Chem rd law of thermodynamics., 2018 Uwe Burghaus, Fargo, ND, USA

Size: px
Start display at page:

Download "Chem rd law of thermodynamics., 2018 Uwe Burghaus, Fargo, ND, USA"

Transcription

1 Chem rd law of thermodynamics, 2018 Uwe Burghaus, Fargo, ND, USA

2 Class 1-4 Class 5-8 Class 9 Class Chapter 5 Chapter 6 Chapter 7 Chapter 8, 12 tentative schedule 1 st law 2 nd law 3 rd law Gibbs intro, 1 st law, enthalpy, heat capacity, gas expansions energy conservation Entropy Equilibrium stat thermo version of the laws

3 6 in 1: 2 nd law I PChem he entropy of an isolated system which is not in equilibrium will tend to increase over time, approaching a maximum value at equilibrium. No heat engine can run with 100% efficiency dq rev 0 S S S sys S surr qrev Not really fundamental / official versions: q Heat cannot flow from a colder body to a hotter. irr S 1 rev cold hot Clausius inequality 0 for reversible { }process >0 for irreversible A 2 nd class perpetual mobile does not exists.

4

5 . Engel / P. Reid, Physical chemistry, chapter 5.8 to ch (1 st Ed. / 2 nd Ed.) Or R. Chang, Physical Chemistry for the Biosciences chapter 4.5 (pages 92-98) I PChem Molecular thermodynamics D.A. McQuarrie, J.D. Simon Chapter 7 P. Atkins / J. Paula, Physical chemistry chapter 4.4 (7 th Ed.) Or I.N. Levine, Physical Chemistry, chapter 5.7 (5 th Ed.) Not everyone likes Wikipedia, but this site is good. Bottom line, use more than one source to study. 2018, U. Burghaus

6

7 Plan today 3 rd law of thermodynamics I PChem Example (as a motivation) 3 rd law of thermodynamics More examples Properties of the entropy

8 3 rd law: What about the temperature dependence of the entropy? I PChem

9 Example I PChem What about the temperature dependence of the entropy? Motivation: Calculate the value of S in heating n moles of a monoatomic ideal gas from i to f at constant pressure?

10 S 2 S c p d By the way, where does this equation come from? I PChem ds = dq S 2 = S dq dh=q (for P=const.) dh=cd S 2 = S 1 + C d = S 1+ Cd(ln) = S 1 +Cln( 2 1 )

11 Laws in hermodynamics I PChem 0 th law Definition of the temperature considering the equilibrium of systems. 1 st law U q w 0 for reversible > 0 for irreversible process 2 nd law It is impossible to build a cyclic machine which converts heat into work with an efficiency of 100 %. S Ssys he total Sentropy surr is increasing { in any irreversible process S } 0. 3rd law????????????????? Considering the example it has to do with the temperature dependence of the entropy. 2 c S2 S1 p d S 1 =??? What is the reference 1 point for the entropy?

12 What is the reference point for the entropy? 2 c S2 S1 p d S 1 ( 1 ) = S 1 ( 1 zero Kelvin) =??? 1 I PChem Reference point for entropy is this: Perfect crystal: -- no impurities, -- only one possible crystal structure, -- i.e., most simple case Only one possible state at zero Kelvin. What is the entropy for this kind of system? Only one state w = 1 S = k B ln(w) = k B ln(1) = 0 S 1 ( 1 ) = S 1 (zero Kelvin) = 0 Plank s version: S of a pure, perfect crystal is zero at zero Kelvin.

13 Max Karl Ernst Ludwig Planck ( ) German theoretical physicist Nobel Prize in Physics in 1918 re-naming in 1948 of the Kaiser Wilhelm Society as the Max Planck Society

14 Laws in hermodynamics? I PChem 0 th law Definition of the temperature considering the equilibrium of systems. 1 st law U q w 0 for reversible > 0 for irreversible process 2 nd law It is impossible to build a cyclic machine which converts heat into work with an efficiency of 100 %. S Ssys he total Sentropy surr is increasing { in any irreversible process S } 0. 3rd law lim S ( ) 0 K 0 Simple enough Or,??

15 I PChem lim S ( ) 0 K 0 Plank s version: S of a pure, perfect crystal is zero at zero Kelvin. Nernst's heat postulate: Nernst s original postulate from 1907 states that the entropy change in any isothermal process approaches zero as the temperature approaches zero.

16 Walther Hermann Nernst German physicist Worked on chemical affinity third law of thermodynamics Physical chemistry Electrochemistry hermodynamics Solid state physics Nernst equation I PChem 1920 Nobel Prize in chemistry Watch this one at home

17 Is there a 4 th law (5 th law)? I PChem he temperature in Fargo, North Dakota, will always be too low or too high. Nernst commented that it took 3 people to formulate the 1 st law, 2 for the 2 nd law, but that he had to do the 3 rd one all by himself. herefore, by extrapolation, there could never be a 4 th law. Lars Onsager's 4 th law. mous-scientists/physicists/lars-onsagerinfo.htm

18 Example I PChem What happens when a phase change occurs? Motivation: Determine entropy, enthalpy, and internal energy changes for a process that includes a phase change. For example liquid water is heated to its boiling temperature. What is the total S? Parameters: 1 = 373 K (25C) and 2 = 100C H vap = 41 kj/mol and c = 75 J/(Kmol) both per mole If you need a numerical example. See whiteboard See e.g. Molecular thermodynamics D.A. McQuarrie, J.D. Simon Chapter 7-3

