Integrated Computational Materials Engineering Education

Size: px
Start display at page:

Download "Integrated Computational Materials Engineering Education"

Transcription

1 Integrated Computational Materials Engineering Education Lecture on Density Functional Theory An Introduction Mark Asta Dept. of Materials Science and Engineering, University of California, Berkeley & Materials Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720

2 Acknowledgements Portions of these lectures are based on material put together by Daryl Chrzan (UC Berkeley) and Jeff Grossman (MIT) as part of a TMS short course that the three of us taught at the 2010 annual meeting. The Division of Materials Research at the National Science Foundation is acknowledged for financial support in the development of the lecture and module

3 Use of DFT in Materials Research K. Thornton, S. Nola, R. E. Garcia, MA and G. B. Olson, Computational Materials Science and Engineering Education: A Survey of Trends and Needs, JOM (2009)

4 The Role of Electronic Structure Methods in ICME A wide variety of relevant properties can be calculated from knowledge of atomic numbers alone Elastic constants Finite-temperature thermodynamic and transport properties Energies of point, line and planar defects For many classes of systems accuracy is quite high Can be used to obtain missing properties in materials design when experimental data is lacking, hard to obtain, or controversial Can be used to discover new stable compounds with target properties The starting point for hierarchical multiscale modeling Enables development of interatomic potentials for larger-scale classical modeling

5 Materials Data for Discovery & Design A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, Applied Physics Letters Materials, 2013, 1(1),

6 Materials Data for Discovery & Design

7 Materials Data for Discovery & Design DFT Lecture, The 7th Summer School for Integrated Computational Materials Education

8 Materials Data for Discovery & Design

9 Materials Data for Discovery & Design

10 Formalism Hydrogen Atom Density Functional Theory Outline Exchange-Correlation Potentials Pseudopotentials and Related Approaches Some Commercial and Open Source Codes Practical Issues Implementation Periodic boundary conditions k-points Plane-wave basis sets Parameters controlling numerical precision Example Exercise

11 Introduction The Hydrogen Atom Proton with mass M 1, coordinate R 1 Electron with mass m 1, coordinate r 1 $ & % 2 2M m e2 r ' ) Ψ(R 1,r 2 ) = EΨ(R 1,r 2 ) ( r = r 1 r 2, R = M 1 R 1 + m 2 r 2 M 1 + m 2, m = M 1 m 2 M 1 + m 2, M = M 1 + m 2 $ & % 2 2M R 2 2 2m r 2 e2 r ' ) Ψ(R,r) = EΨ(R,r) ( Ψ(R,r) =ψ cm (R)ψ r (r) $ & % 2M ' $ 2 R ) ψ cm (R) = E cm ψ cm (R) & 2 ( 2m r % 2 2 e2 ' ) ψ r (r) = E r ψ r (r) r (

12 Hydrogen Atom Switch to Spherical Coordinates 2 2m % ' & 1 r 2 % ψ ( ' r & r2 * + r ) 1 % ψ ( ' sinθ * + r 2 sinθ θ & θ ) 1 2 ψ ( * e2 r 2 sin 2 θ ϕ 2 ) r ψ = Eψ ψ(r,θ,φ) = R nl (r)y l m (θ,φ) 2 2m # % $ 1 r 2 d # % dr $ r2 d & ( dr' l(l +1) r 2 e2 r & ( R nl (r) = E n R nl (r) ' θ φ E n = me n = 13.6 ev 2 n 2

13 Hydrogen Atom Wavefunctions n = 1, 2, 3, l = 0 (s), 1(p), 2(d),, n-1 Probability densities through the xz-plane for the electron at different quantum numbers (l, across top; n, down side; m = 0)

14 The Many-Electron Problem Collection of N ions n electrons Analytical solution like that for hydrogen atom not available electrons ions

15 Born-Oppenheimer Approximation Mass of nuclei exceeds that of the electrons by a factor of 1000 or more we can neglect the kinetic energy of the nuclei treat the ion-ion interaction classically significantly simplifies the Hamiltonian for the electrons Consider Hamiltonian for n electrons in potential of N nuclei with atomic numbers Z i H = 2 2m n i=1 2 r i N n j=1 Z i e R i r j 2 i=1 n i=1 n j=1 i j e 2 r i r j external potential Vext ( r ) j

16 Density Functional Theory Hohenberg and Kohn (1964), Kohn and Sham (1965) For each external potential there is a unique groundstate electron density Energy can be obtained by minimizing of a density functional with respect to density of electrons n(r) E groundstate =min{e tot [n(r)]} [ ] = T [ n( r) ] + E [ int n( r) ] + drv ext r E tot n r ( ) ( ) n r ( ) + E ion ion Kinetic Energy Electron-Electron Interactions Electron-Ion Interactions

17 E[{φ i }] =! 2 Kohn-Sham Approach 2m n i=1 n(r) = e φ i (r) 2 n i= φ i * i2 φ i d 3 r + V ext (r)n(r)d 3 r n(r)n(r') d 3 rd 3 r'+ E xc [n(r)] r r' Many-Body Electron-Electron Interactions Lumped into E xc [n(r)] Exchange-Correlation Energy

18 Kohn-Sham Equations $! 2 & 2m 2 i +V nuclei (r)+ %& n(r') r r' ' d 3 r'+v xc (r)) () φ (r) = ε i iφ i (r) V xc (r) δe xc [n(r)] δn(r)

