B s B t, nt c 1 c 2 c 3, (3) where B 1, B 2 and B t are the marginal B-spline basis of dimensions n c 1, n c 2 and t c 3 respectively. Model (2) and basis given by (3) can easily be set into GLAM framework. We can express the data in a compact notation replacing y of length nt 1 by the matrix Y of dimension n t and the coefficient vector θ of length c 1 c 2 c 3 1 by an array of coefficients Θ, of dimension c 1 c 2 c 3. In matrix notation, the model can be written as E[Y ] = B t ΘB s (4) Smoothness is imposed via the penalty matrix P based on second order difference matrices D 1, D 2 and D t. The penalty term in 3-dimensions is: P = λ 1 D 1D 1 I c2 I c3 +λ 2 I c1 D 2D 2 I c3 +λ t I c1 I c2 D td t, (5) which implies placing penalties over each dimension of the array Θ. For the spatio-temporal case, the penalty (5) allows spatial anisotropy considering a different amount of smoothing for longitude and latitude (λ 1 λ 2 ) and for the temporal component (λ t ). The mixed model representation of P -splines consists in setting a new basis which allows the reparameterization of (1) and its associated penalty into a mixed model of the form: y = Xβ + Zα + ɛ, α N (0, G), and ɛ N (0, σ 2 I), (6) where G is a diagonal matrix which depends on the smoothing parameters λ 1, λ 2 and λ t. Following a similar approach to Currie et al. (2006), and using the properties of the Kronecker and row-wise Kronecker products it can be shown that using the singular value decomposition (SVD) of (5) the penalty becomes block-diagonal and basis and coefficients are reparameterized into: B [X : Z] and θ (β : α ). 2 Smooth-ANOVA decomposition models Sometimes the interest lies in fitting complex models with functional form given by ŷ = f 1 (x 1 ) + f 2 (x 2 ) + f 3 (x 3 ) + f 1,2 (x 1, x 2 ) + f 1,2,3 (x 1, x 2, x 3 ), (7)

3 D.-J. Lee and M. Durbán 3 where f 1, f 2 and f 3 are smooth functions for the main effects (x 1, x 2 and x 3 ), f 1,2 the 2d-interaction effects for (x 1, x 2 ) and f 1,2,3 the 3d-interaction effects. Chen (1993) proposed Smoothing Spline Analysis-of-Variance (SS- ANOVA) decompositions to model main effects and interactions which can be interpreted as in classical ANOVA. In contrast, the approach presented in this paper allow a more computationally efficient methodology based on low-rank Penalized splines. Wood (2006) also considers smooth-anova decompositions with P -splines, and notes the need of imposing constraints to maintain the model identifiability. However, the way how these constraints are imposed and how the basis for each component of the decomposition are constructed are not clear. In this paper we use the properties of the SVD of the penalty (5) and show how to fit each component of the model and establish an intuitive connection with the usual ANOVA. In the case of spatio-temporal data this interpretation may be very useful, since we can model not only main effects of latitude and longitude, (or other covariates effects) but also the spatial effects (2-way interactions) and specially the interaction between space and time (3-way interactions). The basis X and Z of the mixed model representation can be expanded to allow the representation of the 3d model as the sum of smooth main and interaction terms as in (7). However, this representation does not account for independent and separate penalties since we have 3 smoothing parameters λ 1, λ 2 and λ t for each of the dimensions of the model, with penalty matrix given in (5), but we do not allow separate parameters for interaction terms. Alternatively, ANOVA-type models which explicitly consider different amount of smoothing for each smooth function in (7) can be considered. The corresponding new B-splines regression matrix would not be of full rank, given the linearly dependent columns, and the model would not be identifiable. The identifiability problem can be avoided by removing the columns of the basis of f(x 1 ) which are repeated in those for f(x 1, x 2 ) and f(x 1, x 2, x 3 ) and so on. Therefore, we need to impose constraints so that the model (7) is identifiable. We demonstrate that these constraints are applied on the P -spline regression coefficients θ, and are exactly equivalent to those applied in a 3-way factorial design, i.e. Main Effects: 2-Way Interactions: 3-Way Interactions: i i,j θ (1) i θ (12) ij = j = i,t i,j,t θ (2) j θ (23) ik = t = j,t θ (3) t = 0 (8) θ (13) jt = 0 (9) θ (123) ijt = 0 (10)

