IL L MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS- 963-A

Size: px
Start display at page:

Download "IL L MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS- 963-A"

Transcription

1 AD-A11* 62 WISCONSIN UtIV-NAOIION KATIENATICS RESEARCH CENTER F/6 12/1 SYSTEMS9 POSITIVE AND NESATIVE RESULTS ON -(TC(U) unl nii EC ai N4 SLEM4OO OAA29-80-C-Okl1 F DC RC-S-2310 LN21S~ EN L6I.11

2 IL L MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS- 963-A

3 MRC Technical Summary Report #2310 DISRIBUTMD BILINEAR SYSTEKS: POSITIVE AND NEGATIVE RESULTS ON CONTROLLABILITY M. Slearod Mathematics Research Center University of Wisconsin- Madison 610 Walnut Street Madison, Wisconsin December 1981 CD C-:) (Received November 23, 1981) Approved for public eleasse Distribution DTlOA EECTS E U. S. Army Research Office and Air Force office P. 0. Box of Scientific Research Research Triangle Park Washington, DC North Carolina

4 UNIVERSITY OF WISCONSIN - MADISON MATHEMATICS RESEARCH CENTER DISTRIBUTED BILINEAR SYSTEMS: POSITIVE AND NEGATIVE RESULTS ON CONTROLLABILITY M. Slemrod Technical Summary Report #2310 December 1981 ABSTRACT This paper outlines results presented in [21 on the problem of controlling bilinear distributed parameter systems. Specifically we give results showing that one cannot control a bilinear distributed parameter system to a full open neighborhood of an infinite dimensional state space. Nevertheless we do present a result which allows identification of an accessible set of states for a class of whyperbolic" control systems. AMS (MOS) Subject Classification: 93B05, 93C10, 93C20, 93Cm, F Key Words: Distributed control system, bilinear system, hyperbolic partial differential equations, rod equation. Work Unit Number 1 - Applied Analysis Dept. of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY and the Mathematics Research Center, University of Wisconsin, Madison, WI V Research sponsored in part by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Contract/Grant No. AFOSR The United States Government is authorized to produce and distribute reprints for Government purposes not withstanding any copyright notation hereon. Support facilities provided by the United States Army under Contract No. DAAG29-80-C

5 SIGNIFICANCE AND EXPIANTIOM One way to view control of linear partial differential equations where the controls enter as time varying coefficients is as a bilinear distributed system. For example the problem of controlling a rod via the axial load falls in this class. This paper examines the possibility of using such controls to steer the system from one location to another. It shows that this problem is generally ill-posed but may be solved in certain exceptional circumstances. Accession For NTIS GRA&I DTIC TAB Unannounced 0 Justificatto Distribution/ Availability Codes lavail and/or Dist Special ano The responsibility for the wording and views expressed in this descriptive summary lies with NRC, and not with the author of this report.

6 CONTEITS 1. Distributed bilinear control systems 2. The control problem 3. Identification of the accessible set for abstract "hyperbolic" bilinear control systems 4. References 4.

7 DISTRZIBUTED BILINE R SYSTX4Ss POSITIVE AND NEGATIVE RESULTS IN CONTROLLBILITY Me Slearod* 1. Distributed bilinear control systems By a distributed bilinear control system we mean a system of the form ;(t) - Aw(t) + p(t)bwt) 0 (.1) 0(O) = ( 0 6 X, (1.2) where A generates a C 0 semigroup of bounded linear operators on a (possible complex) Banach space X, S : X + X is a bounded linear operator, and p G L 1 ([0,T]; R) is a real valued control defined on a specified ) interval [0,T]. Of particular interest in applications is the abstract "hyperbolic" bilinear control system given by a(t) + Au(t) + p(t)bu(t) m 0, (1.3) u(o) - u 0 Q D(AW, u10 - u 1 6 H 1.4) * where A is a positive definite self-adjoint operator with dense domain D(A) in a real Hilbert space H, B is a bounded linear operator from D(AY2) to H, and p (the control) is again in L 1 ([0,T]; R). We suppose A - 1 is compact and A has simple eigenvalues A2, n m 1,2,..., where 0 < A < A <***. Then there exists a corresponding sequence {*n } of 1 2 eigenfunctions: A# - n*n, <*n,* > - 6 where <0,*> denotes the inner n n n n mn H n H product in H. Dept. of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY and the Mathematics Research Center, University of Wisconsin, Madison, WI Re'search sponsored in pare by the Air Force Office of Scientific Researcf, Air Force Systems Command, USAF, under Contract/Grant No. AFOSR The United States Government is authorized to produce and distribute reprints for Government purposes not withstanding any copyright notation hereon. Support facilities provided by the United States Army under Contract No. DAAG29-80-C

8 While we could rewrite (1.3), (1.4) in first order form (1.1), (1.2) in the usual manner of dynamical systems (see for example [1], [2)) it is preferable for our purposes to introduce a complex structure similar to that used for Hamiltonian systems. Let H denote the complexified illbert space H O ih with inner product defined by <1 + iy 1, x 2 + iy 2 > - <x 1, x 2 >H + <yl,y 2 > H + i[<yl'x 2 >H - <xly2>. ] for x 1,x 2,yly 2 Q H. Let z(t) - 1/2u(t) + iu(t). Then (1.3), (1.4) becomes ;(t) -Az(t) + p(t)9z(t), (1.5) z(0) UA 12u / +i U G1H (1.6) where A -) -il/2, 8 - -im /2Re, and thus (1.3), (1.4) has been put in the form (1.1), (1.2) with X -H. Example. The rod equation with hinged ends. Consider the system with boundary conditions with initial conditions utt + Uxxxx + p(t)uxx -, 0 < x < 1 (1.7) u = Uxx M 0 at x-0,1, (1.8) u(x,o) - u 0 (x), ut(x,0) - u (X), 0 < x < 1 (1.9) In the notation of (1.3), (1.4) we have d4 d2 A d A 4 B B. d -2, H2 H - L 2 (0,1), D(A) - {u Q H4(0#1); 4 dx dx UP u 69 o )) D0,12. ) - H(0,1)n M(0,1), n nx #n = r sin nix, n - 1,2,... Here p(t) represents the axial load on the rod. -2-

9 2. The control problem Consider the system 1.1), (1.2). The controllability poblem is (P) Given h 0 X, find p 6 L ([O,T]! R) so that the (generalized) solution of 1.1), (1.2) with control denoted by w(tsp, 0 ) satisfies (.o(t;p,w O 0 ) h. We note two important features of (P). First we observe that even though 1.1) is a linear evolution equation in w for fixed p the map wl(tg,w 0 is in fact a nonlinear function of p : LI (0,T] R) + X. Secondly (and of great importance for distributed systems) we see that (P) in fact asks us to control a (generally) infinite dimensional system with controls p(t) in onedimensional real space for each t. The first observation means that our analysis may likely resort to local theory (the inverse function theorem). The second observation is more serious since it will generally imply the map i (T;6,W 0 ) : Lr ([O,T]; R) + C([O,T]; X) is compact for r > 1. More precisely it was proved in [2]. i ' Theorem 1. Let X be a Banach space with dim X =.If a > T > 0 and Pn + p weakly in LI((o,T]; R) then w(*p n, W O ) + w(*;p,( O ) strongly in C([0,T]! X). Moreover the set of states accessible from w 0 defined by S(w O ) U w(tjp,t 0 ) 0 t)0 r>1 is contained in a countable union of compact sets of X, and in particular has dense complement. The proof of Theorem I is quite technical and is given in [2). Its importance in controllability of (1.1), (1.2) is readily seen, however. For if the set of states accessible from w 0 S(b 0 ) has dense complement we shall -3-

10 never be able to steer to an open neighborhood in X of W o. In other words except for an exceptional set of h 9 X (P) is ill-posed. 3. Identification of the accessible set for abstract "hyperbolic" bilinear control systems. Having noted in Meorem 1 the inability to control (1.1), (1.2) to any open neighborhood of X, we turn instead to trying to identify what states are accessible from a given w 0 9 X. Specifically we consider the abstract "hyperbolic" bilinear control system (1.3), (1.4). As the basis {(n) of H may be regarded as a basis of H, any z r H may be expanded as a Fourier series in the basis {#n. hence we may write an s(t) -I z -n(t)#n (3.1) n-1 We assume in addition that <B~nm> H - 0 for n j m (3.2) and assume <B*,,tn> -bn O 0 Then substitution of (3.1) into (1.5) yields the infinite system of ordinary differential equations with initial conditions b n (t) - int) - i(t)z Re zn(t), n - 1,2,... (3.3) n z n(0) = zn zon <Z(O), n > (4) In itself (3.3) is not much of an irprovement over the earlier formulations of our problem in that the map p + (z(t;pz(0))} from Lt((0,T]; R) into (the natural state space for (33), (3.4)) C(I0,T] 1 ) is still compact (now for r 0 1). However (3.3) allows us to make the remarkable change of variables -4-