19 whiteboard

20 freezing point boiling point entropy Absolute entropies I PChem S vaporization S fusion 0 0 temperature 3 rd law

21 I PChem Seen in a student exam. Entropy is an abstract concept one cannot actually determine entropies.

22 I PChem C p S > experimental Measure heat capacity (experimentally) qrev p c d solid liquid gas < experimental Extrapolate to 0 Kelvin f b C H C H C f V S S0 d d d 0 f b f S V H solid liquid gas b V B 3 rd law solid liquid Liquid gas H f : fusion (solid liquid) H v : vaporization (liquid gas) f : freezing B : boiling

23 I PChem Seen in a student exam. Entropy is an abstract concept one cannot actually determine entropies. Yes No S C d S and C are closely related

24 Extrapolate to 0 Kelvin I PChem See e.g. Molecular thermodynamics D.A. McQuarrie, J.D. Simon Chapter 7-4

25 Museum Boerhaave C v /3Nk Dulong-Petit law Dulong & Petit: specific heat capacity is independent of the substance when a factor correcting for differences in the atomic weight is used k/e 3R 3R c p M C p is 3R per mole Pierre Louis Dulong ( ) French Physicist Public Domain Photo Alexis hérèse Petit ( ) French Physicist No Photo available c p e Einstein model Albert Einstein ( ) German-American physicist Low temperature limit c p Debye model 3 Peter Debye ( ) Dutch-American physicist R: gas constant M: molar mass : temperature

26 relatively low temperatures small vibrations within harmonic approximation independent atoms (no coupling of vibrations) pair wise Lenard-Jones potentials atoms vibrate at equilibrium position one frequency leads to qualitatively, but not quantitatively correct results n Debye used a continuous frequency distribution n Lattice vibrations can be described as a gas of noninteracting phonons. Phonons in a box.

27 I PChem Lattice contributions to C v at low : For < 5 K, contribution of electron gas: C F V ) ( ) ( D Debye V C Einstein V E e C / R C F D V ) ( 2 ) ( 5 12 C 0 for 0

28 ln(x) Bad handwriting so I typed also this. Some properties of the entropy (S) S is a state function S is extensive vap S >0 and fus S > 0 (S does not depend on the path chosen: initial final state) (S tot = S 1 + S 2 + ) S gas > S liquid > S solid (per mole) S ~ size of a molecule (Why?: # of degrees of freedom increase with number of atoms) P0 then S (Why? S = nrln(v 2 /V 1 ) V 1 : reference volume V 2 for P 0 ) S 0 (Why: = 0K w = 1 (perfect crystal) S = k B ln(w) = 0, note that w >= 1 and S increases with temperature ) f b H f S increases with temperature HV 0 0 f f b B S diamond < S graphite (Why?: High degree of order reduced S) C C C S S d d d x

29 I PChem

30 Some properties of the entropy (S) S is a state function (S does not depend on the path chosen: initial final state) S is extensive (S tot = S 1 + S 2 + ) vap S >0 and fus S > 0 I PChem S gas > S liquid > S solid (per mole) S ~ size of a molecule (Why?: # of degrees of freedom increase with number of atoms) P0 then S (Why? S = nrln(v 2 /V 1 ) V 1 : reference volume V 2 for P 0 ) S 0 (Why: = 0K w = 1 (perfect crystal) S = k B ln(w) = 0, w > 1) S increases with temperature f b H f HV C C C S S0 d d d S diamond < S graphite (Why?: High degree of order reduced S) 0 f f b B

31 Some properties of the entropy (S) S diamond < S graphite (Why?: High degree of order reduced S) I PChem More complex systems have larger S (S ozone > S O2 ) S increases with the volume of a gas (Why?: S ~ ln(v 2 /V 1 ) Large disorder large entropy S(N 0.1 atm) > S(N 1 atm) Entropy change of a reaction aa + bb + cc + dd + r S = ns(products) - ns(reactants)

32 ake Home Message I PChem Is there a manual to science?

33 Laws in hermodynamics - history I PChem 0 th law Definition of the temperature considering the equilibrium of systems. Arnold Sommerfeld Ralph H. Fowler 1 st law U q w 2 nd law 0 for reversible S Ssys Ssurr { } > 0 for irreversible process 3rd law lim S ( ) 0 K 0 3 rd law, Planck s version: S of a pure, perfect crystal is zero at zero Kelvin.

34

35 Supplemental I PChem Nernst s original postulate

36 lim ( S) 0 0K I PChem Plank s version: S of a pure, perfect crystal is zero at zero Kelvin. Nernst's heat postulate: Nernst s original postulate from 1907 states that the entropy change in any isothermal process approaches zero as the temperature approaches zero. Unattainability of absolute zero temperature. Nernst's heat postulate V2: It is impossible for any process, no matter how idealized, to reduce the temperature of a system to its absolute-zero value in a finite number of operations. verification : can absolute zero be reached?

37 Supplemental I PChem Really zero?

38 2 c S2 S1 p d S 1 ( 1 ) =??? 1 I PChem Reference point for entropy is this: Perfect crystal: -- no impurities, -- only one possible crystal structure, -- i.e., most simple case Only one possible state at zero Kelvin. What is the entropy for this kind of system? Only one state w = 1 S = k B ln(w) = k B ln(1) = 0 S 1 ( 1 ) = S 1 (zero Kelvin) = 0 Plank s version: S of a pure, perfect crystal is zero at zero Kelvin.