4 4 P -spline ANOVA models for spatio-temporal smoothing (b) Smoothed spatial trend for Dec (c) Ozone levels for selected locations (d) Smoothed temporal trend for selected locations O Spain Finland France UK f(time) Spain Finland France UK time time FIGURE 1. 3d P -spline model: (a) spatial trend for June 1999, (b) spatial trend for december The symbol denotes the stations where monthly average measurements are available for period , and the stations with missing data. (c) Time series plot of a sample of stations of four countries which reflects the seasonality and temporal patterns in the data. (d) Smoothed temporal trends for the four stations selected. The vertical solid line corresponds to June 1999 and the dashed line to December Application to ozone levels in Europe We apply the methodology proposed to the analysis of air pollution by ozone levels (in ug/m3 units) over Europe from 1999 to The data set are collected by the EMEP monitoring network which includes 126 stations in 28 countries. The ozone data are reported hourly in each monitoring station. We consider monthly averages in a regular temporal pat-

5 D.-J. Lee and M. Durbán 5 tern, but due to limited number of sites available, we selected a sample of 70 monitoring stations covering 15 countries. Data can be obtained at and further information and annual reports about air pollution trends are available in the European Environmental Agency (EEA) web site ( We fitted a 2d P -spline model for the spatial component with an additive smooth function for time which does not considers space-time interaction, i.e. f(x 1, x 2 ) + f(x t ), and 3d P -spline interaction model (2). In addition, P -spline ANOVA models were fitted considering the appropiate constraints proposed in the previous section depending on the interaction terms included in the model. The model selection criteria was the Akaike Information Criteria (AIC). In general, better AIC results were obtained for interaction models. Figure 1 shows the results for the 3d space-time interaction model: (a) and (b) are the fitted spatial trends for two periods (June and December of 1999). It can be noticed the different spatial trend pattern and also the different overall level in each period, reflecting a seasonal variation which is very common in environmental data. Figure 1(c) show this cyclic pattern in the data for selected monitoring stations in Spain, Finland, France and the UK. As reported by the EEA for ozone levels, summer periods show the highest values in contrast to winter months. Finally, Figure 1(d) shows the smooth function for time covariate, i.e f(x t ), for the four selected stations. Concluding remarks We presented a computationally efficient methodology for multidimensional smoothing. The ANOVA-Type models present an attractive alternative due to their interpretability in terms of decompositions of smooth functions and basis which are identifiable. From our P -spline approach, the mixed model representation and the decomposition of the basis used, allow more flexibility in contrast to existing SS-ANOVA models. The analysis of the ozone level data showed that a model where the time dimension is additive could ignore important features in the data. References Chen, Z. (1993). Fitting Multivariate Regression Functions by Interactions Spline Models. J. R. Statist. Soc. B, 55, Currie, I. D., Durbán, M. and Eilers, P. H. C. (2006). Generalized linear array models with applications to multidimensional smoothing. J. R. Statist. Soc. B, 68, Eilers, P. H. C. and Marx, B. D. (1996). Flexible Smoothing with B-Splines and Penalties. Statistical Science,11,

6 6 P -spline ANOVA models for spatio-temporal smoothing Eilers, P. H. C., Currie, I. D., and Durbán, M. (2006). Fast and compact smoothing on large multidimensional grids. Computational Statistics & Data Analysis, 50(1), Gu, C. (2002). Smoothing Spline ANOVA Models. Springer, New York. Kneib, T. and Fahrmeir, L. (2006). Structured Additive Regression for Categorical Space-Time Data: A Mixed Model Approach. Biometrics, 62, MacNab, Y. C. and Dean, C.B. (2001). Autoregressive Spatial Smoothing and Temporal Spline Smoothing for Mapping Rates. Biometrics, 57, Wood, S. N. (2006). Low-Rank Scale-Invariant Tensor Product Smooths for Generalized Additive Mixed Models. Biometrics, 62,

Flexible Spatio-temporal smoothing with array methods

Flexible Spatio-temporal smoothing with array methods Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS046) p.849 Flexible Spatio-temporal smoothing with array methods Dae-Jin Lee CSIRO, Mathematics, Informatics and

More information

Space-time modelling of air pollution with array methods

Space-time modelling of air pollution with array methods Space-time modelling of air pollution with array methods Dae-Jin Lee Royal Statistical Society Conference Edinburgh 2009 D.-J. Lee (Uc3m) GLAM: Array methods in Statistics RSS 09 - Edinburgh # 1 Motivation

More information

GLAM An Introduction to Array Methods in Statistics

GLAM An Introduction to Array Methods in Statistics GLAM An Introduction to Array Methods in Statistics Iain Currie Heriot Watt University GLAM A Generalized Linear Array Model is a low-storage, high-speed, method for multidimensional smoothing, when data

More information

Currie, Iain Heriot-Watt University, Department of Actuarial Mathematics & Statistics Edinburgh EH14 4AS, UK