11 A:) zn(t) b : n~t - [- " exp il,t + n (t)) -1] 35 n n where P(t) - p(s)ds equations A straightforward computation shows that ( n(t)} satisfies the n p)z~ b b nlt) - i 2t) n ( n(t) + 1)expf2i(Xnt +.A-P(t))], (3.6) On n n where we assume zon k 0. n (0) - 0, n 1,2,..., (3.7) 3 It is not hard to show (3.6), (3.7) has a solution (Cn(t;p)l 6 C((0,T); 12) which is C 1 in p as a map from L 2 ((0,T]; R) to 20 The amazing thing is that this map is not compact. Hence we may attempt to control (3.6) in a neighborhood in I of the initial state (0W. The 2 natural way to do this is, as remarked earlier, to apply the inverse function theorem and show Dp (n (T;O)) (the Frechet derivative of (Cn(T;p)} with respect to p evaluated at p = 0) is an isomorphism from L 2 ((0,TJ; R) to 2" Actually this won't be the case since D {C (T;0)) isn't one to one but 2~p n it is onto. Fortunately the "local onto theorem" (3) will still imply the non-unique solvability of C (T;p) = h n, n = 1,2,3,... for some T > 0 and p G L 2 ((0,TJ, R) when Nth n is sufficiently small. Now knowing the accessible states of (3.6), (3.7) is an open neighborhood of (0) in t2 we can translate back via (3.5) to find the accessible states of (3.3) from data (3.4). For example for the rod equation with hinged ends (1.7), (1.8) <B#n'#m> H = 0 and assumptions (3.2) are satisfied. In fact we can prove Theorem 2. Assume zon 1 0 for the rod equation with hinged ends (1.7), 1.8). Then there exists e > 0 so that if ithn}i I < E we can solve 2-5-

12 2 u (.) - (1 + h),on, n- 1,2,... for infinitely many p Q L2(0, j ; I) with f.2s'p(t)dt 0. Thus while we cannot hit all states in a small A 2 neighborhood of (a I we can hit those of the form ( + h )z 1, l(hn)i < e. Of course on n on n &2 using the definition of x this result could be translated into a statement (albeit messy) regarding u and ut for (1.7), (.1.8), (1.9). Furthermore using the above local result we can use a standard argument to prove Corollary. For (1.7), (1.8) with zon.p 0 n = 1,2,... the set of states accessible for {z On is dense in H. -6-

13 REFERECES 1. b all, J. M. and M. Sleearod, Nonharmonic Fourier series and the stabilization of distributed semi-linear control systems, Communications on Pure and Applied Mathematics, 32, , (1979). 2. Ball, J. Mt., M. Slearod and J. E. Marsden, Controllability for distributed bilinear systems, to appear SIAN Journal on Control and Optimization. * 3. Luenberger, D. G., Optimization by Vector Space Methods, John Wiley Sons, New York (1969). MS/j vs/ -7-

14 SECURITY CLASSIFICATION Of THIS PAG (rih on Daita F red) _ REPORT DOCUMENTATION PAGE ri:at) CM111r, ORM 1. REPORT NUMDLR -2. VOV ACCESSION NO 3. RECIPIENT*S CATALOG NUMULR ~~#2310._- 4. TITLE (and ublitle) S". TYPE OF REPORT & PERIOD COVEREO Distributed Bilinear Systems: Positive and Summary Report - no specific Negative Results on Controllability 6. reporting period 6PERFORMING ORG. REPORT NUMBER 7. AUTHOR(.). CONTRACT OR GRANT NUMDER(8) APOSR M. Slemrod DAAG29-80-C S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK, Mathematics Research Mathematics CneUiest Uni Research"Center s of fwr AREA A WORK ntnme UNIT NUMBERS Work Unit Number Walnut Street Wisconsin Applied Analysis Madison, Wisconsin Il. CONTROLLING OFFICE NAME AND ADORESS 1*. REPORT DATE December 1981 (see Item 18 below) 13. NUMBER OF PAGES 7 $4. MONITORING %GENCY NAME A AOCRESS(I" dillemt from Controlin4 Office) 15. SECURITY CLASS. (1 thie report) _ UNCLASSIFIED M e, OECL. ASSI IC ATION/OWVN GR ADING SCHEDULE 16. DISTRIBUTION STATEMENT (of tl Report) S Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abtmacil entereodin Block 20f ilditllereat from Report) IS, SUPPLEMENTARY NOTES U. S. Army Research Office and Air Force Office P. 0. Box of Scientific Research Research Triangle Park Washington, DC North Carolina ). KEY WORDS (Continue on rever** aide if neceemy And idently by block number) Distributed control system, bilinear system, hyperbolic partial differential gquations, rod equation. 20. A83 4 ACT (Continue m reverse sid It nceseay and identify by Moc f let) This paper outlines results presented in712] on the problem of controlling bilinear distributed parameter systems. Specifically we give results showing that.one cannot control a bilinear distributed parameer system to a full open neighborhood of an infinite dimensional state space. Nevertheless we do present a result which allows identification of an accessible set of states for a class of "hyperbolic" control systems. DD 1473 EITION o,, I NOVS is s O.SOLTe UNCLASSIFIED.ECURITY CLASSIFICATION OF THIS PAGIE (B1ito De Eftfoerd)

15

S 7ITERATIVELY REWEIGHTED LEAST SQUARES - ENCYCLOPEDIA ENTRY.(U) FEB 82 D B RUBIN DAAG29-80-C-O0N1 UNCLASSIFIED MRC-TSR-2328

S 7ITERATIVELY REWEIGHTED LEAST SQUARES - ENCYCLOPEDIA ENTRY.(U) FEB 82 D B RUBIN DAAG29-80-C-O0N1 UNCLASSIFIED MRC-TSR-2328 AD-A114 534 WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER F/B 12/1 S 7ITERATIVELY REWEIGHTED LEAST SQUARES - ENCYCLOPEDIA ENTRY.(U) FEB 82 D B RUBIN DAAG29-80-C-O0N1 UNCLASSIFIED MRC-TSR-2328 NL MRC

More information

UN MADISON MATHEMSTICS RESEARCH CENTER A P SUMS UNCLASSIFIE FER4 MONSRR2648 DAAG29-0C04 RDr C91 04

UN MADISON MATHEMSTICS RESEARCH CENTER A P SUMS UNCLASSIFIE FER4 MONSRR2648 DAAG29-0C04 RDr C91 04 7 AD-A141 509 A NOTE ON EQUALT IN ANDERSON'S THEOREM(UA WISCONSIN 1/1 UN MADISON MATHEMSTICS RESEARCH CENTER A P SUMS UNCLASSIFIE FER4 MONSRR2648 DAAG29-0C04 RDr C91 04 ANA FS 7 1 3 III8 1.2. IlI.25iiI.