39 Plank s version: S of a pure, perfect crystal is zero at zero Kelvin. Experimental result: Deviations of experimental and calculated heat capacities for 0 K are known. Example wo different orientations S residual =??

40 S residual =?? wo different orientations weight 2 N N: # of molecules : total # of arrangements res N S k ln( ) k ln(2 ) Nk ln(2) nrln(2) n: # of moles EXAMPLE: 1 mol CO S res 1Rln(2) ~ 5 EXAMPLE: for a single molecule J Kmol EXAMPLE: 3 or 5 different orientations S S res res N nk ln(3 ) N nk ln(5 ) res S 1kln(2) ~ 0

41 I PChem Calorimetric f b C H C H C S S0 d d d q rev c d p f V 0 f b f B spectroscopically Canonical ensemble ln( Q) S k ln( Q) k N, V Entropy from partition functions Partition functions are available spectroscopically See e.g. Molecular thermodynamics D.A. McQuarrie, J.D. Simon Chapter 7-6

42 lim ( S) 0 0K I PChem Plank s version: S of a pure, perfect crystal is zero at zero Kelvin. Nernst's heat postulate: Nernst s original postulate from 1907 states that the entropy change in any isothermal process approaches zero as the temperature approaches zero. Unattainability of absolute zero temperature. Nernst's heat postulate V2: It is impossible for any process, no matter how idealized, to reduce the temperature of a system to its absolute-zero value in a finite number of operations. verification : can absolute zero be reached?

Examples Clausius uncertainty Carnot cycle Asymmetry of heat and work Perpetual mobile Heat pump 10 version of 2 nd law

Examples Clausius uncertainty Carnot cycle Asymmetry of heat and work Perpetual mobile Heat pump 10 version of 2 nd law Chem 759 Entropy Part III Examples Clausius uncertainty Carnot cycle Asymmetry of heat and work Perpetual mobile Heat pump 10 version of 2 nd law Updated PowerPoints with in-class solutions, go to http://www.uweburghaus.us/classes/chem759

More information

-intermediate%20pchem.html

-intermediate%20pchem.html Chem 759 Entropy Part II Practical definition of S Entropy of reversible & irreversible processes PowerPoints Summaries http://www.uweburghaus.us/classes/chem759 -intermediate%20pchem.html http://www.uweburghaus.us/classes/summary_drafts.html

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 11 Aleksey Kocherzhenko March 12, 2015" Last time " W Entropy" Let be the number of microscopic configurations that correspond to the same macroscopic state" Ø Entropy

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Spontaneous Processes Entropy and the Second Law of Thermodynamics The Molecular Interpretation of Entropy Entropy Changes in Chemical Reactions Gibbs Free Energy Free

More information

SPONTANEOUS PROCESSES AND THERMODYNAMIC EQUILIBRIUM

SPONTANEOUS PROCESSES AND THERMODYNAMIC EQUILIBRIUM 13 CHAPER SPONANEOUS PROCESSES AND HERMODYNAMIC EQUILIBRIUM 13.1 he Nature of Spontaneous Processes 13.2 Entropy and Spontaneity: A Molecular Statistical Interpretation 13.3 Entropy and Heat: Macroscopic

More information

Chpt 19: Chemical. Thermodynamics. Thermodynamics

Chpt 19: Chemical. Thermodynamics. Thermodynamics CEM 152 1 Reaction Spontaneity Can we learn anything about the probability of a reaction occurring based on reaction enthaplies? in general, a large, negative reaction enthalpy is indicative of a spontaneous

More information

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201) Chapter 3. The Second Law 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The direction of spontaneous change 3.1 The dispersal of energy 3.2 The entropy 3.3 Entropy changes accompanying specific

More information

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University Physical Biochemistry Kwan Hee Lee, Ph.D. Handong Global University Week 3 CHAPTER 2 The Second Law: Entropy of the Universe increases What is entropy Definition: measure of disorder The greater the disorder,

More information

The Story of Spontaneity and Energy Dispersal. You never get what you want: 100% return on investment

The Story of Spontaneity and Energy Dispersal. You never get what you want: 100% return on investment The Story of Spontaneity and Energy Dispersal You never get what you want: 100% return on investment Spontaneity Spontaneous process are those that occur naturally. Hot body cools A gas expands to fill

More information

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5 THE SECOND LAW OF THERMODYNAMICS Professor Benjamin G. Levine CEM 182H Lecture 5 Chemical Equilibrium N 2 + 3 H 2 2 NH 3 Chemical reactions go in both directions Systems started from any initial state

More information

Chem Lecture Notes 6 Fall 2013 Second law

Chem Lecture Notes 6 Fall 2013 Second law Chem 340 - Lecture Notes 6 Fall 2013 Second law In the first law, we determined energies, enthalpies heat and work for any process from an initial to final state. We could know if the system did work or

More information

Lecture 2 Entropy and Second Law

Lecture 2 Entropy and Second Law Lecture 2 Entropy and Second Law Etymology: Entropy, entropie in German. En from energy and trope turning toward Turning to energy Motivation for a Second Law!! First law allows us to calculate the energy