Currie, Iain Heriot-Watt University, Department of Actuarial Mathematics & Statistics Edinburgh EH14 4AS, UK An Introduction to Generalized Linear Array Models Currie, Iain Heriot-Watt University, Department of Actuarial Mathematics & Statistics Edinburgh EH14 4AS, UK E-mail: I.D.Currie@hw.ac.uk 1 Motivating

More information

Multidimensional Density Smoothing with P-splines

Multidimensional Density Smoothing with P-splines Multidimensional Density Smoothing with P-splines Paul H.C. Eilers, Brian D. Marx 1 Department of Medical Statistics, Leiden University Medical Center, 300 RC, Leiden, The Netherlands (p.eilers@lumc.nl)

More information

Using P-splines to smooth two-dimensional Poisson data

Using P-splines to smooth two-dimensional Poisson data 1 Using P-splines to smooth two-dimensional Poisson data Maria Durbán 1, Iain Currie 2, Paul Eilers 3 17th IWSM, July 2002. 1 Dept. Statistics and Econometrics, Universidad Carlos III de Madrid, Spain.

More information

A Hierarchical Perspective on Lee-Carter Models

A Hierarchical Perspective on Lee-Carter Models A Hierarchical Perspective on Lee-Carter Models Paul Eilers Leiden University Medical Centre L-C Workshop, Edinburgh 24 The vantage point Previous presentation: Iain Currie led you upward From Glen Gumbel

More information

Spatio-Temporal Expectile Regression Models

Spatio-Temporal Expectile Regression Models Spatio-Temporal Expectile Regression Models Elmar Spiegel University of Goettingen Abstract Spatio-temporal models are becoming increasingly popular in recent regression research. However, they usually

More information

Functional SVD for Big Data

Functional SVD for Big Data Functional SVD for Big Data Pan Chao April 23, 2014 Pan Chao Functional SVD for Big Data April 23, 2014 1 / 24 Outline 1 One-Way Functional SVD a) Interpretation b) Robustness c) CV/GCV 2 Two-Way Problem

More information

Kneib, Fahrmeir: Supplement to "Structured additive regression for categorical space-time data: A mixed model approach"

Kneib, Fahrmeir: Supplement to Structured additive regression for categorical space-time data: A mixed model approach Kneib, Fahrmeir: Supplement to "Structured additive regression for categorical space-time data: A mixed model approach" Sonderforschungsbereich 386, Paper 43 (25) Online unter: http://epub.ub.uni-muenchen.de/

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

Variable Selection and Model Choice in Survival Models with Time-Varying Effects

Variable Selection and Model Choice in Survival Models with Time-Varying Effects Variable Selection and Model Choice in Survival Models with Time-Varying Effects Boosting Survival Models Benjamin Hofner 1 Department of Medical Informatics, Biometry and Epidemiology (IMBE) Friedrich-Alexander-Universität

More information

Partial factor modeling: predictor-dependent shrinkage for linear regression

Partial factor modeling: predictor-dependent shrinkage for linear regression modeling: predictor-dependent shrinkage for linear Richard Hahn, Carlos Carvalho and Sayan Mukherjee JASA 2013 Review by Esther Salazar Duke University December, 2013 Factor framework The factor framework

More information

Linear Algebra Review

Linear Algebra Review Linear Algebra Review Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Linear Algebra Review 1 / 45 Definition of Matrix Rectangular array of elements arranged in rows and

More information

Functional responses, functional covariates and the concurrent model

Functional responses, functional covariates and the concurrent model Functional responses, functional covariates and the concurrent model Page 1 of 14 1. Predicting precipitation profiles from temperature curves Precipitation is much harder to predict than temperature.

More information

Properties of Matrices and Operations on Matrices

Properties of Matrices and Operations on Matrices Properties of Matrices and Operations on Matrices A common data structure for statistical analysis is a rectangular array or matris. Rows represent individual observational units, or just observations,

More information

MULTIDIMENSIONAL COVARIATE EFFECTS IN SPATIAL AND JOINT EXTREMES

MULTIDIMENSIONAL COVARIATE EFFECTS IN SPATIAL AND JOINT EXTREMES MULTIDIMENSIONAL COVARIATE EFFECTS IN SPATIAL AND JOINT EXTREMES Philip Jonathan, Kevin Ewans, David Randell, Yanyun Wu philip.jonathan@shell.com www.lancs.ac.uk/ jonathan Wave Hindcasting & Forecasting

More information

Estimating prediction error in mixed models

Estimating prediction error in mixed models Estimating prediction error in mixed models benjamin saefken, thomas kneib georg-august university goettingen sonja greven ludwig-maximilians-university munich 1 / 12 GLMM - Generalized linear mixed models

More information

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept,

Linear Regression. In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, Linear Regression In this problem sheet, we consider the problem of linear regression with p predictors and one intercept, y = Xβ + ɛ, where y t = (y 1,..., y n ) is the column vector of target values,