More information

.IEEEEEEIIEII. fflllffo. I ll, 7 AO-AO CALIFORNIA UN IV BERKELEY OPERATIONS RESEARCH CENTER FIG 12/1

.IEEEEEEIIEII. fflllffo. I ll, 7 AO-AO CALIFORNIA UN IV BERKELEY OPERATIONS RESEARCH CENTER FIG 12/1 7 AO-AO95 140 CALIFORNIA UN IV BERKELEY OPERATIONS RESEARCH CENTER FIG 12/1.IEEEEEEIIEII AVAILABILITY OF SERIES SYSTEMS WITH COMPONENTS SUBJECT TO VARIO--ETC(U) JUN 80 Z S KHALIL AFOSR-77-3179 UNCLASSIFIED

More information

*jfflfllflfflfl AD-A 'ON THE EQUIDECOMPOSABILT OF A REGULAR TRIANGLE AND A -SQUARE OF

*jfflfllflfflfl AD-A 'ON THE EQUIDECOMPOSABILT OF A REGULAR TRIANGLE AND A -SQUARE OF p AD-A739 270 'ON THE EQUIDECOMPOSABILT OF A REGULAR TRIANGLE AND A -SQUARE OF *jfflfllflfflfl EQAL AR..U AWISCONSIN ANIV-MADISON MATHEMATICS RESEARCH CENTER 0 W CRONE ET AL JAN 84 ANCtASSIFIED MRC-TSR-2632

More information

(U) WISCONSIN UN! V-VIADISON MATHEMATICS RESEARCH CENTER J M VANDEN-BROECK JAN 84 MRC-TSR-2631 DAAG29-89-C-894i

(U) WISCONSIN UN! V-VIADISON MATHEMATICS RESEARCH CENTER J M VANDEN-BROECK JAN 84 MRC-TSR-2631 DAAG29-89-C-894i I 7,-AD-Ai39 266 BUBBLES RISING IN A TUBE AND JETS FALLING FROM R NOZZLE 1/i I (U) WISCONSIN UN! V-VIADISON MATHEMATICS RESEARCH CENTER J M VANDEN-BROECK JAN 84 MRC-TSR-2631 DAAG29-89-C-894i UNCLASSIFIED

More information

SaL1a. fa/ SLECTE '1~AIR FORCE GECOPNYSICS LABORATORY AIR FORCE SYSTEMS COMMAND AFGL-TH

SaL1a. fa/ SLECTE '1~AIR FORCE GECOPNYSICS LABORATORY AIR FORCE SYSTEMS COMMAND AFGL-TH AD-Alla 950 BOSTON COLL CHESTNUT HILL MA DEPT OF PHYSICS FB2/ '5 PARTICLE TRAJECTORIES IN A MODEL ELECTRIC FIELD II.CU) DEC SI P CARINI. 6 KALMAN, Y SHIMA F19628-79-C-0031 UNCLASSIFIED SCIENTIFIC-2 AFGL-TR-B2-0149

More information

'N7 7 DA4 5 AU) WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER NDA4 5 DIRECT APPROACH TO THE VILLARCEAU CIRCLES OF AJORUS /

'N7 7 DA4 5 AU) WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER NDA4 5 DIRECT APPROACH TO THE VILLARCEAU CIRCLES OF AJORUS / NDA4 5 DIRECT APPROACH TO THE VILLARCEAU CIRCLES OF AJORUS / 7 DA4 5 AU) WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER I J SCHOENBERG MAR 84 MRC-TSR-2651 DAAG29 80 C 0041 UNCLASSIFIED /121 N 'N7 Ifl=j~.2

More information

ii19a la. Ill/lI II"' chart TEST RESOLUTION MICROCOPY NATIONAL BUREAU OF VANDARDS-1963-A

ii19a la. Ill/lI II' chart TEST RESOLUTION MICROCOPY NATIONAL BUREAU OF VANDARDS-1963-A RD-A172 772 THE CHINESE REMAINDER PROBLEM AND POLYNOMIAL 1/1 INTERPOLATION(U) WISICONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER I J SCHOENBERG AUG 86 MRC-TSR-2954 I EhiLA NLSSIFIED DAAG29-8 -C-8041 F,'G

More information

U-.-._ AD-A TWO STOCHASTIC MODE.ING PROBLEMS IN COMMUJNICATIONS AND NAVIG6ATON I/J U) VIRGINIA P0 TECHNIC INS A ND STE BLACKSBURG UNIV

U-.-._ AD-A TWO STOCHASTIC MODE.ING PROBLEMS IN COMMUJNICATIONS AND NAVIG6ATON I/J U) VIRGINIA P0 TECHNIC INS A ND STE BLACKSBURG UNIV AD-A133 458 TWO STOCHASTIC MODE.ING PROBLEMS IN COMMUJNICATIONS AND NAVIG6ATON I/J U) VIRGINIA P0 TECHNIC INS A ND STE BLACKSBURG UNIV U-.-._ W E KO06 ER 12 SEP 83 ARO 16539.6-MA UNCLASSIFED DAAG2V V -C

More information

AD- A IIIIIm III~,, PG0. Iolll~g fdo SO9SS9,44d : Ar- ved te publi t rol ease d4lta1ltr Uoa11[t,.

AD- A IIIIIm III~,, PG0. Iolll~g fdo SO9SS9,44d : Ar- ved te publi t rol ease d4lta1ltr Uoa11[t,. AD- A237 844 PG0 IIIIIm III~,,... --. 'MB....... 1. AGENCY USE ONLY (Leave o/drk) 2 REPORT DATE 3, REPORT TYPE AND DATES COVERED I FINAL 15 S p 87-14 Apr 91 4. TITLE AND SUBTITLE S FUNDING NUMBERS PROBLEMS

More information

VAD-Ri POURING FLOU(U) WISCONSIN UNIV-MADISON MATHEMATICS /

VAD-Ri POURING FLOU(U) WISCONSIN UNIV-MADISON MATHEMATICS / VAD-Ri72 775 POURING FLOU(U) WISCONSIN UNIV-MADISON MATHEMATICS / I RESEARCH CENTER J VANDENd-BROECK ET AL MAY 86 MRC-TSR-2936 DAAG29-88-C-084i UNCLASSIFIED F/G 29/4 U am 111.25 1 14 11. MICROCoPY RESOLUIRON

More information

IEEE". UNIY-NILUAUKEE J SEDER 25 APR 85 AFOSR-TR i RFOSR UNCLASSIFIED F/G 12/1 NL

IEEE. UNIY-NILUAUKEE J SEDER 25 APR 85 AFOSR-TR i RFOSR UNCLASSIFIED F/G 12/1 NL D- Ai5S 762 SIEVES ND FILTER FOR AUSSI N PROCESSES (U WISCONSIN 1/1 UNIY-NILUAUKEE J SEDER 25 APR 85 AFOSR-TR-85-062i I IEEE". RFOSR-84-9329 UNCLASSIFIED F/G 12/1 NL 110 128 12- ~fll M111 11111!;m NATIONAL

More information

MICROCOPY RESOLUTION TEST CHART NATIOAL BUREAU OF STANDARDS-1963-A. *9. ~ ~ ~ MCOCP REOUTO TEST CHA.<:~ RTrz ~

MICROCOPY RESOLUTION TEST CHART NATIOAL BUREAU OF STANDARDS-1963-A. *9. ~ ~ ~ MCOCP REOUTO TEST CHA.<:~ RTrz ~ RAD-A122 134 ALGEBRAIC THEORY OF LINEAR TIME-VARYING SYSTEMS AND I/1 LINEAR INFINITE-DIMEN.. (U) FLORIDA UNIV GAINESVILLE DEPT OF ELECTRICAL ENGINEERING E W KAMEN NOV 82 UNCLASSIFIED ARO-13162. i-nr DARG29-7-G-8863

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

I I ! MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

I I ! MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A , D-Ri33 816 ENERGETIC ION BERM PLASMA INTERRCTIONS(U) PRINCETON / UNIV N J PLASMA PHYSICS LAB R MI KULSRUD 30 JUN 83 UNCLSSIFEDAFOSR-TR-83-0816 AFOSR-81-0106F/209 N EEEEONEE"_ I I 11111.!2 1.1. IL MICROCOPY

More information

;E (" DataEntered,) 1.GOVT ACCESSION NO.