19 Local Density Approximation (e.g., J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981)) E xc [n(r)] = hom ε xc (n(r))n(r)d 3 r ε xc hom (n(r)) Exchange Correlation Energy of Homogeneous Electron Gas of Density n(r)

20 Generalized Gradient Approximation J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) E GGA xc [n(r)] = ε x hom (n(r))n(r)f xc (r s,ζ, s)d 3 r n = 3 / 4π r s 3 = k F 3 / 3π 2 ζ = (n n ) / n s = n /2k F n

21 A Note on Accuracy and Ongoing Research LDA often leads to overbinding Lattice constants can be 1-3 % too small, elastic constants % too stiff, cohesive energies 5-20 % too large BUT, errors are largely systematic Energy differences tend to be more accurate GGA corrects for overbinding Sometimes overcorrects Beyond DFT Approaches For highly correlated systems LDA & GGA perform worse and corrections required (DFT+U, Hybrid Hartree-Fock/DFT, Meta-GGA, DMFT, ) Non-bonded interactions, e.g., van der Waals interactions in graphite, require additional terms or functionals (e.g., vdw-df)

22 Pseudopotentials Potential due to ions is singular at ion core Eigenfunctions oscillate rapidly near singularity Eigenfunction in bonding region is smooth

23 Pseudopotentials For plane-wave basis sets, rapid oscillations require large number of basis functions expensive unnecessary these oscillations don't alter bonding properties Replace potential with nonsingular potential preserve bonding tails of eigenfunction preserve distribution of charge between core and tail regions reduces number of plane waves required for accurate expansion of wavefunction Transferable developed from properties of isolated atoms applied in other situations φ φ pseudo

24 Summary of Approaches Pseudopotentials Core electrons removed from problem and enter only in their effect of the pseudopotential felt by the valence electrons Kohn-Sham equations solved for valence electrons only Augment Plane Waves with atomic-like orbitals An efficient basis set that allows all electrons to be treated in the calculations Basis for all-electron codes Projector-Augmented-Wave method Combines features of both methods Generally accepted as the basis for the most accurate approach for calculations requiring consideration of valence electrons only

25 Some of the Widely Used Codes VASP ( Commercial, Plane-Wave Basis, Pseudopotentials and PAW PWSCF ( Free (and available to run on nanohub), Plane-Wave Basis, Pseudopotentials and PAW CASTEP ( Free in UK, licensed by Accelrys elsewhere, Plane-Wave Basis, Pseudopotentials ABINIT ( Free (and available to run on nanohub), plane-wave basis, pseudopotentials and PAW WIEN2K ( Commercial (modest license fee), all-electron augmented wave method

26 Formalism Hydrogen Atom Density Functional Theory Outline Exchange-Correlation Potentials Pseudopotentials and Related Approaches Some Commercial and Open Source Codes Practical Issues Implementation Periodic boundary conditions k-points Plane-wave basis sets Parameters controlling numerical precision Example Exercise

27 Total Energy in Density Functional Theory E[{φ i }] = 2 2m e N e i=1 φ * i 2 i φ i d 3 r + n(r)n(r') r r' Electron Density Electron Wavefunctions φ i (r) V ext (r)n(r)d 3 r n i=1 n(r) = e φ i (r) 2 d 3 rd 3 r'+e xc [n(r)] Potential Electrons Feel from Nuclei V ext (r) Exchange-Correlation Energy E xc [n(r)] Form depends on whether you use LDA or GGA

28 Kohn-Sham Equations Schrödinger Equation for Electron Wavefunctions $ & %& 2 2 i +V ext (r)+ 2m e n(r') r r' ' d 3 r'+v xc (r)) () φ (r) = ε i iφ i (r) Exchange-Correlation Potential V xc (r) δe xc [n(r)] δn(r) Electron Density n i=1 n(r) = e φ i (r) 2 Note: φ i depends on n(r) which depends on φ i è Solution of Kohn-Sham equations must be done iteratively

29 Self-Consistent Solution to DFT Equations Input Positions of Atoms for a Given Unit Cell and Lattice Constant different Energy for Given Lattice Constant guess charge density compute effective potential compute Kohn-Sham orbitals and density compare output and input charge densities same 1. Set up atom positions 2. Make initial guess of input charge density (often overlapping atomic charge densities) 3. Solve Kohn-Sham equations with this input charge density 4. Compute output charge density from resulting wavefunctions 5. If energy from input and output densities differ by amount greater than a chosen threshold, mix output and input density and go to step 2 6. Quit when energy from input and output densities agree to within prescribed tolerance (e.g., 10-5 ev) Note: In your exercise, positions of atoms are dictated by symmetry. If this is not the case another loop must be added to minimize energy with respect to atomic positions.

30 Implementation of DFT for a Single Crystal Crystal Structure Defined by Unit Cell Vectors and Positions of Basis Atoms Example: Diamond Cubic Structure of Si a a a Unit Cell Vectors a 1 = a (-1/2, 1/2, 0) a 2 = a (-1/2, 0, 1/2) a 3 = a (0, 1/2, 1/2) Basis Atom Positions ¼ ¼ ¼ All atoms in the crystal can be obtained by adding integer multiples of unit cell vectors to basis atom positions

31 Electron Density in Crystal Lattice a a a Unit-Cell Vectors a 1 = a (-1/2, 1/2, 0) a 2 = a (-1/2, 0, 1/2) a 3 = a (0, 1/2, 1/2) Electron density is periodic with periodicity given by R uvw n( r) = n( r + R uvw ) Translation Vectors: R uvw = ua 1 + va 2 + wa 3