More information

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models

Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Technical Vignette 5: Understanding intrinsic Gaussian Markov random field spatial models, including intrinsic conditional autoregressive models Christopher Paciorek, Department of Statistics, University

More information

Recovering Indirect Information in Demographic Applications

Recovering Indirect Information in Demographic Applications Recovering Indirect Information in Demographic Applications Jutta Gampe Abstract In many demographic applications the information of interest can only be estimated indirectly. Modelling events and rates

More information

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University

Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University Nonstationary spatial process modeling Part II Paul D. Sampson --- Catherine Calder Univ of Washington --- Ohio State University this presentation derived from that presented at the Pan-American Advanced

More information

Spatial bias modeling with application to assessing remotely-sensed aerosol as a proxy for particulate matter

Spatial bias modeling with application to assessing remotely-sensed aerosol as a proxy for particulate matter Spatial bias modeling with application to assessing remotely-sensed aerosol as a proxy for particulate matter Chris Paciorek Department of Biostatistics Harvard School of Public Health application joint

More information

Bayesian covariate models in extreme value analysis

Bayesian covariate models in extreme value analysis Bayesian covariate models in extreme value analysis David Randell, Philip Jonathan, Kathryn Turnbull, Mathew Jones EVA 2015 Ann Arbor Copyright 2015 Shell Global Solutions (UK) EVA 2015 Ann Arbor June

More information

Spatiotemporal smoothing and sulphur dioxide trends over Europe

Spatiotemporal smoothing and sulphur dioxide trends over Europe Appl. Statist. (2009) 58, Part 5, pp. 737 752 Spatiotemporal smoothing and sulphur dioxide trends over Europe Adrian W. Bowman, University of Glasgow, UK Marco Giannitrapani Shell Global Solutions International,

More information

Chapter 5 Matrix Approach to Simple Linear Regression

Chapter 5 Matrix Approach to Simple Linear Regression STAT 525 SPRING 2018 Chapter 5 Matrix Approach to Simple Linear Regression Professor Min Zhang Matrix Collection of elements arranged in rows and columns Elements will be numbers or symbols For example:

More information

Spatial Process Estimates as Smoothers: A Review

Spatial Process Estimates as Smoothers: A Review Spatial Process Estimates as Smoothers: A Review Soutir Bandyopadhyay 1 Basic Model The observational model considered here has the form Y i = f(x i ) + ɛ i, for 1 i n. (1.1) where Y i is the observed

More information

STATISTICS 174: APPLIED STATISTICS FINAL EXAM DECEMBER 10, 2002

STATISTICS 174: APPLIED STATISTICS FINAL EXAM DECEMBER 10, 2002 Time allowed: 3 HOURS. STATISTICS 174: APPLIED STATISTICS FINAL EXAM DECEMBER 10, 2002 This is an open book exam: all course notes and the text are allowed, and you are expected to use your own calculator.

More information

A general mixed model approach for spatio-temporal regression data

A general mixed model approach for spatio-temporal regression data A general mixed model approach for spatio-temporal regression data Thomas Kneib, Ludwig Fahrmeir & Stefan Lang Department of Statistics, Ludwig-Maximilians-University Munich 1. Spatio-temporal regression

More information

Regression. Oscar García

Regression. Oscar García Regression Oscar García Regression methods are fundamental in Forest Mensuration For a more concise and general presentation, we shall first review some matrix concepts 1 Matrices An order n m matrix is

More information

Optimization Problems

Optimization Problems Optimization Problems The goal in an optimization problem is to find the point at which the minimum (or maximum) of a real, scalar function f occurs and, usually, to find the value of the function at that

More information

Regression Analysis. Regression: Methodology for studying the relationship among two or more variables

Regression Analysis. Regression: Methodology for studying the relationship among two or more variables Regression Analysis Regression: Methodology for studying the relationship among two or more variables Two major aims: Determine an appropriate model for the relationship between the variables Predict the

More information

Using Estimating Equations for Spatially Correlated A

Using Estimating Equations for Spatially Correlated A Using Estimating Equations for Spatially Correlated Areal Data December 8, 2009 Introduction GEEs Spatial Estimating Equations Implementation Simulation Conclusion Typical Problem Assess the relationship

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model

Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model Restricted Maximum Likelihood in Linear Regression and Linear Mixed-Effects Model Xiuming Zhang zhangxiuming@u.nus.edu A*STAR-NUS Clinical Imaging Research Center October, 015 Summary This report derives

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Alan Gelfand 1 and Andrew O. Finley 2 1 Department of Statistical Science, Duke University, Durham, North