;E ( DataEntered,) 1.GOVT ACCESSION NO. ;E (" DataEntered,) AD-A 196 504:NTATION PAGE 1.GOVT ACCESSION NO. fitic f ILE GUM. BEFORCOMLETINFOR 3. RECIPIENT'S CATALOG NUMBER ALGO PUB 0120 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

More information

SYSTEMS OPTIMIZATION LABORATORY DEPARTMENT OF OPERATIONS RESEARCH STANFORD UNIVERSITY STANFORD, CALIFORNIA

SYSTEMS OPTIMIZATION LABORATORY DEPARTMENT OF OPERATIONS RESEARCH STANFORD UNIVERSITY STANFORD, CALIFORNIA SYSTEMS OPTIMIZATION LABORATORY DEPARTMENT OF OPERATIONS RESEARCH STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305-4022 00 0 NIN DTIC A Monotone Complementarity Problem in Hilbert Space by Jen-Chih Yao fl

More information

Eu... p UNCLASSIFIED ARO-i72672-EG DAAO2-8-C-i42 F/G 21/2 NL. D-A INVESTIGATION OF THE KINETICS OF CATALYZED COMBUSTION i/i

Eu... p UNCLASSIFIED ARO-i72672-EG DAAO2-8-C-i42 F/G 21/2 NL. D-A INVESTIGATION OF THE KINETICS OF CATALYZED COMBUSTION i/i I D-A142 153 INVESTIGATION OF THE KINETICS OF CATALYZED COMBUSTION i/i OF FUEL(U) UNITED TECHNOLOGIES RESEARCH CENTER EAST I HARTFORD CT P J IARTENEY 04 MAY 84 UTRC/955279-i p UNCLASSIFIED ARO-i72672-EG

More information

RD-R14i 390 A LIMIT THEOREM ON CHARACTERISTIC FUNCTIONS VIA RN ini EXTREMAL PRINCIPLE(U) TEXAS UNIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES A BEN-TAL

RD-R14i 390 A LIMIT THEOREM ON CHARACTERISTIC FUNCTIONS VIA RN ini EXTREMAL PRINCIPLE(U) TEXAS UNIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES A BEN-TAL RD-R14i 390 A LIMIT THEOREM ON CHARACTERISTIC FUNCTIONS VIA RN ini EXTREMAL PRINCIPLE(U) TEXAS UNIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES A BEN-TAL DEC 83 CCS-RR-477 UNCLASSIFIED N@884-i-C-236 F/0 2/1

More information

AD OUTDOOR SCULP:URES(U) WISCONSIN UNIY-NADISON / NATHdEMRTICS RESEARCH CENTER I J SCHOENBERG JAN 86 UNCLSSIFIEV R-S-90OR2-DC94 F/C 13/1 NL

AD OUTDOOR SCULP:URES(U) WISCONSIN UNIY-NADISON / NATHdEMRTICS RESEARCH CENTER I J SCHOENBERG JAN 86 UNCLSSIFIEV R-S-90OR2-DC94 F/C 13/1 NL AD-8167 466 OUTDOOR SCULP:URES(U) WISCONSIN UNIY-NADISON / NATHdEMRTICS RESEARCH CENTER I J SCHOENBERG JAN 86 UNCLSSIFIEV R-S-90OR2-DC94 F/C 13/1 NL U! IO 21I 111111.25 Hill- I:.M micnro L CHART m~% MRC

More information

WRb-Al? 164 STATISTICAL TECHNIQUES FOR SIGNAL PROCESSING(U) 1/1 PENNSYLVANIA UNIV PHILADELPHIA S A KASSAN 30 NAY 85 AFOSR-TR-6-01?

WRb-Al? 164 STATISTICAL TECHNIQUES FOR SIGNAL PROCESSING(U) 1/1 PENNSYLVANIA UNIV PHILADELPHIA S A KASSAN 30 NAY 85 AFOSR-TR-6-01? WRb-Al? 164 STATISTICAL TECHNIQUES FOR SIGNAL PROCESSING(U) 1/1 PENNSYLVANIA UNIV PHILADELPHIA S A KASSAN 30 NAY 85 AFOSR-TR-6-01?2 RFOSR-82-9022 UNCLASSFE F/G 9/4 NL ti 1.0 i Q.2. UILO III,-. o,33% %

More information

IW IIIIL2 5-_6. -, ~IIIl IIII'nll MICROCOPY RESOLUTION TEST CHART NAI IONAL BUIREAU O( STANDARDS 1963 A

IW IIIIL2 5-_6. -, ~IIIl IIII'nll MICROCOPY RESOLUTION TEST CHART NAI IONAL BUIREAU O( STANDARDS 1963 A -R177 486 EXTREME VALUES OF QUEUES POINT PROCESSES AND STOCHASTIC I/i WETUORKSCU) GEORGIA INST OF TECH ATLANTA SCHOOL OF INDUSTRIAL AND SYSTEMS ENGINEERING R F SERFOZO 7UNCLASSIFIED 39 NOV 86 IEEE'.'.

More information

THE OBSERVED HAZARD AND MULTICONPONENT SYSTEMS. (U) JAN 80 M BROWN- S M R OSS N0001R77-C I~OREE80-1 he UNCLASSIFIED CA-

THE OBSERVED HAZARD AND MULTICONPONENT SYSTEMS. (U) JAN 80 M BROWN- S M R OSS N0001R77-C I~OREE80-1 he UNCLASSIFIED CA- THE OBSERVED HAZARD AND MULTICONPONENT SYSTEMS. (U) JAN 80 M BROWN- S M R OSS N0001R77-C-0299 I~OREE80-1 he UNCLASSIFIED CA- Hf - 3I 2~? IRO.25 1UONT. 11111.8 MICROCOPY RESOLUTION TEST CHART (Q ORC 80-1

More information

JADL 00 C M ABLOW. S SCHECHTER F C-011 UNCLASSIFIED AFOSR-TR ML. PAK CAFfG1N/ 7 RI NTERATINALMENL

JADL 00 C M ABLOW. S SCHECHTER F C-011 UNCLASSIFIED AFOSR-TR ML. PAK CAFfG1N/ 7 RI NTERATINALMENL UOOS 288, TWO-DIMENSIONAL SR'. ENTOA MESH ENOPR ADJUSTMENT AF61 ALGORITHM. (U) JADL 00 C M ABLOW. S SCHECHTER F49620-77-.C-011 UNCLASSIFIED AFOSR-TR-80-0626 ML PAK CAFfG1N/ 7 RI 10-088288 NTERATINALMENL

More information

RD-Ai6i 457 LIMITING PERFORMANCE OF NONLINEAR SYSTEMS WITH APPLICATIONS TO HELICOPTER (U) VIRGINIA UNIV CHARLOTTESVILLE DEPT OF MECHANICAL AND

RD-Ai6i 457 LIMITING PERFORMANCE OF NONLINEAR SYSTEMS WITH APPLICATIONS TO HELICOPTER (U) VIRGINIA UNIV CHARLOTTESVILLE DEPT OF MECHANICAL AND RD-Ai6i 457 LIMITING PERFORMANCE OF NONLINEAR SYSTEMS WITH APPLICATIONS TO HELICOPTER (U) VIRGINIA UNIV CHARLOTTESVILLE DEPT OF MECHANICAL AND AEROSPAC UNCLASSIFIED W D PILKEV AUG 85 ARO-186431 if-eg F/G

More information

Chapter 3: Baire category and open mapping theorems

Chapter 3: Baire category and open mapping theorems MA3421 2016 17 Chapter 3: Baire category and open mapping theorems A number of the major results rely on completeness via the Baire category theorem. 3.1 The Baire category theorem 3.1.1 Definition. A

More information

A STUDY OF SEQUENTIAL PROCEDURES FOR ESTIMATING. J. Carroll* Md Robert Smith. University of North Carolina at Chapel Hill.

A STUDY OF SEQUENTIAL PROCEDURES FOR ESTIMATING. J. Carroll* Md Robert Smith. University of North Carolina at Chapel Hill. A STUDY OF SEQUENTIAL PROCEDURES FOR ESTIMATING THE LARGEST OF THREE NORMAL t4eans Ra~nond by J. Carroll* Md Robert Smith University of North Carolina at Chapel Hill -e Abstract We study the problem of

More information

AD-Ri STABILIZfiTIOW 5TUDIESMU CALIFORNIA UNIV LOS ANGELES i/1 SCHOOL OF ENGINEERING AND APPLIED SCIENCE N LEVAN

AD-Ri STABILIZfiTIOW 5TUDIESMU CALIFORNIA UNIV LOS ANGELES i/1 SCHOOL OF ENGINEERING AND APPLIED SCIENCE N LEVAN AD-Ri42 644 STABILIZfiTIOW 5TUDIESMU CALIFORNIA UNIV LOS ANGELES i/1 SCHOOL OF ENGINEERING AND APPLIED SCIENCE N LEVAN I MAR 84 RFOSR-TR-84-0584 AFOSR-79-0053 INCLASSIFIED F/G 12/1 NL ----------------------------------------------------------------------

More information

Functional Analysis I

Functional Analysis I Functional Analysis I Course Notes by Stefan Richter Transcribed and Annotated by Gregory Zitelli Polar Decomposition Definition. An operator W B(H) is called a partial isometry if W x = X for all x (ker

More information

A0A TEXAS UNIV AT AUSTIN DEPT OF CHEMISTRY F/G 7/5 PHOTOASSISTED WATER-GAS SHIFT REACTION ON PLATINIZED T7TANIAI T--ETCIUI