32 Brillouin Zone Electronic Bandstructure Example for Si Bandstructure Electronic wavefunctions in a crystal can be indexed by point in reciprocal space (k) and a band index (β)

33 Why? Wavefunctions in a Crystal Obey Bloch s Theorem For a given band β φ k β ( r) = exp ik r ( ) u β ( k r) ( ) Where u β is periodic in real space: u β k r k r ( ) = u β k ( r + R uvw ) Translation Vectors: R uvw = ua 1 + va 2 + wa 3

34 Representation of Electron Density φ k β ( r) = exp ik r ( ) u β ( k r) N e n(r) = e φ i (r) 2 i=1 ΩBZ ( ) n(r) = e φ k β r β 2 f (εk β ε F ) d 3 k Ω BZ In practice the integral over the Brillouin zone is replaced with a sum over a finite number of k-points (N kpt ) n(r) e Integral over k-points in first Brillouin zone f(ε-ε F ) is Fermi-Dirac distribution function with Fermi energy ε F β N kpt j=1 β w j φ k j ( r) 2 f (ε β k j ε F ) One parameter that needs to be checked for numerical convergence is number of k-points

35 Representation of Wavefunctions Fourier-Expansion as Series of Plane Waves For a given band: φ k β ( r) = exp ik r ( ) u β ( k r) Recall that u β is periodic in real space: u β k r k r u k β ( r) ( ) ( ) = u β k ( r + R uvw ) can be written as a Fourier Series: u β k ( r) = u β k ( G lmn )exp ig lmn r where the a i * G lmn = la * 1 + ma * * 2 + na 3 are primitive reciprocal lattice vectors lmn a * 1 a 1 = 2π a * 1 a 2 = 0 a * 1 a 3 = 0 a * 2 a 1 = 0 a * 2 a 2 = 2π a * 2 a 3 = 0 a * 3 a 1 = 0 a * 3 a 2 = 0 a * 3 a 3 = 2π ( )

36 Recall Properties of Fourier Series Black line = (exact) triangular wave Colored lines = Fourier series truncated at different orders General Form of Fourier Series: For Triangular Wave: Typically we expect the accuracy of a truncated Fourier series to improve as we increase the number of terms

37 Representation of Wavefunctions Plane-Wave Basis Set For a given band φ k β ( r) = exp ik r ( ) u β ( k r) Use Fourier Expansion φ k β ( r) = u β k ( G)exp"# i( G + k) r$ % G In practice the Fourier series is truncated to include all G for which: 2 2m G + k ( ) 2 < E cut Another parameter that needs to be checked for convergence is the plane-wave cutoff energy E cut

38 Examples of Convergence Checks Effect of E cut Effect of Number of k Points

39 Formalism Hydrogen Atom Density Functional Theory Outline Exchange-Correlation Potentials Pseudopotentials and Related Approaches Some Commercial and Open Source Codes Practical Issues Implementation Periodic boundary conditions k-points Plane-wave basis sets Parameters controlling numerical precision Example Exercise

40 Your Exercise: Part 1 Calculate equation of state of diamond cubic Si using Quantum Espresso on Nanohub ( You will compare accuracy of LDA and GGA You will check numerical convergence with respect to number of k-points and plane-wave cutoff You will make use of the following unit cell for diamond-cubic structure a Lattice Vectors a 1 = a (-1/2, 1/2, 0) a 2 = a (-1/2, 0, 1/2) a 3 = a (0, 1/2, 1/2) a a Basis Atom Positions ¼ ¼ ¼

41 Equation of State A Probe of Interatomic Interactions Energy per atom Schematic Energy vs. Volume Relation Diamond Cubic Structure of Si a Volume per atom (=a 3 /8 for Si) a a pageid=361

42 P = E V Equation of State What Properties Can we Learn from It? Pressure versus Volume Relation Given E(V) one can compute P(V) by taking derivative Recall 1 st Law of Thermo: de = T ds - P dv and consider T = 0 K Equilibrium Volume (or Lattice Constant) Volume corresponding to zero pressure = Volume where slope of E(V) is zero Volume measured experimentally at P = 1 atm B = V P V = V 2 E V 2 Bulk Modulus B related to curvature of E(V) Function

43 Your Exercise: Part 2 Non-hydrostatic Stress and Strain Stress-Strain Relations in Linear Elasticity σ ij = k,l C ijkl ε kl Stress Strain C ijkl Single-Crystal Elastic Constants Stress-Strain Relations in Linear Elasticity Consider Single Strain ε 33 =ε σ 33 = C 11 ε σ 22 = C 12 ε Voigt Notation (for Cubic Crystal) C 3333 =C 2222 =C 1111 =C 11 C 2233 =C 1133 =C 1122 =C 2211 =C 3311 =C 3322 =C 12

The electronic structure of materials 2 - DFT

The electronic structure of materials 2 - DFT Quantum mechanics 2 - Lecture 9 December 19, 2012 1 Density functional theory (DFT) 2 Literature Contents 1 Density functional theory (DFT) 2 Literature Historical background The beginnings: L. de Broglie

More information

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Outline PART 1: Fundamentals of Density functional theory (DFT)

More information

Practical Guide to Density Functional Theory (DFT)

Practical Guide to Density Functional Theory (DFT) Practical Guide to Density Functional Theory (DFT) Brad Malone, Sadas Shankar Quick recap of where we left off last time BD Malone, S Shankar Therefore there is a direct one-to-one correspondence between

