An introduction to Isogeometric Analysis

Size: px
Start display at page:

Download "An introduction to Isogeometric Analysis"

Transcription

1 An introduction to Isogeometric Analysis A. Buffa 1, G. Sangalli 1,2, R. Vázquez 1 1 Istituto di Matematica Applicata e Tecnologie Informatiche - Pavia Consiglio Nazionale delle Ricerche 2 Dipartimento di Matematica, Università di Pavia Supported by the ERC Starting Grant: GeoPDEs n R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

2 1 Approximation of vector fields and differential forms Construction of the discrete spaces The commuting De Rham diagram Maxwell eigenproblem: B-splines discretization Maxwell eigenproblem: NURBS discretization R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

3 Part I Approximation of vector fields and differential forms R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

4 Setting of the problem Let Ω be a Lipschitz domain described by a NURBS mapping F : Ω Ω, We define the functional spaces Ω being the unit cube. H(d, Ω) = {u L 2 (Ω) : du L 2 (Ω)}, u d,ω = u 0 + du 0 H 1 (Ω)/R grad H(curl, Ω) curl H(div, Ω) div L 2 (Ω). R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

5 Setting of the problem Let Ω be a Lipschitz domain described by a NURBS mapping F : Ω Ω, We define the functional spaces Ω being the unit cube. H(d, Ω) = {u L 2 (Ω) : du L 2 (Ω)}, u d,ω = u 0 + du 0 H 1 (Ω)/R grad H(curl, Ω) curl H(div, Ω) For FEM, we have the following compatible discretization Nodal FE grad Edge FE curl Face FE div L 2 (Ω). div Disc. FE. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

6 Setting of the problem Let Ω be a Lipschitz domain described by a NURBS mapping F : Ω Ω, We define the functional spaces Ω being the unit cube. H(d, Ω) = {u L 2 (Ω) : du L 2 (Ω)}, u d,ω = u 0 + du 0 H 1 (Ω)/R grad H(curl, Ω) curl H(div, Ω) For FEM, we have the following compatible discretization Nodal FE grad Edge FE curl Face FE div L 2 (Ω). div Disc. FE. Approximation of vector fields: we seek for a NURBS or Splines discretization compatible with this structure. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

7 Setting of the problem Let Ω be a Lipschitz domain described by a NURBS mapping F : Ω Ω, We define the functional spaces Ω being the unit cube. H(d, Ω) = {u L 2 (Ω) : du L 2 (Ω)}, u d,ω = u 0 + du 0 H 1 (Ω)/R grad H(curl, Ω) curl H(div, Ω) For FEM, we have the following compatible discretization Nodal FE grad Edge FE curl Face FE div L 2 (Ω). div Disc. FE. Approximation of vector fields: we seek for a NURBS or Splines discretization compatible with this structure. Applications: electromagnetic problems, Darcy s flow, Stokes flow... R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

8 Vector fields - approximation in Ω Buffa, Sangalli, V., 2010 To recall some notation: univariate B-splines and NURBS S p α/n p α : univariate Splines/NURBS of degree p and regularity α at knots. { } d dx v : v S α p S p 1 α 1 R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

9 Vector fields - approximation in Ω Buffa, Sangalli, V., 2010 To recall some notation: multivariate B-splines and NURBS S p 1,p 2,p 3 α 1,α 2,α 3 = S p 1 α 1 S p 2 α 2 S p 3 α 3, N p 1,p 2,p 3 α 1,α 2,α 3 = N p 1 α 1 N p 2 α 2 N p 3 α 3. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

10 Vector fields - approximation in Ω Buffa, Sangalli, V., 2010 To recall some notation: multivariate B-splines and NURBS S p 1,p 2,p 3 α 1,α 2,α 3 = S p 1 α 1 S p 2 α 2 S p 3 α 3, N p 1,p 2,p 3 α 1,α 2,α 3 = N p 1 α 1 N p 2 α 2 N p 3 α 3. Let us not keep track of the regularity α in what follows... R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

11 Vector fields - approximation in Ω Buffa, Sangalli, V., 2010 To recall some notation: multivariate B-splines and NURBS S p 1,p 2,p 3 α 1,α 2,α 3 = S p 1 α 1 S p 2 α 2 S p 3 α 3, N p 1,p 2,p 3 α 1,α 2,α 3 = N p 1 α 1 N p 2 α 2 N p 3 α 3. Let us not keep track of the regularity α in what follows... Differential operators: we look for discrete spaces in Ω such that R Ŝ0 ĝrad Ŝ1 dcurl Ŝ2 cdiv Ŝ3 0 R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

12 Vector fields - approximation in Ω Buffa, Sangalli, V., 2010 To recall some notation: multivariate B-splines and NURBS S p 1,p 2,p 3 α 1,α 2,α 3 = S p 1 α 1 S p 2 α 2 S p 3 α 3, N p 1,p 2,p 3 α 1,α 2,α 3 = N p 1 α 1 N p 2 α 2 N p 3 α 3. Let us not keep track of the regularity α in what follows... Differential operators: we look for discrete spaces in Ω such that R Ŝ0 ĝrad Ŝ1 dcurl Ŝ2 cdiv Ŝ3 0 Ŝ 0 = S p 1,p 2,p 3 R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

13 Vector fields - approximation in Ω Buffa, Sangalli, V., 2010 To recall some notation: multivariate B-splines and NURBS S p 1,p 2,p 3 α 1,α 2,α 3 = S p 1 α 1 S p 2 α 2 S p 3 α 3, N p 1,p 2,p 3 α 1,α 2,α 3 = N p 1 α 1 N p 2 α 2 N p 3 α 3. Let us not keep track of the regularity α in what follows... Differential operators: we look for discrete spaces in Ω such that R Ŝ0 ĝrad Ŝ1 dcurl Ŝ2 cdiv Ŝ3 0 Ŝ 0 = S p 1,p 2,p 3 ĝrad : Ŝ0 S p 1 1,p 2,p 3 S p 1,p 2 1,p 3 S p 1,p 2,p 3 1 Ŝ1 R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

14 Vector fields - approximation in Ω Buffa, Sangalli, V., 2010 To recall some notation: multivariate B-splines and NURBS S p 1,p 2,p 3 α 1,α 2,α 3 = S p 1 α 1 S p 2 α 2 S p 3 α 3, N p 1,p 2,p 3 α 1,α 2,α 3 = N p 1 α 1 N p 2 α 2 N p 3 α 3. Let us not keep track of the regularity α in what follows... Differential operators: we look for discrete spaces in Ω such that R Ŝ0 ĝrad Ŝ1 dcurl Ŝ2 cdiv Ŝ3 0 Ŝ 1 = S p 1 1,p 2,p 3 S p 1,p 2 1,p 3 S p 1,p 2,p 3 1 ĉurl : Ŝ1 S p 1,p 2 1,p 3 1 S p 1 1,p 2,p 3 1 S p 1 1,p 2 1,p 3 Ŝ2 R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

15 Vector fields - approximation in Ω Buffa, Sangalli, V., 2010 To recall some notation: multivariate B-splines and NURBS S p 1,p 2,p 3 α 1,α 2,α 3 = S p 1 α 1 S p 2 α 2 S p 3 α 3, N p 1,p 2,p 3 α 1,α 2,α 3 = N p 1 α 1 N p 2 α 2 N p 3 α 3. Let us not keep track of the regularity α in what follows... Differential operators: we look for discrete spaces in Ω such that R Ŝ0 ĝrad Ŝ1 dcurl Ŝ2 cdiv Ŝ3 0 Ŝ 2 = S p 1,p 2 1,p 3 1 S p 1 1,p 2,p 3 1 S p 1 1,p 2 1,p 3 div : Ŝ2 S p 1 1,p 2 1,p 3 1 Ŝ3 R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