More information

Heat Capacities, Absolute Zero, and the Third Law

Heat Capacities, Absolute Zero, and the Third Law Heat Capacities, Absolute Zero, and the hird Law We have already noted that heat capacity and entropy have the same units. We will explore further the relationship between heat capacity and entropy. We

More information

CHEMICAL THERMODYNAMICS. Nature of Energy. ΔE = q + w. w = PΔV

CHEMICAL THERMODYNAMICS. Nature of Energy. ΔE = q + w. w = PΔV CHEMICAL HERMODYNAMICS Nature of Energy hermodynamics hermochemistry Energy (E) Work (w) Heat (q) Some Definitions Study the transformation of energy from one form to another during physical and chemical

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3 Entropy of Phase ransition at the ransition emperature Expansion of the Perfect Gas Variation of Entropy with emperature

More information

Entropy and Free Energy. The Basis for Thermodynamics

Entropy and Free Energy. The Basis for Thermodynamics Entropy and Free Energy The Basis for Thermodynamics First law of thermodynamics: The change in the energy of a system U = q+ w is the sum of the heat and the work done by or on the system. the first law

More information

THERMODYNAMICS. Topic: 4 Spontaneous processes and criteria for spontaneity, entropy as a state function. VERY SHORT ANSWER QUESTIONS

THERMODYNAMICS. Topic: 4 Spontaneous processes and criteria for spontaneity, entropy as a state function. VERY SHORT ANSWER QUESTIONS THERMODYNAMICS Topic: 4 Spontaneous processes and criteria for spontaneity, entropy as a state function. VERY SHORT ANSWER QUESTIONS 1. State Hess s law? Ans. Hess s law: The total heat change in a reaction

More information

First Law of Thermodynamics. Example of Spontaneous Rxns. Reversible and Irreversible 8/2/2016

First Law of Thermodynamics. Example of Spontaneous Rxns. Reversible and Irreversible 8/2/2016 First Law of Thermodynamics The first law of thermodynamics states that the energy of the universe is conserved. If one object loses energy, another has to gain that energy. The mathematical relationship

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

Chap. 3. The Second Law. Law of Spontaneity, world gets more random

Chap. 3. The Second Law. Law of Spontaneity, world gets more random Chap. 3. The Second Law Law of Spontaneity, world gets more random Kelvin - No process can transform heat completely into work Chap. 3. The Second Law Law of Spontaneity, world gets more random Kelvin

More information

The Direction of Spontaneous Change: Entropy and Free Energy

The Direction of Spontaneous Change: Entropy and Free Energy The Direction of Spontaneous Change: Entropy and Free Energy Reading: from Petrucci, Harwood and Herring (8th edition): Required for Part 1: Sections 20-1 through 20-4. Recommended for Part 1: Sections

More information

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set.

Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. Practice Examinations Chem 393 Fall 2005 Time 1 hr 15 min for each set. The symbols used here are as discussed in the class. Use scratch paper as needed. Do not give more than one answer for any question.

More information

The Third Law. NC State University

The Third Law. NC State University Chemistry 433 Lecture 12 The Third Law NC State University The Third Law of Thermodynamics The third law of thermodynamics states that every substance has a positive entropy, but at zero Kelvin the entropy

More information

Supplemental Activities. Module: Thermodynamics. Section: Second Law of Thermodynamics Key

Supplemental Activities. Module: Thermodynamics. Section: Second Law of Thermodynamics Key Supplemental Activities Module: Thermodynamics Section: Second Law of Thermodynamics Key Spontaneity ACTIVITY 1 The purpose of this activity is to practice your understanding of the concept of spontaneous

More information

We will review for the exam on Monday. Have questions ready to ask in class.

We will review for the exam on Monday. Have questions ready to ask in class. Homework #: Graded problems: a,b,c 6 points 0b-e 8 points 6b 3 points 34c 6 points otal 3 points 36 Lec Fri 5sep7 Class average = 3.6/3 = 59.0 % (fair) for HW# Solutions will be posted later today Objectives

More information

Disorder and Entropy. Disorder and Entropy

Disorder and Entropy. Disorder and Entropy Disorder and Entropy Suppose I have 10 particles that can be in one of two states either the blue state or the red state. How many different ways can we arrange those particles among the states? All particles

More information

Chemical Thermodynamics. Chapter 18

Chemical Thermodynamics. Chapter 18 Chemical Thermodynamics Chapter 18 Thermodynamics Spontaneous Processes Entropy and Second Law of Thermodynamics Entropy Changes Gibbs Free Energy Free Energy and Temperature Free Energy and Equilibrium

More information

Outline of the Course

Outline of the Course Outline of the Course 1) Review and Definitions 2) Molecules and their Energies 3) 1 st Law of Thermodynamics 4) 2 nd Law of Thermodynamics 5) Gibbs Free Energy 6) Phase Diagrams and REAL Phenomena 7)

More information

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License

Chapter 16. Thermodynamics. Thermochemistry Review. Calculating H o rxn. Predicting sign for H o rxn. Creative Commons License Chapter 16 Thermodynamics GCC CHM152 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution License 4.0. ChemWiki (CC

More information

Physical Chemistry. Chapter 3 Second Law of Thermodynamic

Physical Chemistry. Chapter 3 Second Law of Thermodynamic Physical Chemistry Chapter 3 Second Law of hermodynamic by Izirwan Bin Izhab FKKSA izirwan@ump.edu.my Chapter Description Aims Develop the calculational path for property change and estimate enthalpy and

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: he Second Law: he Concepts Section 4.3, 7th edition; 3.3, 8th and 9th editions Entropy of Phase ransition at the ransition emperature Expansion of the Perfect

More information

Lecture 2 Entropy and Second Law

Lecture 2 Entropy and Second Law Lecture 2 Entropy and Second Law Etymology: Entropy, entropie in German. En from energy and trope turning toward Turning to energy Zeroth law temperature First law energy Second law - entropy CY1001 2010

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Explain and apply the terms spontaneous process, reversible process, irreversible process, and isothermal process.