A0A TEXAS UNIV AT AUSTIN DEPT OF CHEMISTRY F/G 7/5 PHOTOASSISTED WATER-GAS SHIFT REACTION ON PLATINIZED T7TANIAI T--ETCIUI AA113 878 TEXAS UNIV AT AUSTIN DEPT OF CHEMISTRY F/G 7/5 PHOTOASSISTED WATER-GAS SHIFT REACTION ON PLATINIZED T7TANIAI T--ETCIUI APR 82 S FANG. 8 CHEN..J M WHITE N14-75-C-922 UNCLASSIFIED NL OFFICE OF

More information

Stability of an abstract wave equation with delay and a Kelvin Voigt damping

Stability of an abstract wave equation with delay and a Kelvin Voigt damping Stability of an abstract wave equation with delay and a Kelvin Voigt damping University of Monastir/UPSAY/LMV-UVSQ Joint work with Serge Nicaise and Cristina Pignotti Outline 1 Problem The idea Stability

More information

AD-At AN OUTPUT MATCHING APPROACH TO MULTIVARIABLE LINEAR Il 0001 UNCLASSIFIED AFOSR-TR AFOSR U/ 14/2 NL 1

AD-At AN OUTPUT MATCHING APPROACH TO MULTIVARIABLE LINEAR Il 0001 UNCLASSIFIED AFOSR-TR AFOSR U/ 14/2 NL 1 AD-At28 662 AN OUTPUT MATCHING APPROACH TO MULTIVARIABLE LINEAR Il DIGITAL MATHEMATICS CONTROL(U) ANDSTATISTIC. WRIGHT STATE D FMLLER30DNOV82 UNIV DAYTON OH DEPT 0001 OF UNCLASSIFIED AFOSR-TR-83-0400 AFOSR-82-0208

More information

N _IC.25 N/PS. Bill~ 11 2 WA' ,' mm_

N _IC.25 N/PS. Bill~ 11 2 WA' ,' mm_ AD-RIi 946 EXPERIMENTAL RESEARCH ON OPTOGALVANIC EFFECTS(U) 1/1 WISCONSIN UNIV-MADISON DEPT OF PHYSICS J E LAWLER 85 JUN 86 AFOSR-RR-86-8518 AFOSR-84-2298 UNCLASS IF [ED F/G 14/2 NL IEEEII. N-8 N/PS 11111_IC.25

More information

Recall that any inner product space V has an associated norm defined by

Recall that any inner product space V has an associated norm defined by Hilbert Spaces Recall that any inner product space V has an associated norm defined by v = v v. Thus an inner product space can be viewed as a special kind of normed vector space. In particular every inner

More information

I teach myself... Hilbert spaces

I teach myself... Hilbert spaces I teach myself... Hilbert spaces by F.J.Sayas, for MATH 806 November 4, 2015 This document will be growing with the semester. Every in red is for you to justify. Even if we start with the basic definition

More information

L6 12. til L 340. i II~ jiiii25 TEST CHART MICROCOPY RESOLUTION. NATIONAL HT)Rh AO (.1 SANDAP

L6 12. til L 340. i II~ jiiii25 TEST CHART MICROCOPY RESOLUTION. NATIONAL HT)Rh AO (.1 SANDAP NLAEEE..E~:B~N AN 7 A a5 17FNAL SCIENTII REPORT ON GRANT AFOSR 80 A A A 5 WAHNGTON UN SATTE JNVORKIAN AUG83 0N(S IID AFOSR-TN-83-0944 AFS 80 NA A17 F/ 12/ 1111 10 L6 12. til L 340 jiiii25.4ii~ i 1.6 MICROCOPY

More information

1.0~ O. 1*1.8.2IIII II5 uuu11~ I 1 I6 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963-A

1.0~ O. 1*1.8.2IIII II5 uuu11~ I 1 I6 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963-A 6AD-Ai5@ 148 NUMERICAL ALGORITHMS AND SOFTWARE FOR MATRIX.RICCATI i/i EGUATIONS(U) UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES A J LAUB 25 OCT 84 RlRO-i8289 15-MAl UNCLASSIFIED MEOMONEE OAAG29-i-K-8i3i

More information

Spectral Properties of Elliptic Operators In previous work we have replaced the strong version of an elliptic boundary value problem

Spectral Properties of Elliptic Operators In previous work we have replaced the strong version of an elliptic boundary value problem Spectral Properties of Elliptic Operators In previous work we have replaced the strong version of an elliptic boundary value problem L u x f x BC u x g x with the weak problem find u V such that B u,v

More information

ADl-AO PUDUE UMIV LAFAYETTE IN DEPT OF CHEMISTRY F/6 7/4

ADl-AO PUDUE UMIV LAFAYETTE IN DEPT OF CHEMISTRY F/6 7/4 ADl-AO84 712 PUDUE UMIV LAFAYETTE IN DEPT OF CHEMISTRY F/6 7/4 UCLASSIFIED - PHIOTOCHEMICAL CONSEQUENCES OF INTERCHROMOPHORIC INTERACTICNS.(Ul MAY 80 H MORRISON OAA629-79 0 0009 ARO-13088.9-C NRL 6-SO

More information

MAT 578 FUNCTIONAL ANALYSIS EXERCISES

MAT 578 FUNCTIONAL ANALYSIS EXERCISES MAT 578 FUNCTIONAL ANALYSIS EXERCISES JOHN QUIGG Exercise 1. Prove that if A is bounded in a topological vector space, then for every neighborhood V of 0 there exists c > 0 such that tv A for all t > c.

More information

i of 6. PERFORMING ORG. REPORT NUMBER Approved for public Dtatibuft Unlimited

i of 6. PERFORMING ORG. REPORT NUMBER Approved for public Dtatibuft Unlimited SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) REPORT DOCUMENTATION PAGE READ INSTRUCTIONS BEFORE COMPLETING FORM I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER WP-MDSGA-65-4

More information

Technical Note

Technical Note ESD ACCESSION LIST TRI Call Nn n 9.3 ' Copy No. / of I

More information

Analysis Preliminary Exam Workshop: Hilbert Spaces

Analysis Preliminary Exam Workshop: Hilbert Spaces Analysis Preliminary Exam Workshop: Hilbert Spaces 1. Hilbert spaces A Hilbert space H is a complete real or complex inner product space. Consider complex Hilbert spaces for definiteness. If (, ) : H H

More information

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space.

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Hilbert Spaces Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Vector Space. Vector space, ν, over the field of complex numbers,

More information

THE COVARIANCE MATRIX OF NORMAL ORDER STATISTICS. BY C. S. DAVIS and M. A. STEPHENS TECHNICAL REPORT NO. 14 FEBRUARY 21, 1978

THE COVARIANCE MATRIX OF NORMAL ORDER STATISTICS. BY C. S. DAVIS and M. A. STEPHENS TECHNICAL REPORT NO. 14 FEBRUARY 21, 1978 THE COVARIANCE MATRIX OF NORMAL ORDER STATISTICS BY C. S. DAVIS and M. A. STEPHENS TECHNICAL REPORT NO. 14 FEBRUARY 21, 1978 PREPARED UNDER GRANT DAAG29-77-G-0031 FOR THE U.S. ARMY RESEARCH OFFICE Reproduction

More information

A70-Ai ARE MASS EXTINCTIONS REALLY PERIOOIC7(J) CALIFORNIA t/l UNIV BERKELEY OPERATIONS RESEARCH CENTER S M ROSS OCT 86 ORC-86-i9 RFOSR-86-8i53

A70-Ai ARE MASS EXTINCTIONS REALLY PERIOOIC7(J) CALIFORNIA t/l UNIV BERKELEY OPERATIONS RESEARCH CENTER S M ROSS OCT 86 ORC-86-i9 RFOSR-86-8i53 A70-Ai74 290 ARE MASS EXTINCTIONS REALLY PERIOOIC7(J) CALIFORNIA t/l UNIV BERKELEY OPERATIONS RESEARCH CENTER S M ROSS OCT 86 ORC-86-i9 RFOSR-86-8i53 UNCLASSIFIED F/G 8/7 Nt 1111.0 L41 8 32 L5 U. 11~[25IIII'*

More information

D-,+O K.1K. b9 V 378

D-,+O K.1K. b9 V 378 CLSSIICATON ALD -A207 000 REPORT DOCUMENTATION PAGE ors Appove1 la. REPORT SECURITY CLASSIFICATION 1lb. RESTRICTIVE MARKINGS 2a. SECURITY CLASSIFICATION AUT _"ALECTE 3. DISTRIBUTION /AVAILABILITY OF REPOR