16 Vector fields - approximation in Ω Buffa, Sangalli, V., 2010 To recall some notation: multivariate B-splines and NURBS S p 1,p 2,p 3 α 1,α 2,α 3 = S p 1 α 1 S p 2 α 2 S p 3 α 3, N p 1,p 2,p 3 α 1,α 2,α 3 = N p 1 α 1 N p 2 α 2 N p 3 α 3. Let us not keep track of the regularity α in what follows... Differential operators: we look for discrete spaces in Ω such that R Ŝ0 The sequence is exact. ĝrad Ŝ1 dcurl Ŝ2 cdiv Ŝ3 0 Generalization of nodal, edge and face elements with higher regularity. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

17 Vector fields - approximation in Ω Buffa, Sangalli, V., 2010 To recall some notation: multivariate B-splines and NURBS S p 1,p 2,p 3 α 1,α 2,α 3 = S p 1 α 1 S p 2 α 2 S p 3 α 3, N p 1,p 2,p 3 α 1,α 2,α 3 = N p 1 α 1 N p 2 α 2 N p 3 α 3. Let us not keep track of the regularity α in what follows... Differential operators: we look for discrete spaces in Ω such that R Ŝ0 The sequence is exact. ĝrad Ŝ1 dcurl Ŝ2 cdiv Ŝ3 0 Generalization of nodal, edge and face elements with higher regularity. But what about NURBS? R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

18 Vector fields - approximation in Ω Buffa, Sangalli, V., 2010 To recall some notation: multivariate B-splines and NURBS S p 1,p 2,p 3 α 1,α 2,α 3 = S p 1 α 1 S p 2 α 2 S p 3 α 3, N p 1,p 2,p 3 α 1,α 2,α 3 = N p 1 α 1 N p 2 α 2 N p 3 α 3. Let us not keep track of the regularity α in what follows... Differential operators: we look for discrete spaces in Ω such that N 0 ĝrad N 1 d curl N 2 The derivative of a NURBS is not a NURBS. The diagram for NURBS does not hold true. c div N 3 D. Arnold (et al.) teach us that N i are then not suitable for vector fields approximations R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

19 Vector fields - SPLINES approximation in Ω Spaces on Ω are defined just by push forward: S i = ι i (Ŝi), N i = ι i ( N i ). R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

20 Vector fields - SPLINES approximation in Ω Spaces on Ω are defined just by push forward: S i = ι i (Ŝi), N i = ι i ( N i ). ι 0 ( φ) F = φ, standard mapping F R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

21 Vector fields - SPLINES approximation in Ω Spaces on Ω are defined just by push forward: S i = ι i (Ŝi), N i = ι i ( N i ). ι 1 (û) F = DF T û, curl conforming mapping F R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

22 Vector fields - SPLINES approximation in Ω Spaces on Ω are defined just by push forward: S i = ι i (Ŝi), N i = ι i ( N i ). ι 2 (û) F = (detdf) 1 DF û, Piola mapping F R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

23 Vector fields - SPLINES approximation in Ω Spaces on Ω are defined just by push forward: S i = ι i (Ŝi), N i = ι i ( N i ). ι 3 (φ) F = (detdf) 1 φ, 3-forms mapping F R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

24 Vector fields - SPLINES approximation in Ω Spaces on Ω are defined just by push forward: S i = ι i (Ŝi), N i = ι i ( N i ). For splines, everything then works thanks to the geometric structure: H 1 (Ω)/R grad H(curl, Ω) curl H(div, Ω) div L 2 (Ω) S 0 /R grad S 1 curl S 2 div S 3 R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

25 Vector fields - SPLINES approximation in Ω Spaces on Ω are defined just by push forward: S i = ι i (Ŝi), N i = ι i ( N i ). For splines, everything then works thanks to the geometric structure: grad H 1 (Ω)/R H(curl, Ω) H(div, Ω) L 2 (Ω) Π 0? Π 1? Π 2? Π 3? S 0 /R curl grad S 1 curl S 2 div S 3 How can we define the commuting interpolants Π i? div R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

26 Vector fields - SPLINES approximation in Ω Spaces on Ω are defined just by push forward: S i = ι i (Ŝi), N i = ι i ( N i ). For splines, everything then works thanks to the geometric structure: grad H 1 (Ω)/R H(curl, Ω) H(div, Ω) L 2 (Ω) Π 0? Π 1? Π 2? Π 3? S 0 /R curl grad S 1 curl S 2 div S 3 How can we define the commuting interpolants Π i? Construct (commuting) one-dimensional projectors. Construct the projectors in Ω with tensor product structure. Pull back from Ω to Ω. div R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

27 Construction of the interpolants for Spline spaces Buffa, Rivas, Sangalli, V., 2010 Starting point: we know the local and stable projector Π p S. Π p S s = s, s S α, p u H k (I ) C u H k ( e I ), u Hk (0, 1), 0 k p + 1, where I = (ξ j, ξ j+1 ), and Ĩ is a local extension. L.L. Schumaker. Spline functions: basic theory, Y. Bazilevs, L. Beirão da Veiga, J. Cottrell, T.J.R. Hughes, G. Sangalli, R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

28 Construction of the interpolants for Spline spaces Buffa, Rivas, Sangalli, V., 2010 Starting point: we know the local and stable projector Π p S. First idea: tensor products of Π p S, choosing the right degree p. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

29 Construction of the interpolants for Spline spaces Buffa, Rivas, Sangalli, V., 2010 Starting point: we know the local and stable projector Π p S. First idea: tensor products of Π p S, choosing the right degree p. The diagram is not commutative, because even the 1D diagram is not: Π p 1 S d dx u d dx Π p S u. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

30 Construction of the interpolants for Spline spaces Buffa, Rivas, Sangalli, V., 2010 Starting point: we know the local and stable projector Π p S. Second idea: define Π p 1 A such that the 1D diagram commutes. d dx R H 1 (0, 1) L 2 (0, 1) 0 Π bp 1 R bπ p S S p α d dx A S p 1 α 1 0 R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

31 Construction of the interpolants for Spline spaces Buffa, Rivas, Sangalli, V., 2010 Starting point: we know the local and stable projector Π p S. Second idea: define So, we define it as Π p 1 A such that the 1D diagram commutes. d dx R H 1 (0, 1) L 2 (0, 1) 0 Π bp 1 R bπ p S S p α Π p 1 A v := d dx Π p S x 0 d dx A S p 1 α 1 0 v(ξ)dξ, v L 2 (0, 1). R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

32 Construction of the interpolants for Spline spaces Buffa, Rivas, Sangalli, V., 2010 Starting point: we know the local and stable projector Π p S. Second idea: define So, we define it as Π p 1 A such that the 1D diagram commutes. d dx R H 1 (0, 1) L 2 (0, 1) 0 Π bp 1 R bπ p S S p α Π p 1 A v := d dx Π p S x It is a stable and local projector: 0 d dx Π p 1 p 1 A s = s, s Sα 1, A S p 1 α 1 0 v(ξ)dξ, v L 2 (0, 1). u H k (I ) C u H k ( e I ), u Hk (0, 1), 0 k p. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

33 Construction of the interpolants for Spline spaces Buffa, Rivas, Sangalli, V., 2010 Starting point: we know the local and stable projector Π p S. Second idea: define Π p 1 A Next step: in Ω, take tensor products of Π p S For instance, for we define such that the 1D diagram commutes. and Π p 1 A. Ŝ 1 = S p 1 1,p 2,p 3 S p 1,p 2 1,p 3 S p 1,p 2,p 3 1 Π 1 := ( Π p 1 1 A Π p 2 S Π p 3 S ) ( Π p 1 S Π p 2 1 A Π p 3 S ) ( Π p 1 S Π p 2 S Π p 3 1 A ). R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

34 Construction of the interpolants for Spline spaces Buffa, Rivas, Sangalli, V., 2010 Starting point: we know the local and stable projector Π p S. Second idea: define Π p 1 A Next step: in Ω, take tensor products of Π p S such that the 1D diagram commutes. and Π p 1 A. With this choice, the diagram in Ω is commutative. ĝrad H 1 ( Ω)/R H(curl, Ω) H(div, Ω) L 2 ( Ω) bπ 0 Π b1 Π b2 Π b3 dcurl cdiv Ŝ 0 /R ĝrad Ŝ 1 d curl Ŝ 2 c div Ŝ3 R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