More information

Unit 7 (B) Solid state Physics

Unit 7 (B) Solid state Physics Unit 7 (B) Solid state Physics hermal Properties of solids: Zeroth law of hermodynamics: If two bodies A and B are each separated in thermal equilibrium with the third body C, then A and B are also in

More information

Entropy and the Second and Third Laws of Thermodynamics

Entropy and the Second and Third Laws of Thermodynamics CHAPTER 5 Entropy and the Second and Third Laws of Thermodynamics Key Points Entropy, S, is a state function that predicts the direction of natural, or spontaneous, change. Entropy increases for a spontaneous

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

Chapter 11 Spontaneous Change and Equilibrium

Chapter 11 Spontaneous Change and Equilibrium Chapter 11 Spontaneous Change and Equilibrium 11-1 Enthalpy and Spontaneous Change 11-2 Entropy 11-3 Absolute Entropies and Chemical Reactions 11-4 The Second Law of Thermodynamics 11-5 The Gibbs Function

More information

CHAPTER 12: Thermodynamics Why Chemical Reactions Happen

CHAPTER 12: Thermodynamics Why Chemical Reactions Happen CHAPTER 12: Thermodynamics Why Chemical Reactions Happen Useful energy is being "degraded" in the form of unusable heat, light, etc. A tiny fraction of the sun's energy is used to produce complicated,

More information

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

More information

Thermodynamics II. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Thermodynamics II. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Thermodynamics II Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Spontaneous Physical and Chemical Processes A waterfall runs downhill A lump of sugar dissolves

More information

Spontaneity, Entropy, and Free Energy

Spontaneity, Entropy, and Free Energy Spontaneity, Entropy, and Free Energy A ball rolls spontaneously down a hill but not up. Spontaneous Processes A reaction that will occur without outside intervention; product favored Most reactants are

More information

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics

Chapter 19. Chemical Thermodynamics. Chemical Thermodynamics Chapter 19 Enthalpy A thermodynamic quantity that equal to the internal energy of a system plus the product of its volume and pressure exerted on it by its surroundings; Enthalpy is the amount of energy

More information

Exam 2 Solutions. for a gas obeying the equation of state. Z = PV m RT = 1 + BP + CP 2,

Exam 2 Solutions. for a gas obeying the equation of state. Z = PV m RT = 1 + BP + CP 2, Chemistry 360 Dr. Jean M. Standard Fall 016 Name KEY 1.) (14 points) Determine # H & % ( $ ' Exam Solutions for a gas obeying the equation of state Z = V m R = 1 + B + C, where B and C are constants. Since

More information

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 3. The Second Law

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 3. The Second Law Atkins / Paula Physical Chemistry, 8th Edition Chapter 3. The Second Law The direction of spontaneous change 3.1 The dispersal of energy 3.2 Entropy 3.3 Entropy changes accompanying specific processes

More information

Lecture 4. The Second Law of Thermodynamics

Lecture 4. The Second Law of Thermodynamics Lecture 4. The Second Law of Thermodynamics LIMITATION OF THE FIRST LAW: -Does not address whether a particular process is spontaneous or not. -Deals only with changes in energy. Consider this examples:

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Understand the meaning of spontaneous process, reversible process, irreversible process, and isothermal process.

More information

Chapter 19. Chemical Thermodynamics

Chapter 19. Chemical Thermodynamics Chapter 19. Chemical Thermodynamics 19.1 Spontaneous Processes Chemical thermodynamics is concerned with energy relationships in chemical reactions. We consider enthalpy and we also consider entropy in

More information

Ch 17 Free Energy and Thermodynamics - Spontaneity of Reaction

Ch 17 Free Energy and Thermodynamics - Spontaneity of Reaction Ch 17 Free Energy and Thermodynamics - Spontaneity of Reaction Modified by Dr. Cheng-Yu Lai spontaneous nonspontaneous Spontaneous Processes Processes that are spontaneous in one direction are nonspontaneous

More information

CHM 111 Dr. Kevin Moore

CHM 111 Dr. Kevin Moore CHM 111 Dr. Kevin Moore Kinetic Energy Energy of motion E k 1 2 mv 2 Potential Energy Energy of position (stored) Law of Conservation of Energy Energy cannot be created or destroyed; it can only be converted

More information

CHEM Thermodynamics. Entropy, S

CHEM Thermodynamics. Entropy, S hermodynamics Change in Change in Entropy, S Entropy, S Entropy is the measure of dispersal. he natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal

More information

= 1906J/0.872deg = 2186J/deg

= 1906J/0.872deg = 2186J/deg Physical Chemistry 2 2006 Homework assignment 2 Problem 1: he heat of combustion of caffeine was determined by first burning benzoic acid and then caffeine. In both cases the calorimeter was filled with

More information

Chapter 19 Chemical Thermodynamics

Chapter 19 Chemical Thermodynamics Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical

More information

I'd like to start our consideration of the second law of thermodynamics. There are

I'd like to start our consideration of the second law of thermodynamics. There are 71 Lecture 13 I'd like to start our consideration of the second law of thermodynamics. here are limitations to the information that the first law gives us. he first law tells us that certain processes

More information

Chapter 19. Entropy, Free Energy, and Equilibrium

Chapter 19. Entropy, Free Energy, and Equilibrium Chapter 19 Entropy, Free Energy, and Equilibrium Spontaneous Physical and Chemical Processes A waterfall runs downhill A lump of sugar dissolves in a cup of coffee At 1 atm, water freezes below 0 0 C and

More information

CHEM Exam 2 - October 11, INFORMATION PAGE (Use for reference and for scratch paper)

CHEM Exam 2 - October 11, INFORMATION PAGE (Use for reference and for scratch paper) CHEM 5200 - Exam 2 - October 11, 2018 INFORMATION PAGE (Use for reference and for scratch paper) Constants and Conversion Factors: R = 0.082 L-atm/mol-K = 8.31 J/mol-K = 8.31 kpa-l/mol-k 1 L-atm = 101

More information

Entropy Changes & Processes

Entropy Changes & Processes Entropy Changes & Processes Chapter 4 of Atkins: The Second Law: The Concepts Section 4.4-4.7 Third Law of Thermodynamics Nernst Heat Theorem Third- Law Entropies Reaching Very Low Temperatures Helmholtz

More information

Chapter 12. The Laws of Thermodynamics

Chapter 12. The Laws of Thermodynamics Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

More information

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics

Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Module 5 : Electrochemistry Lecture 21 : Review Of Thermodynamics Objectives In this Lecture you will learn the following The need for studying thermodynamics to understand chemical and biological processes.

More information

Chemistry 452 July 23, Enter answers in a Blue Book Examination

Chemistry 452 July 23, Enter answers in a Blue Book Examination Chemistry 45 July 3, 014 Enter answers in a Blue Book Examination Midterm Useful Constants: 1 Newton=1 N= 1 kg m s 1 Joule=1J=1 N m=1 kg m /s 1 Pascal=1Pa=1N m 1atm=10135 Pa 1 bar=10 5 Pa 1L=0.001m 3 Universal

More information

Outline. 9. The Second Law of Thermodynamics: Entropy. 10.Entropy and the Third law of thermodynamics 11.Spontaneous change: Free energy

Outline. 9. The Second Law of Thermodynamics: Entropy. 10.Entropy and the Third law of thermodynamics 11.Spontaneous change: Free energy hermochemistry opic 6. hermochemistry hermochemistry Outline. Getting Started: Some terminology. State functions 3. Pressure-Volume Work 4. he First Law of hermodynamics: Heat, work and enthalpy 5. Heat

More information

Introduction to Chemical Thermodynamics. D. E. Manolopoulos First Year (13 Lectures) Michaelmas Term

Introduction to Chemical Thermodynamics. D. E. Manolopoulos First Year (13 Lectures) Michaelmas Term Introduction to Chemical Thermodynamics D. E. Manolopoulos First Year (13 Lectures) Michaelmas Term Lecture Synopsis 1. Introduction & Background. Le Chatelier s Principle. Equations of state. Systems

More information

Entropy, Free Energy, and Equilibrium

Entropy, Free Energy, and Equilibrium Entropy, Free Energy, and Equilibrium Chapter 17 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Spontaneous Physical and Chemical Processes A waterfall runs

More information

Chapter 17: Spontaneity, Entropy, and Free Energy

Chapter 17: Spontaneity, Entropy, and Free Energy Chapter 17: Spontaneity, Entropy, and Free Energy Review of Chemical Thermodynamics System: the matter of interest Surroundings: everything in the universe which is not part of the system Closed System:

More information

CHEM 305 Solutions for assignment #4

CHEM 305 Solutions for assignment #4 CEM 05 Solutions for assignment #4 5. A heat engine based on a Carnot cycle does.50 kj of work per cycle and has an efficiency of 45.0%. What are q and q C for one cycle? Since the engine does work on

More information

Second law of thermodynamics

Second law of thermodynamics Second law of thermodynamics It is known from everyday life that nature does the most probable thing when nothing prevents that For example it rains at cool weather because the liquid phase has less energy

More information

THE SECOND LAW Chapter 3 Outline. HW: Questions are below. Solutions are in separate file on the course web site. Sect. Title and Comments Required?

THE SECOND LAW Chapter 3 Outline. HW: Questions are below. Solutions are in separate file on the course web site. Sect. Title and Comments Required? THE SECOND LAW Chapter 3 Outline HW: Questions are below. Solutions are in separate file on the course web site. Sect. Title and Comments Required? 1. The Dispersal of Energy YES 2. Entropy YES We won

More information

Chapter 17 Spontaneity, Entropy, and Free Energy

Chapter 17 Spontaneity, Entropy, and Free Energy Chapter 17 Spontaneity, Entropy, and Free Energy Thermodynamics The study of energy and its transformations 1 st Law of Thermodynamics The total energy of the Universe is constant Energy can therefore

More information

CHAPTER 11: Spontaneous Change and Equilibrium

CHAPTER 11: Spontaneous Change and Equilibrium CHAPTER 11: Spontaneous Change and Equilibrium Goal of chapter: Be able to predict which direction a reaction will go (cases where there is not necessarily an equilibrium) At high temperatures, ice always