More information

Electronic Structure Methodology 1

Electronic Structure Methodology 1 Electronic Structure Methodology 1 Chris J. Pickard Lecture Two Working with Density Functional Theory In the last lecture we learnt how to write the total energy as a functional of the density n(r): E

More information

DFT: Exchange-Correlation

DFT: Exchange-Correlation DFT: Local functionals, exact exchange and other post-dft methods Stewart Clark University of Outline Introduction What is exchange and correlation? Quick tour of XC functionals (Semi-)local: LDA, PBE,

More information

MODULE 2: QUANTUM MECHANICS. Practice: Quantum ESPRESSO

MODULE 2: QUANTUM MECHANICS. Practice: Quantum ESPRESSO MODULE 2: QUANTUM MECHANICS Practice: Quantum ESPRESSO I. What is Quantum ESPRESSO? 2 DFT software PW-DFT, PP, US-PP, PAW http://www.quantum-espresso.org FREE PW-DFT, PP, PAW http://www.abinit.org FREE

More information

Pseudopotentials for hybrid density functionals and SCAN

Pseudopotentials for hybrid density functionals and SCAN Pseudopotentials for hybrid density functionals and SCAN Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe Department of Chemistry University of Pennsylvania Why do we need pseudopotentials?

More information

CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 19122

CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 19122 CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 191 THANKS TO MANY COLLABORATORS, INCLUDING SY VOSKO DAVID LANGRETH ALEX

More information

Density Functional Theory for Electrons in Materials

Density Functional Theory for Electrons in Materials Density Functional Theory for Electrons in Materials Richard M. Martin Department of Physics and Materials Research Laboratory University of Illinois at Urbana-Champaign 1 Density Functional Theory for

More information

Teoría del Funcional de la Densidad (Density Functional Theory)

Teoría del Funcional de la Densidad (Density Functional Theory) Teoría del Funcional de la Densidad (Density Functional Theory) Motivation: limitations of the standard approach based on the wave function. The electronic density n(r) as the key variable: Functionals

More information

Electron bands in crystals Pseudopotentials, Plane Waves, Local Orbitals

Electron bands in crystals Pseudopotentials, Plane Waves, Local Orbitals Electron bands in crystals Pseudopotentials, Plane Waves, Local Orbitals Richard M. Martin UIUC Lecture at Summer School Hands-on introduction to Electronic Structure Materials Computation Center University

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Density Functional Theory: from theory to Applications

Density Functional Theory: from theory to Applications Density Functional Theory: from theory to Applications Uni Mainz November 29, 2010 The self interaction error and its correction Perdew-Zunger SIC Average-density approximation Weighted density approximation

More information

Key concepts in Density Functional Theory (II)

Key concepts in Density Functional Theory (II) Kohn-Sham scheme and band structures European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Present Address: LPMCN Université

More information

Key concepts in Density Functional Theory

Key concepts in Density Functional Theory From the many body problem to the Kohn-Sham scheme ILM (LPMCN) CNRS, Université Lyon 1 - France European Theoretical Spectroscopy Facility (ETSF) December 12, 2012 Lyon Outline 1 The many-body problem

More information

nanohub.org learning module: Prelab lecture on bonding and band structure in Si

nanohub.org learning module: Prelab lecture on bonding and band structure in Si nanohub.org learning module: Prelab lecture on bonding and band structure in Si Ravi Vedula, Janam Javerhi, Alejandro Strachan Center for Predictive Materials Modeling and Simulation, School of Materials

More information

Introduction to First-Principles Method

Introduction to First-Principles Method Joint ICTP/CAS/IAEA School & Workshop on Plasma-Materials Interaction in Fusion Devices, July 18-22, 2016, Hefei Introduction to First-Principles Method by Guang-Hong LU ( 吕广宏 ) Beihang University Computer

More information

1 Density functional theory (DFT)

1 Density functional theory (DFT) 1 Density functional theory (DFT) 1.1 Introduction Density functional theory is an alternative to ab initio methods for solving the nonrelativistic, time-independent Schrödinger equation H Φ = E Φ. The

More information

First-principles modeling: The evolution of the field from Walter Kohn s seminal work to today s computer-aided materials design

First-principles modeling: The evolution of the field from Walter Kohn s seminal work to today s computer-aided materials design First-principles modeling: The evolution of the field from Walter Kohn s seminal work to today s computer-aided materials design Peter Kratzer 5/2/2018 Peter Kratzer Abeokuta School 5/2/2018 1 / 34 Outline

More information

Key concepts in Density Functional Theory (II) Silvana Botti

Key concepts in Density Functional Theory (II) Silvana Botti Kohn-Sham scheme, band structure and optical spectra European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address:

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

Pseudopotentials: design, testing, typical errors

Pseudopotentials: design, testing, typical errors Pseudopotentials: design, testing, typical errors Kevin F. Garrity Part 1 National Institute of Standards and Technology (NIST) Uncertainty Quantification in Materials Modeling 2015 Parameter free calculations.