35 Construction of the interpolants for Spline spaces Buffa, Rivas, Sangalli, V., 2010 Starting point: we know the local and stable projector Π p S. Second idea: define Π p 1 A Next step: in Ω, take tensor products of Π p S such that the 1D diagram commutes. and Π p 1 A. Last step: define the interpolants in Ω by push forward techniques. ι i (Π i φ) = Π i (ι i (φ)), φ H(d, Ω), i = 0,..., 3 R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

36 Construction of the interpolants for Spline spaces Buffa, Rivas, Sangalli, V., 2010 Starting point: we know the local and stable projector Π p S. Second idea: define Π p 1 A Next step: in Ω, take tensor products of Π p S such that the 1D diagram commutes. and Π p 1 A. Last step: define the interpolants in Ω by push forward techniques. With the definition of these interpolants, the diagram is commutative. grad H 1 curl div (Ω)/R H(curl, Ω) H(div, Ω) L 2 (Ω) Π 0 Π 1 Π 2 Π 3 S 0 /R grad S 1 curl S 2 div S 3 R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

37 Construction of the interpolants for Spline spaces Buffa, Rivas, Sangalli, V., 2010 Starting point: we know the local and stable projector Π p S. Second idea: define Π p 1 A Next step: in Ω, take tensor products of Π p S such that the 1D diagram commutes. and Π p 1 A. Last step: define the interpolants in Ω by push forward techniques. With the definition of these interpolants, the diagram is commutative. grad H 1 curl div (Ω)/R H(curl, Ω) H(div, Ω) L 2 (Ω) Π 0 Π 1 Π 2 Π 3 S 0 /R grad S 1 curl S 2 div S 3 The projectors Π i are local and L 2 (Ω)-stable. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

38 Construction of the interpolants for Spline spaces Buffa, Rivas, Sangalli, V., 2010 Starting point: we know the local and stable projector Π p S. Second idea: define Π p 1 A Next step: in Ω, take tensor products of Π p S such that the 1D diagram commutes. and Π p 1 A. Last step: define the interpolants in Ω by push forward techniques. With the definition of these interpolants, the diagram is commutative. grad H 1 curl div (Ω)/R H(curl, Ω) H(div, Ω) L 2 (Ω) Π 0 Π 1 Π 2 Π 3 S 0 /R grad S 1 curl S 2 div S 3 The projectors Π i are local and L 2 (Ω)-stable. The same idea can be used in spaces with boundary conditions. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

39 Approximation estimates Buffa, Rivas, Sangalli, V., Assume F : Ω Ω belongs to N 0 and F 1 is piecewise regular. Let K be an element of the mesh on the physical domain: 0 l p u Π i u H(d i,k) Ch l u H l (d i, K) e, i = 0,..., 3, R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

40 Approximation estimates Buffa, Rivas, Sangalli, V., Assume F : Ω Ω belongs to N 0 and F 1 is piecewise regular. Let K be an element of the mesh on the physical domain: 0 l p As a consequence u Π i u H(d i,k) Ch l u H l (d i, K) e, i = 0,..., 3, u Π 1 u H(curl,Ω) Ch l u H l (curl,ω). R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

41 Approximation estimates Buffa, Rivas, Sangalli, V., Assume F : Ω Ω belongs to N 0 and F 1 is piecewise regular. Let K be an element of the mesh on the physical domain: 0 l p As a consequence u Π i u H(d i,k) Ch l u H l (d i, K) e, i = 0,..., 3, u Π 1 u H(curl,Ω) Ch l u H l (curl,ω). Reducing the continuity we can obtain estimates in terms of p. If α = max{α i } p 1 2 then u Π i u H(d i,k) C(h/p) l u H l (d i, K) e, i = 0,..., 3. Beirão da Veiga, Buffa, Rivas, Sangalli (2009). R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

42 Maxwell eigenproblem: B-splines discretization Maxwell eigenproblem Find u H 0 (curl, Ω), u 0 and λ R, λ 0 such that curl u curl v = λ u v v H 0 (curl, Ω) Ω Ω R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

43 Maxwell eigenproblem: B-splines discretization Maxwell eigenproblem Find u H 0 (curl, Ω), u 0 and λ R, λ 0 such that curl u curl v = λ u v v H 0 (curl, Ω) Ω Ω Theorem If there is a commuting diagram with local and L 2 (Ω)-stable projectors, the Galerkin approximation is spurious-free and optimal. D. Arnold, R. Falk, R. Winther, Bulletin A.M.S. (2010) R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

44 Maxwell eigenproblem: B-splines discretization Maxwell eigenproblem Find u H 0 (curl, Ω), u 0 and λ R, λ 0 such that curl u curl v = λ u v v H 0 (curl, Ω) Ω Ω Theorem If there is a commuting diagram with local and L 2 (Ω)-stable projectors, the Galerkin approximation is spurious-free and optimal. D. Arnold, R. Falk, R. Winther, Bulletin A.M.S. (2010) The B-spline discretization fulfills the theorem: it is spectrally correct. Exact CAD description of the geometry. Higher regularity than standard edge elements. Singular functions are approximated correctly. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

45 Maxwell eigenproblem in the patch Ω We solve the eigenvalue problem: Find u 0 and ω 0 such that curl curl u = ω 2 u u n = 0 in Ω, on Ω. We solve with a Galerkin projection on Ŝ1,0, and different degrees p. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

46 Maxwell eigenproblem in the patch Ω We solve the eigenvalue problem: Find u 0 and ω 0 such that curl curl u = ω 2 u u n = 0 in Ω, on Ω. We solve with a Galerkin projection on Ŝ1,0, and different degrees p. In terms of d.o.f., we obtain better convergence rate than edge elements Relative error p = 2 p = 3 p = 4 y = Ch 4 y = Ch 6 y = Ch 8 Relative error IGA, p = 2 IGA, p = 3 IGA, p = 4 FEM, p = 2 FEM, p = 3 FEM, p = Mesh size Degrees of freedom R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

47 b Maxwell eigenproblem in the patch Ω We solve the eigenvalue problem: Find u 6= 0 and ω 6= 0 such that b curl curl u = ω 2 u in Ω, b u n = 0 on Ω. Fill-in of the matrix with respect to FEM. Sparsity pattern is similar nz = R. Va zquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis nz = Santiago de Compostela, / 17

48 Maxwell eigenproblem in the patch Ω We solve the eigenvalue problem: Find u 0 and ω 0 such that curl curl u = ω 2 u in Ω, u n = 0 on Ω. We solve with continuous fields: the divergence is well defined. It is an oscillating field, and converges to zero with order h p divuh L p = 2 p = 3 p = 4 y = Ch y = Ch 2 y = Ch Mesh size 10 0 R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

49 Maxwell eigenproblem: Fichera s corner We solve the eigenvalue problem: Find u 0 and ω 0 such that curl curl u = ω 2 u in Ω, u n = 0 on Ω. Interaction between edge and corner singularities. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

50 Maxwell eigenproblem: Fichera s corner We solve the eigenvalue problem: Find u 0 and ω 0 such that curl curl u = ω 2 u in Ω, u n = 0 on Ω. Interaction between edge and corner singularities. We get a good approximation of the singular functions. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

51 Maxwell eigenproblem: Fichera s corner We solve the eigenvalue problem: Find u 0 and ω 0 such that curl curl u = ω 2 u in Ω, u n = 0 on Ω. Interaction between edge and corner singularities. We get a good approximation of the singular functions. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

52 Maxwell eigenproblem: Fichera s corner We solve the eigenvalue problem: Find u 0 and ω 0 such that curl curl u = ω 2 u in Ω, u n = 0 on Ω. Interaction between edge and corner singularities. We get a good approximation of the singular functions. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

53 Maxwell eigenproblem: Fichera s corner We solve the eigenvalue problem: Find u 0 and ω 0 such that curl curl u = ω 2 u in Ω, u n = 0 on Ω. Interaction between edge and corner singularities. We get a good approximation of the singular functions. Eigenvalues computation CODE by S. Zaglmayr M. Duruflé IGA, p = 3 d.o.f Eig Eig Eig Eig Eig Eig Eig Eig R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