More information

arxiv: v4 [stat.me] 14 Sep 2015

arxiv: v4 [stat.me] 14 Sep 2015 Does non-stationary spatial data always require non-stationary random fields? Geir-Arne Fuglstad 1, Daniel Simpson 1, Finn Lindgren 2, and Håvard Rue 1 1 Department of Mathematical Sciences, NTNU, Norway

More information

NETLAKE toolbox for the analysis of high-frequency data from lakes

NETLAKE toolbox for the analysis of high-frequency data from lakes NETLAKE toolbox for the analysis of high-frequency data from lakes Factsheet #10 Pattern detection using Dynamic Factor Analysis (DFA) Rosana Aguilera and Rafael Marcé Objective One of the main applications

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota,

More information

Linear Algebra (Review) Volker Tresp 2018

Linear Algebra (Review) Volker Tresp 2018 Linear Algebra (Review) Volker Tresp 2018 1 Vectors k, M, N are scalars A one-dimensional array c is a column vector. Thus in two dimensions, ( ) c1 c = c 2 c i is the i-th component of c c T = (c 1, c

More information

Consistent Bivariate Distribution

Consistent Bivariate Distribution A Characterization of the Normal Conditional Distributions MATSUNO 79 Therefore, the function ( ) = G( : a/(1 b2)) = N(0, a/(1 b2)) is a solu- tion for the integral equation (10). The constant times of

More information

of the 7 stations. In case the number of daily ozone maxima in a month is less than 15, the corresponding monthly mean was not computed, being treated

of the 7 stations. In case the number of daily ozone maxima in a month is less than 15, the corresponding monthly mean was not computed, being treated Spatial Trends and Spatial Extremes in South Korean Ozone Seokhoon Yun University of Suwon, Department of Applied Statistics Suwon, Kyonggi-do 445-74 South Korea syun@mail.suwon.ac.kr Richard L. Smith

More information

Missing Data Issues in the Studies of Neurodegenerative Disorders: the Methodology

Missing Data Issues in the Studies of Neurodegenerative Disorders: the Methodology Missing Data Issues in the Studies of Neurodegenerative Disorders: the Methodology Sheng Luo, PhD Associate Professor Department of Biostatistics & Bioinformatics Duke University Medical Center sheng.luo@duke.edu

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley 1 and Sudipto Banerjee 2 1 Department of Forestry & Department of Geography, Michigan

More information

A short introduction to INLA and R-INLA

A short introduction to INLA and R-INLA A short introduction to INLA and R-INLA Integrated Nested Laplace Approximation Thomas Opitz, BioSP, INRA Avignon Workshop: Theory and practice of INLA and SPDE November 7, 2018 2/21 Plan for this talk

More information

Trends in Human Development Index of European Union

Trends in Human Development Index of European Union Trends in Human Development Index of European Union Department of Statistics, Hacettepe University, Beytepe, Ankara, Turkey spxl@hacettepe.edu.tr, deryacal@hacettepe.edu.tr Abstract: The Human Development

More information

Predicting Long-term Exposures for Health Effect Studies

Predicting Long-term Exposures for Health Effect Studies Predicting Long-term Exposures for Health Effect Studies Lianne Sheppard Adam A. Szpiro, Johan Lindström, Paul D. Sampson and the MESA Air team University of Washington CMAS Special Session, October 13,

More information

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes

Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Bayesian dynamic modeling for large space-time weather datasets using Gaussian predictive processes Andrew O. Finley Department of Forestry & Department of Geography, Michigan State University, Lansing

More information

Math 671: Tensor Train decomposition methods

Math 671: Tensor Train decomposition methods Math 671: Eduardo Corona 1 1 University of Michigan at Ann Arbor December 8, 2016 Table of Contents 1 Preliminaries and goal 2 Unfolding matrices for tensorized arrays The Tensor Train decomposition 3

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form Topic 7 - Matrix Approach to Simple Linear Regression Review of Matrices Outline Regression model in matrix form - Fall 03 Calculations using matrices Topic 7 Matrix Collection of elements arranged in

More information

An application of the GAM-PCA-VAR model to respiratory disease and air pollution data

An application of the GAM-PCA-VAR model to respiratory disease and air pollution data An application of the GAM-PCA-VAR model to respiratory disease and air pollution data Márton Ispány 1 Faculty of Informatics, University of Debrecen Hungary Joint work with Juliana Bottoni de Souza, Valdério

More information

Chapter 3: Regression Methods for Trends

Chapter 3: Regression Methods for Trends Chapter 3: Regression Methods for Trends Time series exhibiting trends over time have a mean function that is some simple function (not necessarily constant) of time. The example random walk graph from

More information

Variable Selection for Generalized Additive Mixed Models by Likelihood-based Boosting