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

MODULE 2: QUANTUM MECHANICS. Principles and Theory

MODULE 2: QUANTUM MECHANICS. Principles and Theory MODULE 2: QUANTUM MECHANICS Principles and Theory You are here http://www.lbl.gov/cs/html/exascale4energy/nuclear.html 2 Short Review of Quantum Mechanics Why do we need quantum mechanics? Bonding and

More information

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation Electrochemistry project, Chemistry Department, November 2006 Ab-initio Molecular Dynamics Simulation Outline Introduction Ab-initio concepts Total energy concepts Adsorption energy calculation Project

More information

Dept of Mechanical Engineering MIT Nanoengineering group

Dept of Mechanical Engineering MIT Nanoengineering group 1 Dept of Mechanical Engineering MIT Nanoengineering group » Recap of HK theorems and KS equations» The physical meaning of the XC energy» Solution of a one-particle Schroedinger equation» Pseudo Potentials»

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

Chapter 3. The (L)APW+lo Method. 3.1 Choosing A Basis Set

Chapter 3. The (L)APW+lo Method. 3.1 Choosing A Basis Set Chapter 3 The (L)APW+lo Method 3.1 Choosing A Basis Set The Kohn-Sham equations (Eq. (2.17)) provide a formulation of how to practically find a solution to the Hohenberg-Kohn functional (Eq. (2.15)). Nevertheless

More information

DFT EXERCISES. FELIPE CERVANTES SODI January 2006

DFT EXERCISES. FELIPE CERVANTES SODI January 2006 DFT EXERCISES FELIPE CERVANTES SODI January 2006 http://www.csanyi.net/wiki/space/dftexercises Dr. Gábor Csányi 1 Hydrogen atom Place a single H atom in the middle of a largish unit cell (start with a

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

Supporting information. Origins of High Electrolyte-Electrode Interfacial Resistances in Lithium Cells. Containing Garnet Type LLZO Solid Electrolytes

Supporting information. Origins of High Electrolyte-Electrode Interfacial Resistances in Lithium Cells. Containing Garnet Type LLZO Solid Electrolytes Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting information Origins of High Electrolyte-Electrode Interfacial Resistances

More information

Introduction to density functional perturbation theory for lattice dynamics

Introduction to density functional perturbation theory for lattice dynamics Introduction to density functional perturbation theory for lattice dynamics SISSA and DEMOCRITOS Trieste (Italy) Outline 1 Lattice dynamic of a solid: phonons Description of a solid Equations of motion

More information

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Question 1: Basis sets Consider the split valence SV3-21G one electron basis set for formaldehyde

More information

Recent advances in development of single-point orbital-free kinetic energy functionals

Recent advances in development of single-point orbital-free kinetic energy functionals PacifiChem 2010 p. 1/29 Recent advances in development of single-point orbital-free kinetic energy functionals Valentin V. Karasiev vkarasev@qtp.ufl.edu Quantum Theory Project, Departments of Physics and

More information

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch Electronic Structure Theory for Periodic Systems: The Concepts Christian Ratsch Institute for Pure and Applied Mathematics and Department of Mathematics, UCLA Motivation There are 10 20 atoms in 1 mm 3

More information

Solid State Theory: Band Structure Methods

Solid State Theory: Band Structure Methods Solid State Theory: Band Structure Methods Lilia Boeri Wed., 11:15-12:45 HS P3 (PH02112) http://itp.tugraz.at/lv/boeri/ele/ Plan of the Lecture: DFT1+2: Hohenberg-Kohn Theorem and Kohn and Sham equations.

More information

Two implementations of the Projector Augmented Wave (PAW) formalism

Two implementations of the Projector Augmented Wave (PAW) formalism Introduction The tools available for detailed first-principles studies of materials have benefited enormously from the development of several international collaborations engaged in developing open source

More information

CHEM6085: Density Functional Theory

CHEM6085: Density Functional Theory Lecture 11 CHEM6085: Density Functional Theory DFT for periodic crystalline solids C.-K. Skylaris 1 Electron in a one-dimensional periodic box (in atomic units) Schrödinger equation Energy eigenvalues

More information

Electronic structure, plane waves and pseudopotentials

Electronic structure, plane waves and pseudopotentials Electronic structure, plane waves and pseudopotentials P.J. Hasnip Spectroscopy Workshop 2009 We want to be able to predict what electrons and nuclei will do from first principles, without needing to know

More information

DFT / SIESTA algorithms

DFT / SIESTA algorithms DFT / SIESTA algorithms Javier Junquera José M. Soler References http://siesta.icmab.es Documentation Tutorials Atomic units e = m e = =1 atomic mass unit = m e atomic length unit = 1 Bohr = 0.5292 Ang

More information

Electrons in Crystals. Chris J. Pickard

Electrons in Crystals. Chris J. Pickard Electrons in Crystals Chris J. Pickard Electrons in Crystals The electrons in a crystal experience a potential with the periodicity of the Bravais lattice: U(r + R) = U(r) The scale of the periodicity

More information

Algorithms and Computational Aspects of DFT Calculations

Algorithms and Computational Aspects of DFT Calculations Algorithms and Computational Aspects of DFT Calculations Part I Juan Meza and Chao Yang High Performance Computing Research Lawrence Berkeley National Laboratory IMA Tutorial Mathematical and Computational

More information

Exchange-Correlation Functional

Exchange-Correlation Functional Exchange-Correlation Functional Aiichiro Nakano Collaboratory for Advanced Computing & Simulations Depts. of Computer Science, Physics & Astronomy, Chemical Engineering & Materials Science, and Biological

More information

DFT in practice : Part II. Ersen Mete

DFT in practice : Part II. Ersen Mete pseudopotentials Department of Physics Balıkesir University, Balıkesir - Turkey August 13, 2009 - NanoDFT 09, İzmir Institute of Technology, İzmir Outline Pseudopotentials Basic Ideas Norm-conserving pseudopotentials

More information

Practical calculations using first-principles QM Convergence, convergence, convergence

Practical calculations using first-principles QM Convergence, convergence, convergence Practical calculations using first-principles QM Convergence, convergence, convergence Keith Refson STFC Rutherford Appleton Laboratory September 18, 2007 Results of First-Principles Simulations..........................................................