54 Maxwell source problem: non-convex domain We solve the source problem, with mixed boundary conditions. curl curl u + u = f. The geometry is described exactly with only three elements. Domain with a reentrant edge (as the L-shaped domain). R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

55 Maxwell source problem: non-convex domain We solve the source problem, with mixed boundary conditions. curl curl u + u = f. The geometry is described exactly with only three elements. Domain with a reentrant edge (as the L-shaped domain). The solution is u = grad(r 2/3 sin(2θ/3)), and u H 2/3 ε (curl, Ω). The convergence rate in energy norm is h 2/3, as expected p = 1 p = 2 p = 3 Relative error 10 1 p = 4 y = Ch 2/ Mesh size R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

56 Maxwell eigenproblem: NURBS discretization If we try to discretize the problem with NURBS, in the form: Find u h N 1, u h 0 and λ R, λ 0 such that curl u h curl v h = λ u h v h v h N 1, Ω Ω R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

57 Maxwell eigenproblem: NURBS discretization If we try to discretize the problem with NURBS, in the form: Find u h N 1, u h 0 and λ R, λ 0 such that curl u h curl v h = λ u h v h v h N 1, Ω the diagram does not hold: spurious eigenvalues appear. Ω R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

58 Maxwell eigenproblem: NURBS discretization If we try to discretize the problem with NURBS, in the form: Find u h N 1, u h 0 and λ R, λ 0 such that curl u h curl v h = λ u h v h v h N 1, Ω the diagram does not hold: spurious eigenvalues appear. In the continuous case, we have the equivalent mixed formulation: Find (u, p) H 0 (curl, Ω) H0 1 (Ω), λ R such that curl u curl v + p v = λ u v v H 0 (curl, Ω), Ω Ω Ω q u = 0 q H0 1 (Ω). Ω The two discrete formulations are equivalent for B-splines. Ω R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

59 Maxwell eigenproblem: NURBS discretization If we try to discretize the problem with NURBS, in the form: Find u h N 1, u h 0 and λ R, λ 0 such that curl u h curl v h = λ u h v h v h N 1, Ω the diagram does not hold: spurious eigenvalues appear. For a NURBS discretization, the two formulations are not equivalent. Find (u h, p h ) N 1 N 0, λ R such that curl u h curl v h + p h v h = λ u h v h v h N 1, Ω Ω Ω q h u h = 0 q h N 0. Ω Ω R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

60 NURBS discretization: numerical results Buffa, Sangalli, V. In preparation The domain Ω is described with a NURBS mapping. Solution of the mixed formulation with a NURBS discretization NURBS map of fine mesh Relative error rd eigenvalue 8 th eigenvalue th eigenvalue y=ch Mesh size The results are spurious-free, with optimal convergence rate. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

61 NURBS discretization: numerical results Buffa, Sangalli, V. In preparation The domain Ω is described with a NURBS mapping. Solution of the mixed formulation with a NURBS discretization Relative error st eigenvalue 2 nd eigenvalue 3 rd eigenvalue 4 th eigenvalue 5 th eigenvalue y=ch 4/3 y=ch NURBS map of the coarsest mesh Mesh size The results are spurious-free, with optimal convergence rate. Also the singular functions are approximated correctly. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

62 NURBS discretization: numerical results Buffa, Sangalli, V. In preparation The domain Ω is described with a NURBS mapping. Solution of the mixed formulation with a NURBS discretization Relative error st eigenvalue 2 nd eigenvalue 3 rd eigenvalue 4 th eigenvalue 5 th eigenvalue y=ch 4/3 y=ch NURBS map of the coarsest mesh Mesh size The results are spurious-free, with optimal convergence rate. Also the singular functions are approximated correctly. The spectral correctness can also be proved for (mixed) NURBS. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

63 Conclusions Isogeometric Analysis has been extended to the approximation of vector fields. Generalization of edge and face elements Higher continuity than standard finite elements. Exact geometry description. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

64 Conclusions Isogeometric Analysis has been extended to the approximation of vector fields. Generalization of edge and face elements Higher continuity than standard finite elements. Exact geometry description. Complete theory for Maxwell, and promising numerical results. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

65 Conclusions Isogeometric Analysis has been extended to the approximation of vector fields. Generalization of edge and face elements Higher continuity than standard finite elements. Exact geometry description. Complete theory for Maxwell, and promising numerical results. Further comparisons with FEM will be done in the future. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

66 Conclusions Isogeometric Analysis has been extended to the approximation of vector fields. Generalization of edge and face elements Higher continuity than standard finite elements. Exact geometry description. Complete theory for Maxwell, and promising numerical results. Further comparisons with FEM will be done in the future. COMING SOON The GeoPDEs code: a research tool for Isogeometric Analysis of PDEs. Open Octave (compatible with Matlab) implementation of the method. Joint work with C. de Falco and A. Reali. R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

67 Acknowledgments Funded by ERC Starting Grant n : GeoPDEs Team Annalisa Buffa (IMATI-CNR) Lourenço Beirão da Veiga (University of Milano) Alessandro Reali (University of Pavia) Giancarlo Sangalli (University of Pavia) Andrea Bressan Durkbin Cho Carlo De Falco Mukesh Kumar Massimiliano Martinelli Judith Rivas Rafael Vázquez R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

68 Acknowledgments Funded by ERC Starting Grant n : GeoPDEs Team Annalisa Buffa (IMATI-CNR) Lourenço Beirão da Veiga (University of Milano) Alessandro Reali (University of Pavia) Giancarlo Sangalli (University of Pavia) Andrea Bressan Durkbin Cho Carlo De Falco Mukesh Kumar Massimiliano Martinelli Judith Rivas Rafael Vázquez Thanks for your attention! R. Vázquez (IMATI-CNR Italy) Introduction to Isogeometric Analysis Santiago de Compostela, / 17

GeoPDEs. An Octave/Matlab software for research on IGA. R. Vázquez. IMATI Enrico Magenes, Pavia Consiglio Nazionale della Ricerca

GeoPDEs. An Octave/Matlab software for research on IGA. R. Vázquez. IMATI Enrico Magenes, Pavia Consiglio Nazionale della Ricerca GeoPDEs An Octave/Matlab software for research on IGA R. Vázquez IMATI Enrico Magenes, Pavia Consiglio Nazionale della Ricerca Joint work with C. de Falco and A. Reali Supported by the ERC Starting Grant:

More information

Isogeometric Analysis:

Isogeometric Analysis: Isogeometric Analysis: some approximation estimates for NURBS L. Beirao da Veiga, A. Buffa, Judith Rivas, G. Sangalli Euskadi-Kyushu 2011 Workshop on Applied Mathematics BCAM, March t0th, 2011 Outline

More information

Isogeometric modeling of Lorentz detuning in linear particle accelerator cavities

Isogeometric modeling of Lorentz detuning in linear particle accelerator cavities Isogeometric modeling of Lorentz detuning in linear particle accelerator cavities Mauro Bonafini 1,2, Marcella Bonazzoli 3, Elena Gaburro 1,2, Chiara Venturini 1,3, instructor: Carlo de Falco 4 1 Department

More information

Isogeometric mortaring

Isogeometric mortaring Isogeometric mortaring E. Brivadis, A. Buffa, B. Wohlmuth, L. Wunderlich IMATI E. Magenes - Pavia Technical University of Munich A. Buffa (IMATI-CNR Italy) IGA mortaring 1 / 29 1 Introduction Splines Approximation

More information

ISOGEOMETRIC METHODS IN STRUCTURAL DYNAMICS AND WAVE PROPAGATION

ISOGEOMETRIC METHODS IN STRUCTURAL DYNAMICS AND WAVE PROPAGATION COMPDYN 29 ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, N.D. Lagaros, M. Fragiadakis (eds.) Rhodes, Greece, 22-24 June 29 ISOGEOMETRIC