Variable Selection for Generalized Additive Mixed Models by Likelihood-based Boosting Variable Selection for Generalized Additive Mixed Models by Likelihood-based Boosting Andreas Groll 1 and Gerhard Tutz 2 1 Department of Statistics, University of Munich, Akademiestrasse 1, D-80799, Munich,

More information

COS 424: Interacting with Data

COS 424: Interacting with Data COS 424: Interacting with Data Lecturer: Rob Schapire Lecture #14 Scribe: Zia Khan April 3, 2007 Recall from previous lecture that in regression we are trying to predict a real value given our data. Specically,

More information

Introduction to Smoothing spline ANOVA models (metamodelling)

Introduction to Smoothing spline ANOVA models (metamodelling) Introduction to Smoothing spline ANOVA models (metamodelling) M. Ratto DYNARE Summer School, Paris, June 215. Joint Research Centre www.jrc.ec.europa.eu Serving society Stimulating innovation Supporting

More information

An Introduction to GAMs based on penalized regression splines. Simon Wood Mathematical Sciences, University of Bath, U.K.

An Introduction to GAMs based on penalized regression splines. Simon Wood Mathematical Sciences, University of Bath, U.K. An Introduction to GAMs based on penalied regression splines Simon Wood Mathematical Sciences, University of Bath, U.K. Generalied Additive Models (GAM) A GAM has a form something like: g{e(y i )} = η

More information

A Short Introduction to the Lasso Methodology

A Short Introduction to the Lasso Methodology A Short Introduction to the Lasso Methodology Michael Gutmann sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology March 9, 2016 Michael

More information

Estimation of cumulative distribution function with spline functions

Estimation of cumulative distribution function with spline functions INTERNATIONAL JOURNAL OF ECONOMICS AND STATISTICS Volume 5, 017 Estimation of cumulative distribution function with functions Akhlitdin Nizamitdinov, Aladdin Shamilov Abstract The estimation of the cumulative

More information

Spatio-temporal modelling of daily air temperature in Catalonia

Spatio-temporal modelling of daily air temperature in Catalonia Spatio-temporal modelling of daily air temperature in Catalonia M. Saez 1,, M.A. Barceló 1,, A. Tobias 3, D. Varga 1,4 and R. Ocaña-Riola 5 1 Research Group on Statistics, Applied Economics and Health

More information

2. Matrix Algebra and Random Vectors

2. Matrix Algebra and Random Vectors 2. Matrix Algebra and Random Vectors 2.1 Introduction Multivariate data can be conveniently display as array of numbers. In general, a rectangular array of numbers with, for instance, n rows and p columns

More information

Matrix-Product-States/ Tensor-Trains

Matrix-Product-States/ Tensor-Trains / Tensor-Trains November 22, 2016 / Tensor-Trains 1 Matrices What Can We Do With Matrices? Tensors What Can We Do With Tensors? Diagrammatic Notation 2 Singular-Value-Decomposition 3 Curse of Dimensionality

More information

Bayesian Inference. Chapter 4: Regression and Hierarchical Models

Bayesian Inference. Chapter 4: Regression and Hierarchical Models Bayesian Inference Chapter 4: Regression and Hierarchical Models Conchi Ausín and Mike Wiper Department of Statistics Universidad Carlos III de Madrid Advanced Statistics and Data Mining Summer School

More information

More Linear Algebra. Edps/Soc 584, Psych 594. Carolyn J. Anderson

More Linear Algebra. Edps/Soc 584, Psych 594. Carolyn J. Anderson More Linear Algebra Edps/Soc 584, Psych 594 Carolyn J. Anderson Department of Educational Psychology I L L I N O I S university of illinois at urbana-champaign c Board of Trustees, University of Illinois

More information

20.1. Balanced One-Way Classification Cell means parametrization: ε 1. ε I. + ˆɛ 2 ij =

20.1. Balanced One-Way Classification Cell means parametrization: ε 1. ε I. + ˆɛ 2 ij = 20. ONE-WAY ANALYSIS OF VARIANCE 1 20.1. Balanced One-Way Classification Cell means parametrization: Y ij = µ i + ε ij, i = 1,..., I; j = 1,..., J, ε ij N(0, σ 2 ), In matrix form, Y = Xβ + ε, or 1 Y J

More information

Matrices and vectors A matrix is a rectangular array of numbers. Here s an example: A =

Matrices and vectors A matrix is a rectangular array of numbers. Here s an example: A = Matrices and vectors A matrix is a rectangular array of numbers Here s an example: 23 14 17 A = 225 0 2 This matrix has dimensions 2 3 The number of rows is first, then the number of columns We can write

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Nonparametric Small Area Estimation via M-quantile Regression using Penalized Splines

Nonparametric Small Area Estimation via M-quantile Regression using Penalized Splines Nonparametric Small Estimation via M-quantile Regression using Penalized Splines Monica Pratesi 10 August 2008 Abstract The demand of reliable statistics for small areas, when only reduced sizes of the