More information

Electrons in a periodic potential

Electrons in a periodic potential Chapter 3 Electrons in a periodic potential 3.1 Bloch s theorem. We consider in this chapter electrons under the influence of a static, periodic potential V (x), i.e. such that it fulfills V (x) = V (x

More information

Finite-Temperature Hartree-Fock Exchange and Exchange- Correlation Free Energy Functionals. Travis Sjostrom. IPAM 2012 Workshop IV

Finite-Temperature Hartree-Fock Exchange and Exchange- Correlation Free Energy Functionals. Travis Sjostrom. IPAM 2012 Workshop IV 1 of 45 Finite-Temperature Hartree-Fock Exchange and Exchange- Correlation Free Energy Functionals Travis Sjostrom Quantum Theory Project Depts. of Physics and Chemistry IPAM 2012 Workshop IV 2012 2 of

More information

The Plane-wave Pseudopotential Method

The Plane-wave Pseudopotential Method The Plane-wave Pseudopotential Method k(r) = X G c k,g e i(g+k) r Chris J Pickard Electrons in a Solid Nearly Free Electrons Nearly Free Electrons Nearly Free Electrons Electronic Structures Methods Empirical

More information

Introduction to DFT and Density Functionals. by Michel Côté Université de Montréal Département de physique

Introduction to DFT and Density Functionals. by Michel Côté Université de Montréal Département de physique Introduction to DFT and Density Functionals by Michel Côté Université de Montréal Département de physique Eamples Carbazole molecule Inside of diamant Réf: Jean-François Brière http://www.phys.umontreal.ca/~michel_

More information

Basics of Density Functional Theory (DFT)

Basics of Density Functional Theory (DFT) Basics of Density Functional Theory (DFT) Ari Paavo SEITSONEN Ari.P.Seitsonen@iki.fi Département de Chimie École Normale Supérieure, Paris École de Sidi-BelAbbès de Nanomateriaux // Octobre 8-12, 2016

More information

All electron optimized effective potential method for solids

All electron optimized effective potential method for solids All electron optimized effective potential method for solids Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. 22

More information

Physics 211B : Problem Set #0

Physics 211B : Problem Set #0 Physics 211B : Problem Set #0 These problems provide a cross section of the sort of exercises I would have assigned had I taught 211A. Please take a look at all the problems, and turn in problems 1, 4,

More information

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Fakultät für Mathematik und Naturwissenschaften - Lehrstuhl für Physikalische Chemie I / Theoretische Chemie An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Jan-Ole Joswig

More information

Density Functional Theory (DFT)

Density Functional Theory (DFT) Density Functional Theory (DFT) An Introduction by A.I. Al-Sharif Irbid, Aug, 2 nd, 2009 Density Functional Theory Revolutionized our approach to the electronic structure of atoms, molecules and solid

More information

Density functional theory in the solid state

Density functional theory in the solid state Density functional theory in the solid state Ari P Seitsonen IMPMC, CNRS & Universités 6 et 7 Paris, IPGP Department of Applied Physics, Helsinki University of Technology Physikalisch-Chemisches Institut

More information

Quantum Modeling of Solids: Basic Properties

Quantum Modeling of Solids: Basic Properties 1.021, 3.021, 10.333, 22.00 : Introduction to Modeling and Simulation : Spring 2011 Part II Quantum Mechanical Methods : Lecture 5 Quantum Modeling of Solids: Basic Properties Jeffrey C. Grossman Department

More information

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY A TUTORIAL FOR PHYSICAL SCIENTISTS WHO MAY OR MAY NOT HATE EQUATIONS AND PROOFS REFERENCES

More information

Density Functional Theory

Density Functional Theory Density Functional Theory March 26, 2009 ? DENSITY FUNCTIONAL THEORY is a method to successfully describe the behavior of atomic and molecular systems and is used for instance for: structural prediction

More information

Introduction to first-principles modelling and CASTEP

Introduction to first-principles modelling and CASTEP to first-principles modelling and Phil Hasnip to + Atomistic Simulations If we know what the bonding in a material is beforehand, then we can often find good expressions for the forces between atoms, e.g.

More information

Self Consistent Cycle

Self Consistent Cycle Self Consistent Cycle Step 0 : defining your system namelist SYSTEM How to specify the System All periodic systems can be specified by a Bravais Lattice and and atomic basis How to specify the Bravais

More information

Electronic structure of solids: basic concepts and methods

Electronic structure of solids: basic concepts and methods Electronic structure of solids: basic concepts and methods Ondřej Šipr II. NEVF 514 Surface Physics Winter Term 2016-2017 Troja, 21st October 2016 Outline A bit of formal mathematics for the beginning

More information

Density Functional Theory

Density Functional Theory Density Functional Theory Iain Bethune EPCC ibethune@epcc.ed.ac.uk Overview Background Classical Atomistic Simulation Essential Quantum Mechanics DFT: Approximations and Theory DFT: Implementation using

More information

Electronic Structure Calculations, Density Functional Theory and its Modern Implementations