More information

arxiv: v1 [cs.ce] 27 Dec 2018

arxiv: v1 [cs.ce] 27 Dec 2018 ISOGEOMETRIC MORTAR COUPLING FOR ELECTROMAGNETIC PROBLEMS ANNALISA BUFFA, JACOPO CORNO, CARLO DE FALCO, SEBASTIAN SCHÖPS, AND RAFAEL VÁZQUEZ arxiv:1901.00759v1 [cs.ce] 27 Dec 2018 Abstract. This paper

More information

Domain Decomposition Preconditioners for Isogeometric Discretizations

Domain Decomposition Preconditioners for Isogeometric Discretizations Domain Decomposition Preconditioners for Isogeometric Discretizations Luca F Pavarino, Università di Milano, Italy Lorenzo Beirao da Veiga, Università di Milano, Italy Durkbin Cho, Dongguk University,

More information

Institut de Recherche MAthématique de Rennes

Institut de Recherche MAthématique de Rennes LMS Durham Symposium: Computational methods for wave propagation in direct scattering. - July, Durham, UK The hp version of the Weighted Regularization Method for Maxwell Equations Martin COSTABEL & Monique

More information

H(div) and H(curl)-conforming Virtual Element Methods

H(div) and H(curl)-conforming Virtual Element Methods Noname manuscript No. (will be inserted by the editor) H(div) and H(curl)-conforming Virtual Element Methods L. Beirão da Veiga F. Brezzi L. D. Marini A. Russo the date of receipt and acceptance should

More information

PhD dissertation defense

PhD dissertation defense Isogeometric mortar methods with applications in contact mechanics PhD dissertation defense Brivadis Ericka Supervisor: Annalisa Buffa Doctor of Philosophy in Computational Mechanics and Advanced Materials,

More information

Virtual Element Methods for general second order elliptic problems

Virtual Element Methods for general second order elliptic problems Virtual Element Methods for general second order elliptic problems Alessandro Russo Department of Mathematics and Applications University of Milano-Bicocca, Milan, Italy and IMATI-CNR, Pavia, Italy Workshop

More information

Standard Finite Elements and Weighted Regularization

Standard Finite Elements and Weighted Regularization Standard Finite Elements and Weighted Regularization A Rehabilitation Martin COSTABEL & Monique DAUGE Institut de Recherche MAthématique de Rennes http://www.maths.univ-rennes1.fr/~dauge Slides of the

More information

An axisymmetric PIC code based on isogeometric analysis

An axisymmetric PIC code based on isogeometric analysis Author manuscript, published in "CEMRACS 2010, Marseille : France (2010" DOI : 10.1051/proc/2011016 An axisymmetric PIC code based on isogeometric analysis A. Back A. Crestetto A. Ratnani E. Sonnendrücker

More information

A posteriori error estimates in FEEC for the de Rham complex

A posteriori error estimates in FEEC for the de Rham complex A posteriori error estimates in FEEC for the de Rham complex Alan Demlow Texas A&M University joint work with Anil Hirani University of Illinois Urbana-Champaign Partially supported by NSF DMS-1016094

More information

ISOGEOMETRIC DISCRETIZATIONS IN STRUCTURAL DYNAMICS AND WAVE PROPAGATION

ISOGEOMETRIC DISCRETIZATIONS IN STRUCTURAL DYNAMICS AND WAVE PROPAGATION ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, D.C. Charmpis, N.D. Lagaros, Y. Tsompanakis (eds.) Rethymno, Crete, Greece, 3-6 June

More information

Mimetic Finite Difference methods

Mimetic Finite Difference methods Mimetic Finite Difference methods An introduction Andrea Cangiani Università di Roma La Sapienza Seminario di Modellistica Differenziale Numerica 2 dicembre 2008 Andrea Cangiani (IAC CNR) mimetic finite

More information

Weighted Regularization of Maxwell Equations Computations in Curvilinear Polygons

Weighted Regularization of Maxwell Equations Computations in Curvilinear Polygons Weighted Regularization of Maxwell Equations Computations in Curvilinear Polygons Martin Costabel, Monique Dauge, Daniel Martin and Gregory Vial IRMAR, Université de Rennes, Campus de Beaulieu, Rennes,

More information

Introduction to finite element exterior calculus

Introduction to finite element exterior calculus Introduction to finite element exterior calculus Ragnar Winther CMA, University of Oslo Norway Why finite element exterior calculus? Recall the de Rham complex on the form: R H 1 (Ω) grad H(curl, Ω) curl

More information

The space of C 1 -smooth isogeometric spline functions on trilinearly parameterized volumetric two-patch domains. Katharina Birner and Mario Kapl

The space of C 1 -smooth isogeometric spline functions on trilinearly parameterized volumetric two-patch domains. Katharina Birner and Mario Kapl The space of C 1 -smooth isogeometric spline functions on trilinearly parameterized volumetric two-patch domains Katharina Birner and Mario Kapl G+S Report No. 69 March 2018 The space of C 1 -smooth isogeometric

More information

BDDC deluxe for Isogeometric Analysis

BDDC deluxe for Isogeometric Analysis BDDC deluxe for sogeometric Analysis L. Beirão da Veiga 1, L.. Pavarino 1, S. Scacchi 1, O. B. Widlund 2, and S. Zampini 3 1 ntroduction The main goal of this paper is to design, analyze, and test a BDDC

More information

Multipatch Space-Time Isogeometric Analysis of Parabolic Diffusion Problems. Ulrich Langer, Martin Neumüller, Ioannis Toulopoulos. G+S Report No.

Multipatch Space-Time Isogeometric Analysis of Parabolic Diffusion Problems. Ulrich Langer, Martin Neumüller, Ioannis Toulopoulos. G+S Report No. Multipatch Space-Time Isogeometric Analysis of Parabolic Diffusion Problems Ulrich Langer, Martin Neumüller, Ioannis Toulopoulos G+S Report No. 56 May 017 Multipatch Space-Time Isogeometric Analysis of

More information

Conforming and divergence-free Stokes elements in three dimensions

Conforming and divergence-free Stokes elements in three dimensions IMA Journal of Numerical Analysis (2013) Page 1 of 18 doi:10.1093/imanum/drnxxx Conforming and divergence-free Stokes elements in three dimensions JOHNNY GUZMÁN Division of Applied Mathematics, Brown University,

More information

Numerical approximation of output functionals for Maxwell equations

Numerical approximation of output functionals for Maxwell equations Numerical approximation of output functionals for Maxwell equations Ferenc Izsák ELTE, Budapest University of Twente, Enschede 11 September 2004 MAXWELL EQUATIONS Assumption: electric field ( electromagnetic

More information

Nedelec elements for computational electromagnetics

Nedelec elements for computational electromagnetics Nedelec elements for computational electromagnetics Per Jacobsson, June 5, 2007 Maxwell s equations E = jωµh () H = jωεe + J (2) (εe) = ρ (3) (µh) = 0 (4) J = jωρ (5) Only three of the equations are needed,

More information

Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations

Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations Christoph Hofer and Ulrich Langer Doctoral Program Computational Mathematics Numerical

More information

Condition number estimates for matrices arising in the isogeometric discretizations

Condition number estimates for matrices arising in the isogeometric discretizations www.oeaw.ac.at Condition number estimates for matrices arising in the isogeometric discretizations K. Gahalaut, S. Tomar RICAM-Report -3 www.ricam.oeaw.ac.at Condition number estimates for matrices arising

More information

arxiv: v1 [math.na] 7 Jan 2019

arxiv: v1 [math.na] 7 Jan 2019 Efficient p-multigrid Methods for Isogeometric Analysis R. Tielen a,, M. Möller a, D. Göddeke b, C. Vuik a arxiv:9.685v [math.na] 7 Jan 29 a Delft Institute of Applied Mathematics, Delft University of

More information

THE angular momentum of atoms or atom clusters and its

THE angular momentum of atoms or atom clusters and its IEEE TRANSACTIONS ON MAGNETICS, VOL. 51, NO. 12, DECEMBER 2015 7209907 Optimization of a Stern Gerlach Magnet by Magnetic Field Circuit Coupling and Isogeometric Analysis Andreas Pels 1,2, Zeger Bontinck