More information

Chapter 3 Best Linear Unbiased Estimation

Chapter 3 Best Linear Unbiased Estimation Chapter 3 Best Linear Unbiased Estimation C R Henderson 1984 - Guelph In Chapter 2 we discussed linear unbiased estimation of k β, having determined that it is estimable Let the estimate be a y, and if

More information

Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices

Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices Article Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices Fei Jin 1,2 and Lung-fei Lee 3, * 1 School of Economics, Shanghai University of Finance and Economics,

More information

Estimating the long-term health impact of air pollution using spatial ecological studies. Duncan Lee

Estimating the long-term health impact of air pollution using spatial ecological studies. Duncan Lee Estimating the long-term health impact of air pollution using spatial ecological studies Duncan Lee EPSRC and RSS workshop 12th September 2014 Acknowledgements This is joint work with Alastair Rushworth

More information

Spatial smoothing using Gaussian processes

Spatial smoothing using Gaussian processes Spatial smoothing using Gaussian processes Chris Paciorek paciorek@hsph.harvard.edu August 5, 2004 1 OUTLINE Spatial smoothing and Gaussian processes Covariance modelling Nonstationary covariance modelling

More information

PANEL DATA RANDOM AND FIXED EFFECTS MODEL. Professor Menelaos Karanasos. December Panel Data (Institute) PANEL DATA December / 1

PANEL DATA RANDOM AND FIXED EFFECTS MODEL. Professor Menelaos Karanasos. December Panel Data (Institute) PANEL DATA December / 1 PANEL DATA RANDOM AND FIXED EFFECTS MODEL Professor Menelaos Karanasos December 2011 PANEL DATA Notation y it is the value of the dependent variable for cross-section unit i at time t where i = 1,...,

More information

Modeling daily precipitation in Space and Time

Modeling daily precipitation in Space and Time Space and Time SWGen - Hydro Berlin 20 September 2017 temporal - dependence Outline temporal - dependence temporal - dependence Stochastic Weather Generator Stochastic Weather Generator (SWG) is a stochastic

More information

Modelling spatial patterns of distribution and abundance of mussel seed using Structured Additive Regression models

Modelling spatial patterns of distribution and abundance of mussel seed using Structured Additive Regression models Statistics & Operations Research Transactions SORT 34 (1) January-June 2010, 67-78 ISSN: 1696-2281 www.idescat.net/sort Statistics & Operations Research c Institut d Estadística de Catalunya Transactions

More information

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures FE661 - Statistical Methods for Financial Engineering 9. Model Selection Jitkomut Songsiri statistical models overview of model selection information criteria goodness-of-fit measures 9-1 Statistical models

More information

Predictive spatio-temporal models for spatially sparse environmental data. Umeå University

Predictive spatio-temporal models for spatially sparse environmental data. Umeå University Seminar p.1/28 Predictive spatio-temporal models for spatially sparse environmental data Xavier de Luna and Marc G. Genton xavier.deluna@stat.umu.se and genton@stat.ncsu.edu http://www.stat.umu.se/egna/xdl/index.html

More information

SUPPORT VECTOR MACHINE FOR THE SIMULTANEOUS APPROXIMATION OF A FUNCTION AND ITS DERIVATIVE

SUPPORT VECTOR MACHINE FOR THE SIMULTANEOUS APPROXIMATION OF A FUNCTION AND ITS DERIVATIVE SUPPORT VECTOR MACHINE FOR THE SIMULTANEOUS APPROXIMATION OF A FUNCTION AND ITS DERIVATIVE M. Lázaro 1, I. Santamaría 2, F. Pérez-Cruz 1, A. Artés-Rodríguez 1 1 Departamento de Teoría de la Señal y Comunicaciones

More information

mboost - Componentwise Boosting for Generalised Regression Models

mboost - Componentwise Boosting for Generalised Regression Models mboost - Componentwise Boosting for Generalised Regression Models Thomas Kneib & Torsten Hothorn Department of Statistics Ludwig-Maximilians-University Munich 13.8.2008 Boosting in a Nutshell Boosting

More information

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models Thomas Kneib Institute of Statistics and Econometrics Georg-August-University Göttingen Department of Statistics

More information

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP

Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP Statistics for analyzing and modeling precipitation isotope ratios in IsoMAP The IsoMAP uses the multiple linear regression and geostatistical methods to analyze isotope data Suppose the response variable

More information

Generalized Functional Concurrent Model

Generalized Functional Concurrent Model Biometrics, 1 25 2015 Generalized Functional Concurrent Model Janet S. Kim, Arnab Maity, and Ana-Maria Staicu Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695, U.S.A.