Electronic Structure Calculations, Density Functional Theory and its Modern Implementations Tutoriel Big RENOBLE Electronic Structure Calculations, Density Functional Theory and its Modern Implementations Thierry Deutsch L_Sim - CEA renoble 19 October 2011 Outline 1 of Atomistic calculations

More information

Lecture 4: Basic elements of band theory

Lecture 4: Basic elements of band theory Phys 769 Selected Topics in Condensed Matter Physics Summer 010 Lecture 4: Basic elements of band theory Lecturer: Anthony J. Leggett TA: Bill Coish 1 Introduction Most matter, in particular most insulating

More information

Band calculations: Theory and Applications

Band calculations: Theory and Applications Band calculations: Theory and Applications Lecture 2: Different approximations for the exchange-correlation correlation functional in DFT Local density approximation () Generalized gradient approximation

More information

Module 6 1. Density functional theory

Module 6 1. Density functional theory Module 6 1. Density functional theory Updated May 12, 2016 B A DDFT C K A bird s-eye view of density-functional theory Authors: Klaus Capelle G http://arxiv.org/abs/cond-mat/0211443 R https://trac.cc.jyu.fi/projects/toolbox/wiki/dft

More information

Determining elastic constants of graphene using density functional theory

Determining elastic constants of graphene using density functional theory UNIVERSITY OF GRAZ Determining elastic constants of graphene using density functional theory by Max Niederreiter 01510759 A thesis submitted in partial fulfillment for the degree of Bachelor Of Science

More information

Introduction to density-functional theory. Emmanuel Fromager

Introduction to density-functional theory. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Institut

More information

Multi-Scale Modeling from First Principles

Multi-Scale Modeling from First Principles m mm Multi-Scale Modeling from First Principles μm nm m mm μm nm space space Predictive modeling and simulations must address all time and Continuum Equations, densityfunctional space scales Rate Equations

More information

CHAPTER 3 WIEN2k. Chapter 3 : WIEN2k 50

CHAPTER 3 WIEN2k. Chapter 3 : WIEN2k 50 CHAPTER 3 WIEN2k WIEN2k is one of the fastest and reliable simulation codes among computational methods. All the computational work presented on lanthanide intermetallic compounds has been performed by

More information

Dept of Mechanical Engineering MIT Nanoengineering group

Dept of Mechanical Engineering MIT Nanoengineering group 1 Dept of Mechanical Engineering MIT Nanoengineering group » To calculate all the properties of a molecule or crystalline system knowing its atomic information: Atomic species Their coordinates The Symmetry

More information

Introduction to Computational Chemistry Computational (chemistry education) and/or. (Computational chemistry) education

Introduction to Computational Chemistry Computational (chemistry education) and/or. (Computational chemistry) education Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools to help increase student understanding of material

More information

DFT: Exchange-Correlation

DFT: Exchange-Correlation DFT: Exchange-Correlation Local functionals, exact exchange and other post-dft methods Paul Tulip Centre for Materials Physics Department of Physics University of Durham Outline Introduction What is exchange

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory 1 Introduction to Density Functional Theory 21 February 2011; V172 P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 21 February 2011 Introduction to DFT 2 3 4 Ab initio Computational

More information

CHEM6085: Density Functional Theory

CHEM6085: Density Functional Theory Lecture 5 CHEM6085: Density Functional Theory Orbital-free (or pure ) DFT C.-K. Skylaris 1 Consists of three terms The electronic Hamiltonian operator Electronic kinetic energy operator Electron-Electron

More information

References. Documentation Manuals Tutorials Publications

References.   Documentation Manuals Tutorials Publications References http://siesta.icmab.es Documentation Manuals Tutorials Publications Atomic units e = m e = =1 atomic mass unit = m e atomic length unit = 1 Bohr = 0.5292 Ang atomic energy unit = 1 Hartree =

More information

Homogeneous Electric and Magnetic Fields in Periodic Systems

Homogeneous Electric and Magnetic Fields in Periodic Systems Electric and Magnetic Fields in Periodic Systems Josef W. idepartment of Chemistry and Institute for Research in Materials Dalhousie University Halifax, Nova Scotia June 2012 1/24 Acknowledgments NSERC,

More information

Electronic Structure of MoS 2 Nanotubes

Electronic Structure of MoS 2 Nanotubes Clemson University TigerPrints All Dissertations Dissertations 8-2007 Electronic Structure of MoS 2 Nanotubes Lingyun Xu Clemson University, neilxu@gmail.com Follow this and additional works at: http://tigerprints.clemson.edu/all_dissertations

More information

Set the initial conditions r i. Update neighborlist. Get new forces F i

Set the initial conditions r i. Update neighborlist. Get new forces F i v Set the initial conditions r i ( t 0 ), v i ( t 0 ) Update neighborlist Quantum mechanical models Get new forces F i ( r i ) Solve the equations of motion numerically over time step Δt : r i ( t n )

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

FULL POTENTIAL LINEARIZED AUGMENTED PLANE WAVE (FP-LAPW) IN THE FRAMEWORK OF DENSITY FUNCTIONAL THEORY

FULL POTENTIAL LINEARIZED AUGMENTED PLANE WAVE (FP-LAPW) IN THE FRAMEWORK OF DENSITY FUNCTIONAL THEORY FULL POTENTIAL LINEARIZED AUGMENTED PLANE WAVE (FP-LAPW) IN THE FRAMEWORK OF DENSITY FUNCTIONAL THEORY C.A. Madu and B.N Onwuagba Department of Physics, Federal University of Technology Owerri, Nigeria