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

Constrained Controllability of Nonlinear Systems

Constrained Controllability of Nonlinear Systems Ž. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 01, 365 374 1996 ARTICLE NO. 060 Constrained Controllability of Nonlinear Systems Jerzy Klamka* Institute of Automation, Technical Uni ersity, ul. Akademicka

More information

AD-A ROCHESTER UNIV NY GRADUATE SCHOOL OF MANAGEMENT F/B 12/1. j FEB 82.J KEILSON F C-0003 UNCLASSIFIED AFGL-TR NL

AD-A ROCHESTER UNIV NY GRADUATE SCHOOL OF MANAGEMENT F/B 12/1. j FEB 82.J KEILSON F C-0003 UNCLASSIFIED AFGL-TR NL AD-A115 793 ROCHESTER UNIV NY GRADUATE SCHOOL OF MANAGEMENT F/B 12/1 F EFFORTS IN MARKOV MODELING OF WEATHER DURATIONS.(U) j FEB 82.J KEILSON F1962980-C-0003 UNCLASSIFIED AFGL-TR-82-0074 NL A'FGL -TR-82-0074

More information

A FNITE DFERENCE SUD OTHESTRETCHINGAND BREAK-UP OF FIAMENTS OF. (U) WISCONSIN UNIV MAD SON MATHEMATICS RESEARCH CENTER P MARKOW CU ET AL JAN R4

A FNITE DFERENCE SUD OTHESTRETCHINGAND BREAK-UP OF FIAMENTS OF. (U) WISCONSIN UNIV MAD SON MATHEMATICS RESEARCH CENTER P MARKOW CU ET AL JAN R4 AD-A139 258 A FNITE DFERENCE SUD OTHESTRETCHINGAND BREAK-UP OF FIAMENTS OF. (U) WISCONSIN UNIV MAD SON MATHEMATICS RESEARCH CENTER P MARKOW CU ET AL JAN R4 -E1hmhsoon soi IIEN UNCLASSIFIED MRC TSR-2627

More information

, i, ~. '~~~* a F- WI W U V U S S S S S S It

, i, ~. '~~~* a F- WI W U V U S S S S S S It AD-A194 365 REACTION DYNAMICS ON SEMICONDUCTOR SURFACES(U) h RENSSELAER POLYTECHNIC INST TROY NY DEPT OF MATERIALS ENGINEERING J B HUDSON 29 FEB 86 NOB8e4-86-K-0259 UNCLASSIFIED F/G 7/4 NI @MonossonE ,

More information

Numerical Solution of Heat Equation by Spectral Method

Numerical Solution of Heat Equation by Spectral Method Applied Mathematical Sciences, Vol 8, 2014, no 8, 397-404 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ams201439502 Numerical Solution of Heat Equation by Spectral Method Narayan Thapa Department

More information

Volume 6 Water Surface Profiles

Volume 6 Water Surface Profiles A United States Contribution to the International Hydrological Decade HEC-IHD-0600 Hydrologic Engineering Methods For Water Resources Development Volume 6 Water Surface Profiles July 1975 Approved for

More information

Li- I hsdommezit ha., INorman. Bleistein and Jack K. Cohen MS-R A NOTE ON THE INVERSE SOURCE PROBLEM. ,o uli. re1rjasm.

Li- I hsdommezit ha., INorman. Bleistein and Jack K. Cohen MS-R A NOTE ON THE INVERSE SOURCE PROBLEM. ,o uli. re1rjasm. MS-R-7807 0 A NOTE ON THE INVERSE SOURCE PROBLEM 4 by INorman Bleistein and Jack K. Cohen Li- I hsdommezit ha.,,o uli. re1rjasm. e dsd:ved pv~ CaC-* -- 0- R3. UNCLASSIFIED SECURITY C ASSIFICATION OF THIS

More information

DATE ~~~ 6O 300 N1. nbc OF / END FJLIEEO

DATE ~~~ 6O 300 N1. nbc OF / END FJLIEEO / AD AO6O 390 SOUTHERN METHODIST UNIV DALLAS TX DEPT OF OPERATIONS ETC F/G 12/1 APPROXIMATIONS TO THE INVERSE CUMULATIVE NORMAL FUNCTION FOR US ETCH) ) JUL 78 8 W SCHMEISER N00014 77eC Ot,25 UNCLASSIFIED

More information

A MARTINGALE INEQUALITY FOR THE SQUARE AND MAXIMAL FUNCTIONS LOUIS H.Y. CHEN TECHNICAL REPORT NO. 31 MARCH 15, 1979

A MARTINGALE INEQUALITY FOR THE SQUARE AND MAXIMAL FUNCTIONS LOUIS H.Y. CHEN TECHNICAL REPORT NO. 31 MARCH 15, 1979 A MARTINGALE INEQUALITY FOR THE SQUARE AND MAXIMAL FUNCTIONS BY LOUIS H.Y. CHEN TECHNICAL REPORT NO. 31 MARCH 15, 1979 PREPARED UNDER GRANT DAAG29-77-G-0031 FOR THE U.S. ARMY RESEARCH OFFICE Reproduction

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II February 23 2017 Separation of variables Wave eq. (PDE) 2 u t (t, x) = 2 u 2 c2 (t, x), x2 c > 0 constant. Describes small vibrations in a homogeneous string. u(t, x)

More information

RATES(U) CALIFORNIA UNIV DAVIS W G HOOVER 91 MAR 85 =AD-RI53491 CONFORNTIONAL AND MECHANICAL PROPERTIES AT HIGH STRAIN II

RATES(U) CALIFORNIA UNIV DAVIS W G HOOVER 91 MAR 85 =AD-RI53491 CONFORNTIONAL AND MECHANICAL PROPERTIES AT HIGH STRAIN II =AD-RI53491 CONFORNTIONAL AND MECHANICAL PROPERTIES AT HIGH STRAIN II RATES(U) CALIFORNIA UNIV DAVIS W G HOOVER 91 MAR 85 ASFEDM RO-i86iI. 7-EG DRR029-82-K-0022 UNCLASSIFE O O E FIG 28/4 NL 1.0 t--- --

More information

MICROCOPY RESOLUIION IESI CHARI. NAMfNA[ IC~ ANtn

MICROCOPY RESOLUIION IESI CHARI. NAMfNA[ IC~ ANtn A0-A107 459 NEW YORK( UNIV NY COURANT INST OF MATHEMATICAL SCIENCE-S F/6 20/11 RESEARCH IN C ONTI NUUM MECANICS- C-30 SIIDNOV 81 F JOHN N5001V76C-130NL CHNCS( UNLASIIE 14"' '2."8 MICROCOPY RESOLUIION IESI

More information

DEPARTMENT OF THE ARMY WATERWAYS EXPERIMENT STATION. CORPS OF ENGINEERS P. 0. BOX 631 VICKSBURG. MISSISSIPPI 39180

DEPARTMENT OF THE ARMY WATERWAYS EXPERIMENT STATION. CORPS OF ENGINEERS P. 0. BOX 631 VICKSBURG. MISSISSIPPI 39180 DEPARTMENT OF THE ARMY WATERWAYS EXPERIMENT STATION. CORPS OF ENGINEERS P. 0. BOX 631 VICKSBURG. MISSISSIPPI 39180 IN REPLY REF6R TO: WESYV 31 July 1978 SUBJECT: Transmittal of Technical Report D-78-34

More information

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates. LEGENDRE POLYNOMIALS AND APPLICATIONS We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.. Legendre equation: series solutions The Legendre equation is

More information

Solution of Differential Equation by Finite Difference Method

Solution of Differential Equation by Finite Difference Method NUMERICAL ANALYSIS University of Babylon/ College of Engineering/ Mechanical Engineering Dep. Lecturer : Dr. Rafel Hekmat Class : 3 rd B.Sc Solution of Differential Equation by Finite Difference Method

More information

C-) ISUMMARY REPORT LINEAR AND NONLINEAR ULTRASONIC INTERACTIONS ON LIQUID-SOLID BOUNDARIES

C-) ISUMMARY REPORT LINEAR AND NONLINEAR ULTRASONIC INTERACTIONS ON LIQUID-SOLID BOUNDARIES AD-AI13 682 GEORGETOWN UF4IV WASHINGTON DC DEPT OF PHYSICS F/G 20/1 LINEAR AND NONLINEAR ULTRASONIC INTERACTIONS OH LIQUID-SOLID 9O--ETC(U) APR 82 A S WATER UNCLASSIFIED SUUS-042-S N0OOIA-78-C-0584 NL