More information

AposteriorierrorestimatesinFEEC for the de Rham complex

AposteriorierrorestimatesinFEEC for the de Rham complex AposteriorierrorestimatesinFEEC for the de Rham complex Alan Demlow Texas A&M University joint work with Anil Hirani University of Illinois Urbana-Champaign Partially supported by NSF DMS-1016094 and a

More information

A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT

A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT HUOYUAN DUAN, SHA LI, ROGER C. E. TAN, AND WEIYING ZHENG Abstract. To deal with the divergence-free

More information

QUADRILATERAL H(DIV) FINITE ELEMENTS

QUADRILATERAL H(DIV) FINITE ELEMENTS QUADRILATERAL H(DIV) FINITE ELEMENTS DOUGLAS N. ARNOLD, DANIELE BOFFI, AND RICHARD S. FALK Abstract. We consider the approximation properties of quadrilateral finite element spaces of vector fields defined

More information

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS CARLO LOVADINA AND ROLF STENBERG Abstract The paper deals with the a-posteriori error analysis of mixed finite element methods

More information

A Multiscale DG Method for Convection Diffusion Problems

A Multiscale DG Method for Convection Diffusion Problems A Multiscale DG Method for Convection Diffusion Problems Annalisa Buffa Istituto di Matematica Applicata e ecnologie Informatiche - Pavia National Research Council Italy Joint project with h. J.R. Hughes,

More information

Benchmarking high order finite element approximations for one-dimensional boundary layer problems

Benchmarking high order finite element approximations for one-dimensional boundary layer problems Benchmarking high order finite element approximations for one-dimensional boundary layer problems Marcello Malagù,, Elena Benvenuti, Angelo Simone Department of Engineering, University of Ferrara, Italy

More information

arxiv: v1 [math.na] 27 Jan 2016

arxiv: v1 [math.na] 27 Jan 2016 Virtual Element Method for fourth order problems: L 2 estimates Claudia Chinosi a, L. Donatella Marini b arxiv:1601.07484v1 [math.na] 27 Jan 2016 a Dipartimento di Scienze e Innovazione Tecnologica, Università

More information

Adaptive approximation of eigenproblems: multiple eigenvalues and clusters

Adaptive approximation of eigenproblems: multiple eigenvalues and clusters Adaptive approximation of eigenproblems: multiple eigenvalues and clusters Francesca Gardini Dipartimento di Matematica F. Casorati, Università di Pavia http://www-dimat.unipv.it/gardini Banff, July 1-6,

More information

Mixed Finite Elements Method

Mixed Finite Elements Method Mixed Finite Elements Method A. Ratnani 34, E. Sonnendrücker 34 3 Max-Planck Institut für Plasmaphysik, Garching, Germany 4 Technische Universität München, Garching, Germany Contents Introduction 2. Notations.....................................

More information

Trefftz-Discontinuous Galerkin Methods for the Time-Harmonic Maxwell Equations

Trefftz-Discontinuous Galerkin Methods for the Time-Harmonic Maxwell Equations Trefftz-Discontinuous Galerkin Methods for the Time-Harmonic Maxwell Equations Ilaria Perugia Dipartimento di Matematica - Università di Pavia (Italy) http://www-dimat.unipv.it/perugia Joint work with

More information

Adaptative isogeometric methods with hierarchical splines: optimality and convergence rates

Adaptative isogeometric methods with hierarchical splines: optimality and convergence rates MATHICSE Institute of Mathematics School of Basic Sciences MATHICSE Technical Report Nr. 08.2017 March 2017 Adaptative isogeometric methods with hierarchical splines: optimality and convergence rates Annalisa

More information

A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES

A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES P. HANSBO Department of Applied Mechanics, Chalmers University of Technology, S-4 96 Göteborg, Sweden E-mail: hansbo@solid.chalmers.se

More information

A-priori and a-posteriori error estimates for a family of Reissner-Mindlin plate elements

A-priori and a-posteriori error estimates for a family of Reissner-Mindlin plate elements A-priori and a-posteriori error estimates for a family of Reissner-Mindlin plate elements Joint work with Lourenco Beirão da Veiga (Milano), Claudia Chinosi (Alessandria) and Carlo Lovadina (Pavia) Previous

More information

Divergence-free Isogeometric Methods for Flow in Porous Media

Divergence-free Isogeometric Methods for Flow in Porous Media Divergence-free Isogeometric Methods for Flow in Porous Media Jens Birkevold Master of Science in Physics and Mathematics Submission date: July 2012 Supervisor: Trond Kvamsdal, MATH Co-supervisor: Knut-Andreas

More information

Annalisa Buffa Curriculum Vitae

Annalisa Buffa Curriculum Vitae Annalisa Buffa Curriculum Vitae IMATI E. Magenes, Via Ferrata 1 27100 Pavia Italy +39 0382 548201 +39 0382 548230 annalisa.buffa@imati.cnr.it www.imati.cnr.it/annalisa annalisa.buffa RID: www.researcherid.com/rid/c-4275-2011

More information

Finite element exterior calculus: A new approach to the stability of finite elements

Finite element exterior calculus: A new approach to the stability of finite elements Finite element exterior calculus: A new approach to the stability of finite elements Douglas N. Arnold joint with R. Falk and R. Winther Institute for Mathematics and its Applications University of Minnesota

More information

Finite Element Exterior Calculus. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 7 October 2016

Finite Element Exterior Calculus. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 7 October 2016 Finite Element Exterior Calculus Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 7 October 2016 The Hilbert complex framework Discretization of Hilbert complexes Finite element

More information

Spline Element Method for Partial Differential Equations

Spline Element Method for Partial Differential Equations for Partial Differential Equations Department of Mathematical Sciences Northern Illinois University 2009 Multivariate Splines Summer School, Summer 2009 Outline 1 Why multivariate splines for PDEs? Motivation

More information

ICES REPORT April John A. Evans and Thomas J.R. Hughes

ICES REPORT April John A. Evans and Thomas J.R. Hughes ICES REPORT 12-15 April 212 Isogeometric Divergence-conforming B-splines for the Steady Navier-Stokes Equations by John A. Evans and Thomas J.R. Hughes The Institute for Computational Engineering and Sciences

More information

New Model Stability Criteria for Mixed Finite Elements

New Model Stability Criteria for Mixed Finite Elements New Model Stability Criteria for Mixed Finite Elements Andrew Gillette Department of Mathematics Institute of Computational Engineering and Sciences University of Texas at Austin http://www.math.utexas.edu/users/agillette

More information

Finite Element Clifford Algebra: A New Toolkit for Evolution Problems

Finite Element Clifford Algebra: A New Toolkit for Evolution Problems Finite Element Clifford Algebra: A New Toolkit for Evolution Problems Andrew Gillette joint work with Michael Holst Department of Mathematics University of California, San Diego http://ccom.ucsd.edu/ agillette/

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

Finite Element Methods for Maxwell Equations

Finite Element Methods for Maxwell Equations CHAPTER 8 Finite Element Methods for Maxwell Equations The Maxwell equations comprise four first-order partial differential equations linking the fundamental electromagnetic quantities, the electric field

More information

arxiv: v1 [math.na] 27 Jan 2016

arxiv: v1 [math.na] 27 Jan 2016 Virtual Element Method for fourth order problems: L 2 estimates Claudia Chinosi a, L. Donatella Marini b arxiv:1601.07484v1 [math.na] 27 Jan 2016 a Dipartimento di Scienze e Innovazione Tecnologica, Università

More information

Finite element approximation on quadrilateral meshes

Finite element approximation on quadrilateral meshes COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2001; 17:805 812 (DOI: 10.1002/cnm.450) Finite element approximation on quadrilateral meshes Douglas N. Arnold 1;, Daniele

More information

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS

ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED FINITE ELEMENT METHODS MATHEMATICS OF COMPUTATION Volume 75, Number 256, October 2006, Pages 1659 1674 S 0025-57180601872-2 Article electronically published on June 26, 2006 ENERGY NORM A POSTERIORI ERROR ESTIMATES FOR MIXED