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression ST 430/514 Recall: a regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates).

More information

Supplementary Material to General Functional Concurrent Model

Supplementary Material to General Functional Concurrent Model Supplementary Material to General Functional Concurrent Model Janet S. Kim Arnab Maity Ana-Maria Staicu June 17, 2016 This Supplementary Material contains six sections. Appendix A discusses modifications

More information

Towards a Regression using Tensors

Towards a Regression using Tensors February 27, 2014 Outline Background 1 Background Linear Regression Tensorial Data Analysis 2 Definition Tensor Operation Tensor Decomposition 3 Model Attention Deficit Hyperactivity Disorder Data Analysis

More information

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models Thomas Kneib Department of Mathematics Carl von Ossietzky University Oldenburg Sonja Greven Department of

More information

Functional responses, functional covariates and the concurrent model

Functional responses, functional covariates and the concurrent model 14 Functional responses, functional covariates and the concurrent model 14.1 Introduction We now consider a model for a functional response involving one or more functional covariates. In this chapter

More information

Theorems. Least squares regression

Theorems. Least squares regression Theorems In this assignment we are trying to classify AML and ALL samples by use of penalized logistic regression. Before we indulge on the adventure of classification we should first explain the most

More information

Prediction of double gene knockout measurements

Prediction of double gene knockout measurements Prediction of double gene knockout measurements Sofia Kyriazopoulou-Panagiotopoulou sofiakp@stanford.edu December 12, 2008 Abstract One way to get an insight into the potential interaction between a pair

More information

Statistics 203: Introduction to Regression and Analysis of Variance Course review

Statistics 203: Introduction to Regression and Analysis of Variance Course review Statistics 203: Introduction to Regression and Analysis of Variance Course review Jonathan Taylor - p. 1/?? Today Review / overview of what we learned. - p. 2/?? General themes in regression models Specifying

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Aggregated cancer incidence data: spatial models

Aggregated cancer incidence data: spatial models Aggregated cancer incidence data: spatial models 5 ième Forum du Cancéropôle Grand-est - November 2, 2011 Erik A. Sauleau Department of Biostatistics - Faculty of Medicine University of Strasbourg ea.sauleau@unistra.fr

More information

Linear Algebra (Review) Volker Tresp 2017

Linear Algebra (Review) Volker Tresp 2017 Linear Algebra (Review) Volker Tresp 2017 1 Vectors k is a scalar (a number) c is a column vector. Thus in two dimensions, c = ( c1 c 2 ) (Advanced: More precisely, a vector is defined in a vector space.

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

Graph Functional Methods for Climate Partitioning

Graph Functional Methods for Climate Partitioning Graph Functional Methods for Climate Partitioning Mathilde Mougeot - with D. Picard, V. Lefieux*, M. Marchand* Université Paris Diderot, France *Réseau Transport Electrique (RTE) Buenos Aires, 2015 Mathilde

More information

Modelling trends in the ocean wave climate for dimensioning of ships

Modelling trends in the ocean wave climate for dimensioning of ships Modelling trends in the ocean wave climate for dimensioning of ships STK1100 lecture, University of Oslo Erik Vanem Motivation and background 2 Ocean waves and maritime safety Ships and other marine structures

More information

18.S096 Problem Set 3 Fall 2013 Regression Analysis Due Date: 10/8/2013

18.S096 Problem Set 3 Fall 2013 Regression Analysis Due Date: 10/8/2013 18.S096 Problem Set 3 Fall 013 Regression Analysis Due Date: 10/8/013 he Projection( Hat ) Matrix and Case Influence/Leverage Recall the setup for a linear regression model y = Xβ + ɛ where y and ɛ are

More information

Multivariate Analysis of Ecological Data

Multivariate Analysis of Ecological Data Multivariate Analysis of Ecological Data MICHAEL GREENACRE Professor of Statistics at the Pompeu Fabra University in Barcelona, Spain RAUL PRIMICERIO Associate Professor of Ecology, Evolutionary Biology

More information

Nonparametric time series forecasting with dynamic updating

Nonparametric time series forecasting with dynamic updating 18 th World IMAS/MODSIM Congress, Cairns, Australia 13-17 July 2009 http://mssanz.org.au/modsim09 1 Nonparametric time series forecasting with dynamic updating Han Lin Shang and Rob. J. Hyndman Department

More information

Gaussian Process Regression Model in Spatial Logistic Regression

Gaussian Process Regression Model in Spatial Logistic Regression Journal of Physics: Conference Series PAPER OPEN ACCESS Gaussian Process Regression Model in Spatial Logistic Regression To cite this article: A Sofro and A Oktaviarina 018 J. Phys.: Conf. Ser. 947 01005

More information