More information

CHAPTER VIII HILBERT SPACES

CHAPTER VIII HILBERT SPACES CHAPTER VIII HILBERT SPACES DEFINITION Let X and Y be two complex vector spaces. A map T : X Y is called a conjugate-linear transformation if it is a reallinear transformation from X into Y, and if T (λx)

More information

BOUNDARY VALUE PROBLEMS IN KREĬN SPACES. Branko Ćurgus Western Washington University, USA

BOUNDARY VALUE PROBLEMS IN KREĬN SPACES. Branko Ćurgus Western Washington University, USA GLASNIK MATEMATIČKI Vol. 35(55(2000, 45 58 BOUNDARY VALUE PROBLEMS IN KREĬN SPACES Branko Ćurgus Western Washington University, USA Dedicated to the memory of Branko Najman. Abstract. Three abstract boundary

More information

RD-RI STATE-SELECTED ION-MOLECULE REACTION DYNRMICS(U)i/ STANFORD UNIV CA DEPT OF CHEEISTRY R J MORRISON ET AL. D-AlSIFED 5 DEC 84

RD-RI STATE-SELECTED ION-MOLECULE REACTION DYNRMICS(U)i/ STANFORD UNIV CA DEPT OF CHEEISTRY R J MORRISON ET AL. D-AlSIFED 5 DEC 84 RD-RI58 868 STATE-SELECTED ION-MOLECULE REACTION DYNRMICS(U)i/ STANFORD UNIV CA DEPT OF CHEEISTRY R J MORRISON ET AL. D-AlSIFED 5 DEC 84 AFOSR-TR-84-i238 F49620-83-C-0033 UNCLASSIFIE O O E F/G 7/5 NL 1111=

More information

,AD-R A MEASURE OF VARIABILITY BASED ON THE HARMONIC MEAN AND i/i ITS USE IN APPROXIMATIONS(U) CITY COIL NEW YORK DEPT OF MATHEMATICS M BROWN

,AD-R A MEASURE OF VARIABILITY BASED ON THE HARMONIC MEAN AND i/i ITS USE IN APPROXIMATIONS(U) CITY COIL NEW YORK DEPT OF MATHEMATICS M BROWN ,AD-R127 397 A MEASURE OF VARIABILITY BASED ON THE HARMONIC MEAN AND i/i ITS USE IN APPROXIMATIONS(U) CITY COIL NEW YORK DEPT OF MATHEMATICS M BROWN MAR 03 CUNY-MB3 AFOSR-TR-83-8298 UNCLASSIFIED RFOSR-82-824

More information

ID-AS ~ DEPT OF MATHEMATICS AND COMPUTER SCIENCE N J ABLOWITZ so APR 96 AFOSR-RI-12AFS-4SS UNCLSSIFIED 98AR9 FS-R8-12ROR9-05 F/G 12/1 NL. Eu'.

ID-AS ~ DEPT OF MATHEMATICS AND COMPUTER SCIENCE N J ABLOWITZ so APR 96 AFOSR-RI-12AFS-4SS UNCLSSIFIED 98AR9 FS-R8-12ROR9-05 F/G 12/1 NL. Eu'. ID-AS ~ DEPT OF MATHEMATICS AND COMPUTER SCIENCE N J ABLOWITZ so APR 96 AFOSR-RI-12AFS-4SS UNCLSSIFIED 98AR9 FS-R8-12ROR9-05 F/G 12/1 NL Eu'."n Ie 1.0. ~I140 2.o _L1125 11. 11..8 11111=~II jii 1 %1 Jr-

More information

Fourth Week: Lectures 10-12

Fourth Week: Lectures 10-12 Fourth Week: Lectures 10-12 Lecture 10 The fact that a power series p of positive radius of convergence defines a function inside its disc of convergence via substitution is something that we cannot ignore

More information

Physics 250 Green s functions for ordinary differential equations

Physics 250 Green s functions for ordinary differential equations Physics 25 Green s functions for ordinary differential equations Peter Young November 25, 27 Homogeneous Equations We have already discussed second order linear homogeneous differential equations, which

More information

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability... Functional Analysis Franck Sueur 2018-2019 Contents 1 Metric spaces 1 1.1 Definitions........................................ 1 1.2 Completeness...................................... 3 1.3 Compactness......................................

More information

UNCERTAINTY PRINCIPLES FOR THE FOCK SPACE

UNCERTAINTY PRINCIPLES FOR THE FOCK SPACE UNCERTAINTY PRINCIPLES FOR THE FOCK SPACE KEHE ZHU ABSTRACT. We prove several versions of the uncertainty principle for the Fock space F 2 in the complex plane. In particular, for any unit vector f in

More information

111 L3, L 111 "- MICROCOPY RESOLUTION TEST CHART NATINAL BUREAU OF STANOARDS1963-A

111 L3, L 111 - MICROCOPY RESOLUTION TEST CHART NATINAL BUREAU OF STANOARDS1963-A HD-R137 IEEEEEE EAERCH IN RLGEBRFIIC MANIPULATION(U) MASSACHUSETTS I'll INST OF TECH CAMBRIDGE LAB FOR COMPUTER SCIENCE J MOSES 26 JUN 8-1 RFOSR-TR-84-0836 RFOSR-80-0250 UNCLRSSIFIED F/G 12/1 NL 111 L3,

More information

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms (February 24, 2017) 08a. Operators on Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2016-17/08a-ops

More information

I North * ~ Mathematics Research Center University of Wisconsin- Madisonl 510 Walnut Street Madison. Wisconsin 53706

I North * ~ Mathematics Research Center University of Wisconsin- Madisonl 510 Walnut Street Madison. Wisconsin 53706 A 851 WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER A CLASS OF LOCAL EXPLICIT MANY-KNOT SPLINE INTERPOLATION SCHEME--ETC(U) JUL 81 D X ai DAAG29-80-C-0041 UNCLASSIFIED MRC-TSR-2238 NL :hlllllllli

More information

RO-AI55614? CONFIDENCE INTERYALS USIlNG THE REGENERTIYE METHOD FOR 1/1 SIMULATION OUTPUT.. (U) STANFORD UNJY CA DEPT OF 1"'7 1OPERTIONS RESEARCH P W

RO-AI55614? CONFIDENCE INTERYALS USIlNG THE REGENERTIYE METHOD FOR 1/1 SIMULATION OUTPUT.. (U) STANFORD UNJY CA DEPT OF 1'7 1OPERTIONS RESEARCH P W RO-AI55614? CONFIDENCE INTERYALS USIlNG THE REGENERTIYE METHOD FOR 1/1 SIMULATION OUTPUT.. (U) STANFORD UNJY CA DEPT OF 1"'7 1OPERTIONS RESEARCH P W GLYNN ET AL. SEP 84 TR-3 UNCLSSIFIED RO-2927. 3-MA DAA029-84-K-930

More information

Functional Analysis Review

Functional Analysis Review Functional Analysis Review Lorenzo Rosasco slides courtesy of Andre Wibisono 9.520: Statistical Learning Theory and Applications September 9, 2013 1 2 3 4 Vector Space A vector space is a set V with binary

More information

OF NAVAL RESEARCH. Technical Report No. 87. Prepared for Publication. in the.. v.. il and/or -- c Spocial Journal of Elactroanalytical Chemistry it

OF NAVAL RESEARCH. Technical Report No. 87. Prepared for Publication. in the.. v.. il and/or -- c Spocial Journal of Elactroanalytical Chemistry it ,~OFFICE OF NAVAL RESEARCH Contract N00014-86-K-0556 Technical Report No. 87. Th., Combined Influence of Solution Resistance and Charge-Transfer Kinetics on Microelectrode Cyclic Voltammetry oo i Acee'ic

More information

INVERSE FUNCTION THEOREM and SURFACES IN R n

INVERSE FUNCTION THEOREM and SURFACES IN R n INVERSE FUNCTION THEOREM and SURFACES IN R n Let f C k (U; R n ), with U R n open. Assume df(a) GL(R n ), where a U. The Inverse Function Theorem says there is an open neighborhood V U of a in R n so that

More information

Constrained controllability of semilinear systems with delayed controls

Constrained controllability of semilinear systems with delayed controls BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 56, No. 4, 28 Constrained controllability of semilinear systems with delayed controls J. KLAMKA Institute of Control Engineering, Silesian