More information

Local discontinuous Galerkin methods for elliptic problems

Local discontinuous Galerkin methods for elliptic problems COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2002; 18:69 75 [Version: 2000/03/22 v1.0] Local discontinuous Galerkin methods for elliptic problems P. Castillo 1 B. Cockburn

More information

Problems of Corner Singularities

Problems of Corner Singularities Stuttgart 98 Problems of Corner Singularities Monique DAUGE Institut de Recherche MAthématique de Rennes Problems of Corner Singularities 1 Vertex and edge singularities For a polyhedral domain Ω and a

More information

Mixed Finite Element Methods. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016

Mixed Finite Element Methods. Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016 Mixed Finite Element Methods Douglas N. Arnold, University of Minnesota The 41st Woudschoten Conference 5 October 2016 Linear elasticity Given the load f : Ω R n, find the displacement u : Ω R n and the

More information

Divergence-free or curl-free finite elements for solving the curl-div system

Divergence-free or curl-free finite elements for solving the curl-div system Divergence-free or curl-free finite elements for solving the curl-div system Alberto Valli Dipartimento di Matematica, Università di Trento, Italy Joint papers with: Ana Alonso Rodríguez Dipartimento di

More information

A P4 BUBBLE ENRICHED P3 DIVERGENCE-FREE FINITE ELEMENT ON TRIANGULAR GRIDS

A P4 BUBBLE ENRICHED P3 DIVERGENCE-FREE FINITE ELEMENT ON TRIANGULAR GRIDS A P4 BUBBLE ENRICHED P3 DIVERGENCE-FREE FINITE ELEMENT ON TRIANGULAR GRIDS SHANGYOU ZHANG DEDICATED TO PROFESSOR PETER MONK ON THE OCCASION OF HIS 6TH BIRTHDAY Abstract. On triangular grids, the continuous

More information

H(div) and H(curl)-conforming VEM

H(div) and H(curl)-conforming VEM H(div) and H(curl)-conforming VM L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo arxiv:1407.6822v1 [math.na] 25 Jul 2014 Abstract In the present paper we construct Virtual lement Spaces that

More information

Solving the curl-div system using divergence-free or curl-free finite elements

Solving the curl-div system using divergence-free or curl-free finite elements Solving the curl-div system using divergence-free or curl-free finite elements Alberto Valli Dipartimento di Matematica, Università di Trento, Italy or: Why I say to my students that divergence-free finite

More information

VEM s for the numerical solution of PDE s. F. Brezzi

VEM s for the numerical solution of PDE s. F. Brezzi VEM s for the numerical solution of PDE s F. Brezzi IUSS-Istituto Universitario di Studi Superiori, Pavia, Italy IMATI-C.N.R., Pavia, Italy From Joint works with L. Beirão da Veiga, L.D. Marini, and A.

More information

Multigrid Methods for Maxwell s Equations

Multigrid Methods for Maxwell s Equations Multigrid Methods for Maxwell s Equations Jintao Cui Institute for Mathematics and Its Applications University of Minnesota Outline Nonconforming Finite Element Methods for a Two Dimensional Curl-Curl

More information

ICES REPORT April John A. Evans and Thomas J.R. Hughes

ICES REPORT April John A. Evans and Thomas J.R. Hughes ICES REPORT 12-16 April 2012 Isogeometric Divergence-conforming B-splines for the Unsteady Navier-Stokes Equations by John A. Evans and Thomas J.R. Hughes The Institute for Computational Engineering and

More information

Trefftz-discontinuous Galerkin methods for time-harmonic wave problems

Trefftz-discontinuous Galerkin methods for time-harmonic wave problems Trefftz-discontinuous Galerkin methods for time-harmonic wave problems Ilaria Perugia Dipartimento di Matematica - Università di Pavia (Italy) http://www-dimat.unipv.it/perugia Joint work with Ralf Hiptmair,

More information

A NONCONFORMING PENALTY METHOD FOR A TWO DIMENSIONAL CURL-CURL PROBLEM

A NONCONFORMING PENALTY METHOD FOR A TWO DIMENSIONAL CURL-CURL PROBLEM A NONCONFORMING PENALTY METHOD FOR A TWO DIMENSIONAL CURL-CURL PROBLEM SUSANNE C. BRENNER, FENGYAN LI, AND LI-YENG SUNG Abstract. A nonconforming penalty method for a two-dimensional curl-curl problem

More information

A Multigrid Method for Two Dimensional Maxwell Interface Problems

A Multigrid Method for Two Dimensional Maxwell Interface Problems A Multigrid Method for Two Dimensional Maxwell Interface Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University USA JSA 2013 Outline A

More information

The Virtual Element Method: an introduction with focus on fluid flows

The Virtual Element Method: an introduction with focus on fluid flows The Virtual Element Method: an introduction with focus on fluid flows L. Beirão da Veiga Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca VEM people (or group representatives): P.

More information

HEXAHEDRAL H(DIV) AND H(CURL) FINITE ELEMENTS

HEXAHEDRAL H(DIV) AND H(CURL) FINITE ELEMENTS HEXAHEDRAL H(DIV) AND H(CURL) FINITE ELEMENTS RICHARD S. FAL, PAOLO GATTO, AND PETER MON Abstract. We study the approximation properties of some finite element subspaces of H(div; Ω) and H(curl ; Ω) defined

More information

Comparisons are Odious, De Laudibus Legum Angliae, John Fortescue, c

Comparisons are Odious, De Laudibus Legum Angliae, John Fortescue, c Duality and Unified Analysis of Discrete Approimations in Structural Dynamics and Wave Propagation: Comparison of p-method Finite Elements with k-method NURBS T.J.R. Hughes a,, A. Reali b,d,e, G. Sangalli

More information

PAijpam.eu NEW H 1 (Ω) CONFORMING FINITE ELEMENTS ON HEXAHEDRA

PAijpam.eu NEW H 1 (Ω) CONFORMING FINITE ELEMENTS ON HEXAHEDRA International Journal of Pure and Applied Mathematics Volume 109 No. 3 2016, 609-617 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v109i3.10

More information

A posteriori error estimates for Maxwell Equations

A posteriori error estimates for Maxwell Equations www.oeaw.ac.at A posteriori error estimates for Maxwell Equations J. Schöberl RICAM-Report 2005-10 www.ricam.oeaw.ac.at A POSTERIORI ERROR ESTIMATES FOR MAXWELL EQUATIONS JOACHIM SCHÖBERL Abstract. Maxwell

More information

Some New Elements for the Reissner Mindlin Plate Model

Some New Elements for the Reissner Mindlin Plate Model Boundary Value Problems for Partial Differential Equations and Applications, J.-L. Lions and C. Baiocchi, eds., Masson, 1993, pp. 287 292. Some New Elements for the Reissner Mindlin Plate Model Douglas

More information

arxiv: v1 [math-ph] 25 Apr 2013

arxiv: v1 [math-ph] 25 Apr 2013 Higher-order compatible discretization on hexahedrals Jasper Kreeft and Marc Gerritsma arxiv:1304.7018v1 [math-ph] 5 Apr 013 Abstract We derive a compatible discretization method that relies heavily on

More information

JOHANNES KEPLER UNIVERSITY LINZ. Institute of Computational Mathematics

JOHANNES KEPLER UNIVERSITY LINZ. Institute of Computational Mathematics JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Multipatch Space-Time Isogeometric Analysis of Parabolic Diffusion Problems Ulrich Langer Institute of Computational Mathematics,

More information

Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering - Recent Advances

Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering - Recent Advances Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering - Recent Advances Ilaria Perugia Dipartimento di Matematica Università di Pavia (Italy) In collaboration with Ralf Hiptmair, Christoph Schwab,

More information

A C 1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. Marco Verani

A C 1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. Marco Verani A C 1 virtual element method for the Cahn-Hilliard equation with polygonal meshes Marco Verani MOX, Department of Mathematics, Politecnico di Milano Joint work with: P. F. Antonietti (MOX Politecnico di

More information

Motivations. Outline. Finite element exterior calculus and the geometrical basis of numerical stability. References. Douglas N.