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) I. Multiple Choice Questions (Type-I) 1. Thermodynamics is not concerned about. (i) energy changes involved in a chemical reaction. the extent to which a chemical reaction proceeds. the rate at which a

More information

Introduction to Chemical Thermodynamics. (10 Lectures) Michaelmas Term

Introduction to Chemical Thermodynamics. (10 Lectures) Michaelmas Term Introduction to Chemical Thermodynamics Dr. D. E. Manolopoulos First Year (0 Lectures) Michaelmas Term Lecture Synopsis. Introduction & Background. Le Chatelier s Principle. Equations of state. Systems

More information

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes

Thermodynamics. Chem 36 Spring The study of energy changes which accompany physical and chemical processes Thermodynamics Chem 36 Spring 2002 Thermodynamics The study of energy changes which accompany physical and chemical processes Why do we care? -will a reaction proceed spontaneously? -if so, to what extent?

More information

S = k log W 11/8/2016 CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal.

S = k log W 11/8/2016 CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal. Entropy is the measure of dispersal. The natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal of matter: Thermodynamics We analyze the constraints

More information

Stuff 1st Law of Thermodynamics First Law Differential Form Total Differential Total Differential

Stuff 1st Law of Thermodynamics First Law Differential Form Total Differential Total Differential Stuff ---onight: Lecture 4 July ---Assignment has been posted. ---Presentation Assignment posted. --Some more thermodynamics and then problem solving in class for Assignment #. --Next week: Free Energy

More information

CHEMISTRY 202 Practice Hour Exam II. Dr. D. DeCoste T.A (60 pts.) 21 (40 pts.) 22 (20 pts.)

CHEMISTRY 202 Practice Hour Exam II. Dr. D. DeCoste T.A (60 pts.) 21 (40 pts.) 22 (20 pts.) CHEMISTRY 202 Practice Hour Exam II Fall 2016 Dr. D. DeCoste Name Signature T.A. This exam contains 22 questions on 7 numbered pages. Check now to make sure you have a complete exam. You have two hours

More information

Second Law of Thermodynamics: Concept of Entropy. While the first law of thermodynamics defines a relation between work and heat, in terms of

Second Law of Thermodynamics: Concept of Entropy. While the first law of thermodynamics defines a relation between work and heat, in terms of Chapter 4 Second Law of Thermodynamics: Concept of Entropy The law that entropy always increases, holds, I think, the supreme position among the laws of Nature. If someone points out to you that your pet

More information

where R = universal gas constant R = PV/nT R = atm L mol R = atm dm 3 mol 1 K 1 R = J mol 1 K 1 (SI unit)

where R = universal gas constant R = PV/nT R = atm L mol R = atm dm 3 mol 1 K 1 R = J mol 1 K 1 (SI unit) Ideal Gas Law PV = nrt where R = universal gas constant R = PV/nT R = 0.0821 atm L mol 1 K 1 R = 0.0821 atm dm 3 mol 1 K 1 R = 8.314 J mol 1 K 1 (SI unit) Standard molar volume = 22.4 L mol 1 at 0 C and

More information

EQUILIBRIUM IN CHEMICAL REACTIONS

EQUILIBRIUM IN CHEMICAL REACTIONS EQUILIBRIUM IN CHEMICAL REACTIONS CHAPTER 12 Thermodynamic Processes and Thermochemistry CHAPTER 13 Spontaneous Processes and Thermodynamic Equilibrium CHAPTER 14 Chemical Equilibrium CHAPTER 15 Acid-Base

More information

S = k log W CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal.

S = k log W CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal. , S is the measure of dispersal. The natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal of matter: Thermodynamics We analyze the constraints on

More information

Lecture 20: Spinodals and Binodals; Continuous Phase Transitions; Introduction to Statistical Mechanics

Lecture 20: Spinodals and Binodals; Continuous Phase Transitions; Introduction to Statistical Mechanics Lecture 20: 11.28.05 Spinodals and Binodals; Continuous Phase Transitions; Introduction to Statistical Mechanics Today: LAST TIME: DEFINING METASTABLE AND UNSTABLE REGIONS ON PHASE DIAGRAMS...2 Conditions

More information

S = S(f) S(i) dq rev /T. ds = dq rev /T

S = S(f) S(i) dq rev /T. ds = dq rev /T In 1855, Clausius proved the following (it is actually a corollary to Clausius Theorem ): If a system changes between two equilibrium states, i and f, the integral dq rev /T is the same for any reversible

More information

Thermodynamics Spontaneity. 150/151 Thermochemistry Review. Spontaneity. Ch. 16: Thermodynamics 12/14/2017

Thermodynamics Spontaneity. 150/151 Thermochemistry Review. Spontaneity. Ch. 16: Thermodynamics 12/14/2017 Ch. 16: Thermodynamics Geysers are a dramatic display of thermodynamic principles in nature. As water inside the earth heats up, it rises to the surface through small channels. Pressure builds up until

More information

THERMODYNAMICS Lecture 5: Second Law of Thermodynamics

THERMODYNAMICS Lecture 5: Second Law of Thermodynamics HERMODYNAMICS Lecture 5: Second Law of hermodynamics Pierwsza strona Second Law of hermodynamics In the course of discussions on the First Law of hermodynamics we concluded that all kinds of energy are