More information

Solving Many-Body Schrödinger Equation Using Density Functional Theory and Finite Elements

Solving Many-Body Schrödinger Equation Using Density Functional Theory and Finite Elements Solving Many-Body Schrödinger Equation Using Density Functional Theory and Finite Elements Institute of Physics, Academy of Sciences of the Czech Republic June 21, 2008 Introduction Contens Density Functional

More information

Pseudopotential generation and test by the ld1.x atomic code: an introduction

Pseudopotential generation and test by the ld1.x atomic code: an introduction and test by the ld1.x atomic code: an introduction SISSA and DEMOCRITOS Trieste (Italy) Outline 1 2 3 Spherical symmetry - I The Kohn and Sham (KS) equation is (in atomic units): [ 1 ] 2 2 + V ext (r)

More information

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC Sergey V. Churakov sergey.churakov@psi.ch Paul Scherrer Institute Switzerland Cement Phase Composition C-S-H H Solid Solution Model

More information

Improved Electronic Structure and Optical Properties of sp-hybridized Semiconductors Using LDA+U SIC

Improved Electronic Structure and Optical Properties of sp-hybridized Semiconductors Using LDA+U SIC 286 Brazilian Journal of Physics, vol. 36, no. 2A, June, 2006 Improved Electronic Structure and Optical Properties of sp-hybridized Semiconductors Using LDA+U SIC Clas Persson and Susanne Mirbt Department

More information

GEM4 Summer School OpenCourseWare

GEM4 Summer School OpenCourseWare GEM4 Summer School OpenCourseWare http://gem4.educommons.net/ http://www.gem4.org/ Lecture: Molecular Mechanics by Ju Li. Given August 9, 2006 during the GEM4 session at MIT in Cambridge, MA. Please use

More information

Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory

Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that Keith Refson STFC Rutherford Appleton Laboratory LDA/GGA DFT is good but... Naive LDA/GGA calculation severely underestimates band-gaps.

More information

Introduction to DFT and its Application to Defects in Semiconductors

Introduction to DFT and its Application to Defects in Semiconductors Introduction to DFT and its Application to Defects in Semiconductors Noa Marom Physics and Engineering Physics Tulane University New Orleans The Future: Computer-Aided Materials Design Can access the space

More information

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley

More information

Magnetism in transition metal oxides by post-dft methods

Magnetism in transition metal oxides by post-dft methods Magnetism in transition metal oxides by post-dft methods Cesare Franchini Faculty of Physics & Center for Computational Materials Science University of Vienna, Austria Workshop on Magnetism in Complex

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 29: Electron-phonon Scattering Outline Bloch Electron Scattering Deformation Potential Scattering LCAO Estimation of Deformation Potential Matrix Element

More information

Nonlocal exchange correlation in screened-exchange density functional methods

Nonlocal exchange correlation in screened-exchange density functional methods Nonlocal exchange correlation in screened-exchange density functional methods Byounghak Lee and Lin-Wang Wang Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California

More information

Kronig-Penney model. 2m dx. Solutions can be found in region I and region II Match boundary conditions

Kronig-Penney model. 2m dx. Solutions can be found in region I and region II Match boundary conditions Kronig-Penney model I II d V( x) m dx E Solutions can be found in region I and region II Match boundary conditions Linear differential equations with periodic coefficients Have exponentially decaying solutions,

More information

Lecture 8: Introduction to Density Functional Theory

Lecture 8: Introduction to Density Functional Theory Lecture 8: Introduction to Density Functional Theory Marie Curie Tutorial Series: Modeling Biomolecules December 6-11, 2004 Mark Tuckerman Dept. of Chemistry and Courant Institute of Mathematical Science

More information

Three Most Important Topics (MIT) Today

Three Most Important Topics (MIT) Today Three Most Important Topics (MIT) Today Electrons in periodic potential Energy gap nearly free electron Bloch Theorem Energy gap tight binding Chapter 1 1 Electrons in Periodic Potential We now know the

More information

6: Plane waves, unit cells, k- points and all that

6: Plane waves, unit cells, k- points and all that The Nuts and Bolts of First-Principles Simulation 6: Plane waves, unit cells, k- points and all that Durham, 6th- 13th December 2001 CASTEP Developers Group with support from the ESF ψ k Network Overview

More information

VASP: running on HPC resources. University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria

VASP: running on HPC resources. University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria VASP: running on HPC resources University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria The Many-Body Schrödinger equation 0 @ 1 2 X i i + X i Ĥ (r 1,...,r

More information

Lecture. Ref. Ihn Ch. 3, Yu&Cardona Ch. 2

Lecture. Ref. Ihn Ch. 3, Yu&Cardona Ch. 2 Lecture Review of quantum mechanics, statistical physics, and solid state Band structure of materials Semiconductor band structure Semiconductor nanostructures Ref. Ihn Ch. 3, Yu&Cardona Ch. 2 Reminder

More information

The Plane-Wave Pseudopotential Method

The Plane-Wave Pseudopotential Method Hands-on Workshop on Density Functional Theory and Beyond: Computational Materials Science for Real Materials Trieste, August 6-15, 2013 The Plane-Wave Pseudopotential Method Ralph Gebauer ICTP, Trieste

More information

Intro to ab initio methods

Intro to ab initio methods Lecture 2 Part A Intro to ab initio methods Recommended reading: Leach, Chapters 2 & 3 for QM methods For more QM methods: Essentials of Computational Chemistry by C.J. Cramer, Wiley (2002) 1 ab initio

More information