Motivations. Outline. Finite element exterior calculus and the geometrical basis of numerical stability. References. Douglas N. Outline Finite element exterior calculus and the geometrical basis of numerical stability Douglas N. Arnold joint with R. Falk and R. Winther School of Mathematics University of Minnesota April 009 Motivations

More information

ENHANCED STRAIN METHODS FOR ELASTICITY PROBLEMS

ENHANCED STRAIN METHODS FOR ELASTICITY PROBLEMS European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004 P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate, J. Périaux, and D. Knörzer (eds.) Jyväskylä, 24 28 July 2004

More information

Corner Singularities

Corner Singularities Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems Linz, 10 15 October 2016 Martin Costabel (Rennes) Corner Singularities

More information

ISOGEOMETRIC COLLOCATION METHOD FOR ELASTICITY PROBLEMS CONTAINING SINGULARITIES. Puja Rattan

ISOGEOMETRIC COLLOCATION METHOD FOR ELASTICITY PROBLEMS CONTAINING SINGULARITIES. Puja Rattan ISOGEOMETRIC COLLOCATION METHOD FOR ELASTICITY PROBLEMS CONTAINING SINGULARITIES by Puja Rattan A dissertation proposal submitted to the faculty of The University of North Carolina at Charlotte in partial

More information

EXISTENCE AND REGULARITY OF SOLUTIONS FOR STOKES SYSTEMS WITH NON-SMOOTH BOUNDARY DATA IN A POLYHEDRON

EXISTENCE AND REGULARITY OF SOLUTIONS FOR STOKES SYSTEMS WITH NON-SMOOTH BOUNDARY DATA IN A POLYHEDRON Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 147, pp. 1 10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE AND REGULARITY OF SOLUTIONS FOR

More information

Serendipity Finite Element Methods for Cardiac Electrophysiology Models

Serendipity Finite Element Methods for Cardiac Electrophysiology Models Serendipity Finite Element Methods for Cardiac Electrophysiology Models Andrew Gillette Department of Mathematics University of California, San Diego http://ccom.ucsd.edu/ agillette/ Andrew Gillette -

More information

Divergence free Virtual Elements for the Stokes problem on polygonal meshes

Divergence free Virtual Elements for the Stokes problem on polygonal meshes Divergence free Virtual Elements for the Stokes problem on polygonal meshes L. Beirão da Veiga, C. Lovadina and G. Vacca Abstract arxiv:1510.01655v1 [math.na] 6 Oct 2015 In the present paper we develop

More information

Let s Do This Once. Folding Vector Calculus into Multivariable Calculus Using Geometry and Language. Aaron Wangberg

Let s Do This Once. Folding Vector Calculus into Multivariable Calculus Using Geometry and Language. Aaron Wangberg Folding Vector Calculus into Multivariable Calculus Using Geometry and Language Department of Mathematics Winona State University Annual Summer Meeting of the Mathematical Association of America, 2008

More information

Isogeometric Analysis for the Fractional Laplacian

Isogeometric Analysis for the Fractional Laplacian Isogeometric Analysis for the Fractional Laplacian Kailai Xu & Eric Darve CME500 May 14, 2018 1 / 26 Outline Fractional Calculus Isogeometric Analysis Numerical Experiment Regularity for the Fractional

More information

MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires

MIXED FINITE ELEMENTS FOR PLATES. Ricardo G. Durán Universidad de Buenos Aires MIXED FINITE ELEMENTS FOR PLATES Ricardo G. Durán Universidad de Buenos Aires - Necessity of 2D models. - Reissner-Mindlin Equations. - Finite Element Approximations. - Locking. - Mixed interpolation or

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (2012) 122:61 99 DOI 10.1007/s00211-012-0456-x Numerische Mathematik C 0 elements for generalized indefinite Maxwell equations Huoyuan Duan Ping Lin Roger C. E. Tan Received: 31 July 2010

More information

Finite Element Exterior Calculus and Applications Part V

Finite Element Exterior Calculus and Applications Part V Finite Element Exterior Calculus and Applications Part V Douglas N. Arnold, University of Minnesota Peking University/BICMR August 15 18, 2015 De Rham complex 0 H 1 (Ω) grad H(curl, Ω) curl H(div, Ω) div

More information

Locking phenomena in Computational Mechanics: nearly incompressible materials and plate problems

Locking phenomena in Computational Mechanics: nearly incompressible materials and plate problems Locking phenomena in Computational Mechanics: nearly incompressible materials and plate problems C. Lovadina Dipartimento di Matematica Univ. di Pavia IMATI-CNR, Pavia Bologna, September, the 18th 2006

More information

MIXED FINITE ELEMENTS, COMPATIBILITY CONDITIONS AND APPLICATIONS

MIXED FINITE ELEMENTS, COMPATIBILITY CONDITIONS AND APPLICATIONS D.Boffi F.Brezzi L.Demkowicz R.G.Durán R.S.Falk M.Fortin MIXED FINITE ELEMENTS, COMPATIBILITY CONDITIONS AND APPLICATIONS Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 26-July

More information

ANALYSIS OF LAMINATED COMPOSITE PLATES USING ISOGEOMETRIC COLLOCATION METHOD

ANALYSIS OF LAMINATED COMPOSITE PLATES USING ISOGEOMETRIC COLLOCATION METHOD ECCOMAS Congress 0 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris eds.) Crete Island, Greece, 5 10 June 0 ANALYSIS

More information

arxiv: v1 [math.na] 9 Sep 2012

arxiv: v1 [math.na] 9 Sep 2012 High order gradient, curl and divergence conforming spaces, with an application to compatible NURBS-based IsoGeometric Analysis R.R. Hiemstra a, R.H.M. Huijsmans a, M.I.Gerritsma b a Department of Marine

More information

Key words. Incompressible magnetohydrodynamics, mixed finite element methods, discontinuous Galerkin methods

Key words. Incompressible magnetohydrodynamics, mixed finite element methods, discontinuous Galerkin methods A MIXED DG METHOD FOR LINEARIZED INCOMPRESSIBLE MAGNETOHYDRODYNAMICS PAUL HOUSTON, DOMINIK SCHÖTZAU, AND XIAOXI WEI Journal of Scientific Computing, vol. 40, pp. 8 34, 009 Abstract. We introduce and analyze

More information

MACRO STOKES ELEMENTS ON QUADRILATERALS

MACRO STOKES ELEMENTS ON QUADRILATERALS INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 15, Number 4-5, Pages 729 745 c 2018 Institute for Scientific Computing and Information MACRO STOES ELEMENTS ON QUADRILATERALS MICHAEL NEILAN

More information

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Roy Stogner Computational Fluid Dynamics Lab Institute for Computational Engineering and Sciences University of Texas at Austin March

More information

Diese Arbeit wurde vorgelegt am Lehrstuhl für computergestützte Analyse technischer Systeme

Diese Arbeit wurde vorgelegt am Lehrstuhl für computergestützte Analyse technischer Systeme Diese Arbeit wurde vorgelegt am Lehrstuhl für computergestützte Analyse technischer Systeme Dreidimensionale Isogeometrische Elastische Festkörper für Fluid-Struktur Interaktionen Three-Dimensional Isogeometric

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 11, pp. 1-24, 2000. Copyright 2000,. ISSN 1068-9613. ETNA NEUMANN NEUMANN METHODS FOR VECTOR FIELD PROBLEMS ANDREA TOSELLI Abstract. In this paper,

More information

Finite Element Modeling of Electromagnetic Systems

Finite Element Modeling of Electromagnetic Systems Finite Element Modeling of Electromagnetic Systems Mathematical and numerical tools Unit of Applied and Computational Electromagnetics (ACE) Dept. of Electrical Engineering - University of Liège - Belgium

More information

Smoothed projections in finite element exterior calculus

Smoothed projections in finite element exterior calculus Smooted projections in finite element exterior calculus Ragnar Winter CMA, University of Oslo Norway based on joint work wit: Douglas N. Arnold, Minnesota, Ricard S. Falk, Rutgers, and Snorre H. Cristiansen,

More information