More information

Chemical Thermodynamics

Chemical Thermodynamics Chemical Thermodynamics Overview Everything in the world is a balance of energy, in various forms from biological processes to the rusting of a nail. Two of the most important questions chemists ask are:

More information

Chap. 3 The Second Law. Spontaneous change

Chap. 3 The Second Law. Spontaneous change Chap. 3 The Second Law Spontaneous change Some things happen naturally; some things don t. the spontaneous direction of change, the direction of change that does not require work to be done to bring it

More information

Thermodynamics: Entropy, Free Energy, and Equilibrium

Thermodynamics: Entropy, Free Energy, and Equilibrium Chapter 16 Thermodynamics: Entropy, Free Energy, and Equilibrium spontaneous nonspontaneous In this chapter we will determine the direction of a chemical reaction and calculate equilibrium constant using

More information

Thermodynamics. the study of the transformations of energy from one form into another

Thermodynamics. the study of the transformations of energy from one form into another Thermodynamics the study of the transformations of energy from one form into another First Law: Heat and Work are both forms of Energy. in any process, Energy can be changed from one form to another (including

More information

Homework Problem Set 8 Solutions

Homework Problem Set 8 Solutions Chemistry 360 Dr. Jean M. Standard Homework roblem Set 8 Solutions. Starting from G = H S, derive the fundamental equation for G. o begin, we take the differential of G, dg = dh d( S) = dh ds Sd. Next,

More information

Chapter 17. Free Energy and Thermodynamics. Chapter 17 Lecture Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 17. Free Energy and Thermodynamics. Chapter 17 Lecture Lecture Presentation. Sherril Soman Grand Valley State University Chapter 17 Lecture Lecture Presentation Chapter 17 Free Energy and Thermodynamics Sherril Soman Grand Valley State University First Law of Thermodynamics You can t win! The first law of thermodynamics

More information

AP* Chemistry Spontaneity: Entropy and Free Energy

AP* Chemistry Spontaneity: Entropy and Free Energy WHAT DRIVES A REACTION TO BE SPONTANEOUS? AP* Chemistry Spontaneity: Entropy and Free Energy Dr. Valverde s AP Chemistry Class Chapter 17 Review: Spontaneity, Entropy, and Free Energy (1) ENTHALPY ( H)

More information

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry

Chemistry 123: Physical and Organic Chemistry Topic 2: Thermochemistry Recall the equation. w = -PΔV = -(1.20 atm)(1.02 L)( = -1.24 10 2 J -101 J 1 L atm Where did the conversion factor come from? Compare two versions of the gas constant and calculate. 8.3145 J/mol K 0.082057

More information

Ch. 6 Enthalpy Changes

Ch. 6 Enthalpy Changes Ch. 6 Enthalpy Changes Energy: The capacity to do work. In Physics, there are 2 main types of energy Kinetic (energy of motion) = ½ mv 2 Potential (energy of position due to gravity)= mgh In Chemistry,

More information

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system

THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system THERMODYNAMICS I. TERMS AND DEFINITIONS A. Review of Definitions 1. Thermodynamics = Study of the exchange of heat, energy and work between a system and its surroundings. a. System = That part of universe

More information

Entropy Gibbs Free Energy

Entropy Gibbs Free Energy Entropy Gibbs Free Energy 1 Prof. Zvi C. Koren 2.7.21 Reaction Spontaneity What is the criterion for spontaneity? Observations about Nature: - bottles drop from our hands - rain falls - avalanche - waterfalls

More information

Chapter 20 - Spontaneous Change and Free Energy

Chapter 20 - Spontaneous Change and Free Energy Chapter 20 - Spontaneous Change and Free Energy - the governing laws of the Universe are the three laws of thermodynamics - these can be said in a number of ways but the best paraphrase that I know is:

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-Thermodynamics & Statistical Mechanics 1. Kinetic theory of gases..(1-13) 1.1 Basic assumption of kinetic theory 1.1.1 Pressure exerted by a gas 1.2 Gas Law for Ideal gases: 1.2.1 Boyle s Law 1.2.2

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics 1 Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science Institute of Chemical Engineering Department of hermodynamics Lecture Polymer hermodynamics 0331 L 337 2.1. First Law of hermodynamics

More information

Entropy. Spontaneity. Entropy. Entropy mol of N 2 at 1 atm or 1 mol of N 2 at atm. process a process that occurs without intervention

Entropy. Spontaneity. Entropy. Entropy mol of N 2 at 1 atm or 1 mol of N 2 at atm. process a process that occurs without intervention Entropy Spontaneity process a process that occurs without intervention can be fast or slow Entropy (s) the measure of molecular randomness or disorder Think of entropy as the amount of chaos Entropy Predict

More information

So far changes in the state of systems that occur within the restrictions of the first law of thermodynamics were considered:

So far changes in the state of systems that occur within the restrictions of the first law of thermodynamics were considered: Entropy So far changes in the state of systems that occur within the restrictions of the first law of thermodynamics were considered: Energy is transferred from one state to another by any possible forms,

More information

Chemical thermodynamics the area of chemistry that deals with energy relationships

Chemical thermodynamics the area of chemistry that deals with energy relationships Chemistry: The Central Science Chapter 19: Chemical Thermodynamics Chemical thermodynamics the area of chemistry that deals with energy relationships 19.1: Spontaneous Processes First law of thermodynamics

More information