More information

N-WEAKLY SUPERCYCLIC MATRICES

N-WEAKLY SUPERCYCLIC MATRICES N-WEAKLY SUPERCYCLIC MATRICES NATHAN S. FELDMAN Abstract. We define an operator to n-weakly hypercyclic if it has an orbit that has a dense projection onto every n-dimensional subspace. Similarly, an operator

More information

EEEJ AA CHICAGO UNIV ILL DEPT OF CHEMISTRY F/6 7/4 ION-ION NEUTRALIZATION PROCESSES AND THEIR CONSEQUENCES. (U)

EEEJ AA CHICAGO UNIV ILL DEPT OF CHEMISTRY F/6 7/4 ION-ION NEUTRALIZATION PROCESSES AND THEIR CONSEQUENCES. (U) AA099 05 CHICAGO UNIV ILL DEPT OF CHEMISTRY F/6 7/4 ION-ION NEUTRALIZATION PROCESSES AND THEIR CONSEQUENCES. (U) EEEJ MA Y 81 R S BERRY DAAG29RO0-K-0016 UNCLASSIFIED 880 169451C NL UNCLASS!FIED, SECUI4ITY

More information

Analysis of undamped second order systems with dynamic feedback

Analysis of undamped second order systems with dynamic feedback Control and Cybernetics vol. 33 (24) No. 4 Analysis of undamped second order systems with dynamic feedback by Wojciech Mitkowski Chair of Automatics AGH University of Science and Technology Al. Mickiewicza

More information

UTC ETT160. Incorporation of Hands-on Experiments in an Introductory Structural Analysis Course

UTC ETT160. Incorporation of Hands-on Experiments in an Introductory Structural Analysis Course Incorporation of Hands-on Experiments in an Introductory Structural Analysis Course By John J. Myers, Ph.D., P.E. Trevor Hrynyk Ashraf Ayoub, Ph.D., P.E. Abdeldjelil Belarbi, Ph.D., P.E. William Schonberg,

More information

C.I.BYRNES,D.S.GILLIAM.I.G.LAUK O, V.I. SHUBOV We assume that the input u is given, in feedback form, as the output of a harmonic oscillator with freq

C.I.BYRNES,D.S.GILLIAM.I.G.LAUK O, V.I. SHUBOV We assume that the input u is given, in feedback form, as the output of a harmonic oscillator with freq Journal of Mathematical Systems, Estimation, and Control Vol. 8, No. 2, 1998, pp. 1{12 c 1998 Birkhauser-Boston Harmonic Forcing for Linear Distributed Parameter Systems C.I. Byrnes y D.S. Gilliam y I.G.

More information

Ln800 North Quincy Street IS. NUMBER11 OF PAGIES

Ln800 North Quincy Street IS. NUMBER11 OF PAGIES ISCURITY CL.ASSIFICATION OF THIS PAGE (Whon Does An 084 REPOT DOUMENATIO PAG REPOT DCUMNTATON AGE39yolt READ ISTRUC'IOms COMPLEIMG FORM 1. RPOR NumaftL GOVT ACCESSION NO.3 RECIPIENT'S CATALOG NUMBERA C.

More information

1 Math 241A-B Homework Problem List for F2015 and W2016

1 Math 241A-B Homework Problem List for F2015 and W2016 1 Math 241A-B Homework Problem List for F2015 W2016 1.1 Homework 1. Due Wednesday, October 7, 2015 Notation 1.1 Let U be any set, g be a positive function on U, Y be a normed space. For any f : U Y let

More information

HW 4 SOLUTIONS. , x + x x 1 ) 2

HW 4 SOLUTIONS. , x + x x 1 ) 2 HW 4 SOLUTIONS The Way of Analysis p. 98: 1.) Suppose that A is open. Show that A minus a finite set is still open. This follows by induction as long as A minus one point x is still open. To see that A

More information

************************************* Applied Analysis I - (Advanced PDE I) (Math 940, Fall 2014) Baisheng Yan

************************************* Applied Analysis I - (Advanced PDE I) (Math 940, Fall 2014) Baisheng Yan ************************************* Applied Analysis I - (Advanced PDE I) (Math 94, Fall 214) by Baisheng Yan Department of Mathematics Michigan State University yan@math.msu.edu Contents Chapter 1.

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

APPROXIMATION OF MOORE-PENROSE INVERSE OF A CLOSED OPERATOR BY A SEQUENCE OF FINITE RANK OUTER INVERSES

APPROXIMATION OF MOORE-PENROSE INVERSE OF A CLOSED OPERATOR BY A SEQUENCE OF FINITE RANK OUTER INVERSES APPROXIMATION OF MOORE-PENROSE INVERSE OF A CLOSED OPERATOR BY A SEQUENCE OF FINITE RANK OUTER INVERSES S. H. KULKARNI AND G. RAMESH Abstract. Let T be a densely defined closed linear operator between

More information

I AO) I K HOLLIG ET AL. OCT 83 MRC-TSR 2582 OAAG29 80 C 0041 A A SINGULAR FREE BOUNOART PROBLEM(U) WISCONSIN '

I AO) I K HOLLIG ET AL. OCT 83 MRC-TSR 2582 OAAG29 80 C 0041 A A SINGULAR FREE BOUNOART PROBLEM(U) WISCONSIN ' I AO) A136 325 A SINGULAR FREE BOUNOART PROBLEM(U) WISCONSIN ' UNIV-MADISON MATHEMATICS RESEARCH CENTER I K HOLLIG ET AL. OCT 83 MRC-TSR 2582 OAAG29 80 C 0041 IN A OSSIFIED r / 12 1I NI 11 Q. 12.8 MICRCOP

More information

THE EULER CHARACTERISTIC OF A LIE GROUP

THE EULER CHARACTERISTIC OF A LIE GROUP THE EULER CHARACTERISTIC OF A LIE GROUP JAY TAYLOR 1 Examples of Lie Groups The following is adapted from [2] We begin with the basic definition and some core examples Definition A Lie group is a smooth

More information

AFRL-RW-EG-TP

AFRL-RW-EG-TP AFRL-RW-EG-TP-2011-018 Relational Information Space for Dynamic Systems Robert A. Murphey Air Force Research Laboratory, Munitions Directorate AFRL/RWG 101 West Eglin Boulevard Eglin AFB, FL 32542-6810

More information

UNCLASSIFIED F/S 28/iS NI

UNCLASSIFIED F/S 28/iS NI AD-R158 6680 POSSIBLE he HRNISMS OF RTOM TRANSFER IN SCANNING / TUNNELING MICROSCOPY(U) CHICAGO UNIV IL JAMES FRANCK INST R GONER JUL 85 N@814-77-C-88:18 UNCLASSIFIED F/S 28/iS NI 11111o 1.0.02 IL25L 1386

More information

A7A INTERIMREPORT GRANT AFOSR AU)NORHCAROLNA / UNIV AT CHARLO0TE DEPT OF MATHEMATICS M ABDEL-HAMEED AN S DAUG 83 AFOSR-TN 83 AN N

A7A INTERIMREPORT GRANT AFOSR AU)NORHCAROLNA / UNIV AT CHARLO0TE DEPT OF MATHEMATICS M ABDEL-HAMEED AN S DAUG 83 AFOSR-TN 83 AN N A7A35 620 INTERIMREPORT GRANT AFOSR80-0245AU)NORHCAROLNA / UNIV AT CHARLO0TE DEPT OF MATHEMATICS M ABDEL-HAMEED AN S DAUG 83 AFOSR-TN 83 AN N AFOSR-80-0245 1.0 12 III 12. 1 5III 1 11.4 il1.6 MICROCOPY

More information

Exercises to Applied Functional Analysis

Exercises to Applied Functional Analysis Exercises to Applied Functional Analysis Exercises to Lecture 1 Here are some exercises about metric spaces. Some of the solutions can be found in my own additional lecture notes on Blackboard, as the

More information

here, this space is in fact infinite-dimensional, so t σ ess. Exercise Let T B(H) be a self-adjoint operator on an infinitedimensional

here, this space is in fact infinite-dimensional, so t σ ess. Exercise Let T B(H) be a self-adjoint operator on an infinitedimensional 15. Perturbations by compact operators In this chapter, we study the stability (or lack thereof) of various spectral properties under small perturbations. Here s the type of situation we have in mind:

More information