Effective Hybrid Adaptive Temperature Control inside Plug-flow Chemical Reactor

Size: px
Start display at page:

Download "Effective Hybrid Adaptive Temperature Control inside Plug-flow Chemical Reactor"

Transcription

1 INERNAIONAL JOURNAL OF MAHEMAICS AND COMPUERS IN SIMULAION Volume, 6 Effective Hybrid Adaptive emperature Control inide Plug-flow Chemical Reactor Jiri Vojteek, Petr Dotal Abtract he paper deal with two method of hybrid adaptive control of the nonlinear ytem repreented by the plug-flow tubular chemical reactor. he mathematical model of thi type of technological procee i decribed by the et of partial differential equation which were olved numerically by the finite difference method and Runge-Kutta method. he adaptivity of the controller i atified by the recurive identification of the external linear model a a linear repreentation of the originally high nonlinear controlled ytem. he firt method ue well known Pole-placement method and the econd i baed on the more ophiticated LQ approach. he advantage of thee method i that both have tuning parameter which can affect control reult. Although the controlled ytem ha highly nonlinear behavior, ued adaptive controller ha good reult. Keyword Adaptive Control, Pole-placement Method, Recurive Identification, LQ Approach, Plug-flow ubular Chemical Reactor. I. INRODUCION HE controlling of chemical reactor i alway challenging becaue of the complexity of the ytem, hazardou and cot aving. he modeling of uch procee uually end with the complicated et of ordinary or even partial differential equation depending on the type of ytem []. he tubular plug-flow reactor belong to the ring of ytem with continuouly ditributed parameter, mathematical model of which ue partial differential equation (PDE) unfortunately in the nonlinear form []. he mathematical olution of the et of PDE ue Finite difference method which dicretize the equation in the axial variable which mean that the et of PDE i tranformed into the et of ordinary differential equation ODE that can be then olved for example by Runge-Kutta method [3] which i eaily programmable or even build-in function in mathematical oftware. Other numerical method are alo dicued in [4]. Once we have done the imulation of the teady-tate and dynamic behavior, we can continue with the choice of the optimal control trategy. here are everal let ay modern control method which were teted on thi or imilar type of J. Vojteek i with the Department of Proce Control, oma Bata Univerity in Zlin, nam. GM 5555, 76 Zlin, Czech Republic (correponding author to provide phone: ; fax: ; vojteek@fai.utb.cz). P. Dotal i with the Department of Proce Control, oma Bata Univerity in Zlin, nam. GM 5555, 76 Zlin, Czech Republic ( dotalp@fai.utb.cz). ytem the robut control, the predictive control or the adaptive control. he adaptive control [5] ha variou improvement and application. he approach applied in thi work ue reult from the dynamic analyi for the choice of the External Linear Model (ELM) parameter of which are etimated recurively during the control which atifie adaptivity of the controller [6]. Control ynthei ue a polynomial approach [7] which atifie baic control requirement like tability of the control loop, the reference ignal tracking and the diturbance attenuation. Another big advantage of thi method i that it provide not only the tructure of the controller but alo relation for computing of the controller parameter. hi method could ue alo other method like the Pole-placement method [7] and LQ approach. hee two method are dicued in thi work. Other, let u ay, modern control method are robut control [8] and predictive control [9]. Advantage of thee method can be found in better efficiency and verability. All experiment in the work are done by imulation uing mathematical oftware Matlab, verion 7... hee method were teted and can be ued alo for the controlling of real ytem, imilarly a in []. II. MODEL OF UBULAR CHEMICAL REACOR he ytem under the conideration i a tubular chemical reactor [] a typical nonlinear equipment ued in indutry. he reaction inide i a imple exothermic reaction in the liquid phae and the reactant i cooled by the cooling liquid inide the jacket of the reactor. he cheme of the reactor could be found in Fig.. he convection of the liquid in the pipe and the cooling jacket i expected to be plug-flow. hat i why are thee type of reactor called Plug-Flow Reactor (PFR). he mathematical model ue material and heat balance inide the reactor. he PFR diplayed in Fig. offer theoretically two type of cooling from the direction point of view co-current and counter-current cooling. It wa proofed for example in [], that the counter-current cooling, where the direction of the cooling flow i oppoite to the direction of the reactant ha better cooling efficiency. hi type of cooling i conidered in thi work mainly becaue of thi efficiency. ISSN:

2 INERNAIONAL JOURNAL OF MAHEMAICS AND COMPUERS IN SIMULAION Volume, 6 he mathematical decription of uch model i very complex and there mut be introduced implification which reduce the complexity of the ytem: we expect, that all denitie, heat capacitie and heat tranfer coefficient are expected to be contant. Alo, we neglect heat loe and conduction along the metal wall of pipe. On the other hand, the heat tranfer through the wall i conequential for the dynamic tudy. A the pace variable i alo important in the mathematical decription, the mathematical model with all mentioned implification i decribed by the et of five partial differential equation (PDE) ca ca + vr = k ca t z cb cb + vr = k ca k cb t z r r hr 4 U () + vr = ( r w) t z ρr cpr d ρr cpr w 4 = d U ( ) ( ) r w + d U c w t d d ρ c ( ) w c 4 n d U v = t z d n d c pw ( 3 ) ( ) c c w c ρc pc where denote temperature, d are diameter of the pipe d i inner diameter of the pipe, d i outer diameter of the pipe and d 3 denote diameter of the jacket. hen, ρ are ued for denitie, c p for pecific heat capacitie, U denote heat tranfer coefficient, n i ued for number of individual pipe and L i length of the reactor. energie and R a a univeral ga contant. he lat, unmentioned variable in () i a reaction heat h r computed from h = h k c + h k c (5) r A B where h j are reaction enthalpie. Fixed parameter of the reactor [] are hown in the following able : able Fixed parameter of the reactor Parameter Inner diameter of the tube Outer diameter of the tube Inner diameter of the reactor Number of pipe Length of the reactor Volum. flow rate of the reactant Volum. flow rate of the cooling Denity of the reactant Denity of the metal wall Denity of the cooling Heat capacity of the reactant Heat capacity of the metal wall Heat capacity of the cooling Heat tranfer coefficient Heat tranfer coefficient Pre-exponential factor Pre-exponential factor Activation energy /ga contant Activation energy /ga contant Reaction enthalpy Reaction enthalpy Input concentration of comp.a Input temperature of the reactant Input temperature of the cooling Notation and value d =. m d =.4 m d 3 = m n = L = 6 m q r =.5 m 3. - q c =.75 m 3. - ρ r = 985 kg.m 3 ρ w = 78 kg.m 3 ρ c = 998 kg.m 3 c pr = 4.5 kj.kg -.K - c pw =.7 kj.kg -.K - c pc = 4.8 kj.kg -.K - U =.8 kj.m -.K -. - U =.56 kj.m -.K -. - k = k = E /R = 3477 K E /R = 59 K h = kj.kmol - h =.8 4 kj.kmol - c A =.85 kmol.m -3 r = 33 K c = 93 K Since the mathematical model of the ytem () i decribed by the et of nonlinear partial differential equation, we are talking about the nonlinear ditributed-parameter ytem. Fig. Scheme of the plug-flow tubular chemical reactor he variable v r and v c are fluid velocitie computed from the volumetric flow rate q and contant f, e.g. qr qc v = r ; vc f = f () r c Where contant f r and f c are connected to the tructure of reactor π d π f = n ; f = d n d (3) r ( ) c he main nonlinearity of thi ytem can be found in reaction velocitie k and k which are nonlinear function of the rectant temperature r according to the Arrheniu law: E j kj = k j exp, for j =, (4) R r with k j a a pre-exponential factor, E j a a activation III. SEADY-SAE AND DYNAMIC ANALYSES he tatic and dynamic analye are uually the firt tep after the modelling part. he goal of thee tudie i at firt verify propoed mathematical model with meaurement on the real ytem. Sometime implification reduce the accuracy of the mathematical decription and the ue of the mathematical model i unacceptable. he econd reaon why we do thee analye i that we need to know the behavior of the ytem for finding of the optimal working point, limitation etc. he tep repone in the dynamic analyi are alo ued for the choice of the External Linear Model in adaptive control decribed later in thi work. A there are theoretically more input and output variable, the change of the cooling volumetric flow rate, q c, wa choen a a input variable for the reactant temperature, r, a an output variable. he volumetric flow rate a an input wa choen from the practical point of view it i repreented by the twit of the valve in thi cae. On the other hand, the ISSN:

3 INERNAIONAL JOURNAL OF MAHEMAICS AND COMPUERS IN SIMULAION Volume, 6 output temperature i better meaured than the output concentration. A. Steady-tate Analyi he tatic analyi explore the behavior of the ytem in teady-tate, i.e. in the tate when tate variable doe not change. Mathematically peaking, the derivative with repect to time are equal to zero in the teady-tate and the et of partial differential equation () i tranformed to the et of ordinary differential equation with repect to pace variable z. he Finite difference method i employed here for olving of thi problem. Derivative with repect to pace variable are replaced by the firt back difference dx x() i x( i ),for i =,, n (6) dz z= z h i z with x a a general variable and tep ize h z = L/N z. A the ytem ha counter-current cooling, the temperature of the cooling c i decribed in the oppoite coordinate and the lat fifth equation in () ue the firt forward difference dx x( j+ ) x( j), for j = n, n-, (7) dz z= z h j z he teady-tate analyi i then olution of the cycle of dicrete equation for different value of the input variable, in thi cae volumetric flow rate of the cooling q c. he tatic analyi wa done for variou value of the cooling volumetric flow rate q c = <.;.35> m 3. - and value of the teady-tate reactant temperature, r, through the length of the reactor (axial variable z = <; 8> m) are hown in Fig.. r [K] z [m] q c [m 3. - ] Fig. Steady-tate characteritic of the reactant temperature, r, for different volumetric flow rate of the coolant q c through the length of the reactor Reult of the teady-tate analyi clearly how the nonlinearity of the ytem. he optimal working point i defined for the volumetric flow rate of the reactant q r =.5 m 3. - and the volumetric flow rate of the coolant q c =.75 m 3. - and thi working point wa ued later in the dynamic analyi and alo in the adaptive control. B. Dynamic Analyi he dynamic analyi oberve the behavior of the output variable, reactant temperature at the end of the reactor r (L), after the tep change of the input variable, in thi cae tep change of the volumetric flow rate of the coolant, Δq c. he input, u(t), and the output, y(t) variable for both dynamic and control purpoe are then qc( t) qc u() t = [%]; y() t = r ( t, L ) r ( L)[ K] (8) qc where q c i volumetric flow rate at the working point and r (L) i the teady-tate value of the output variable in the working point which i alo initial value for the dynamic tudy. hi mean, that the graph tart from zero. From the mathematical point of view, the dynamic analyi i the numerical olution of the et of partial differential equation (). he numerical olution of PDE i not imple and the combination of the Finite difference method decribed above which tranform the et of PDE to the et of ordinary differential equation (ODE) wa ued here. he et of ODE i then olved numerically with the ue of Runge- Kutta method. here were done everal tep change and reult are hown in the following Fig. 3. y(t) [K] % - % - % + % + % +4 % t [] Fig. 3 Dynamic characteritic for variou tep change of the input variable It i clear, that the poitive change of the input variable reult in decreaing value of the output reactant temperature and converely, the negative change of q c produce poitive change of the output temperature. All coure of the output variable could be decribed by econd order tranfer function which will be ued later in the adaptive control. IV. ADAPIVE CONROL Once we have information about the ytem behavior in the teady-tate and dynamic, we can move on to the controller deign. here are everal control method which can be ued for uch nonlinear proce like predictive control, robut control etc. he adaptive approach wa ued in thi work becaue author have good experience with the uage of thi control method for imilar type of technological ISSN:

4 INERNAIONAL JOURNAL OF MAHEMAICS AND COMPUERS IN SIMULAION Volume, 6 procee like heat exchanger, continuou tirred-tank reactor (CSR), water tank etc. An advantage of thi method can be alo find in the big theoretical background, modification and application. he term Adaptivity come from the nature, where animal and plant adopt their behavior depending on the living environment and condition. Similarly, the adaptive controller could adopt (e.g. change) it parameter or tructure according to the actual tate of the ytem and control requirement. here are, of coure, variou adaptive control trategie. A it i already mentioned, the adaptive approach here i baed on on-line recurive identification of the External Linear Model (ELM) which repreent original, nonlinear, proce. Parameter of the controller depend on parameter of the ELM and change in every identification tep according to the identified parameter of the ELM. A. External Linear Model he choice of the ELM come from the dynamic analyi preented above. he output repone have hown, that the change of the output temperature a the output y(t) to the input variable u(t) in Fig. 3 could be decribed by the continuoutime (C) model b( ) b + b G( ) = = (9) a( ) + a + a On-line identification of the C model i complicated. he dicrete-time (D) model are ued more often. hee model do not decribe the ytem in the very accurate way it depend on the choice od the ampling period v. Compromie could be found in the ue of delta-model a a pecial type of the D model where value of the input and output variable are related to the ampling period and it wa proofed, that parameter of the delta-model approache to the parameter of the C model. he delta model introduce a new complex variable γ [3] z γ = () v he ELM (9) could be then rewritten to the form of the differential equation y ( k) = bu ( k ) + bu ( k ) () a y ( k ) a y ( k ) where b, b, a, a are delta-parameter imilar to thoe in (9) for mall ampling period [4]. Delta value of input and output variable in Equation () can be computed a yk ( ) yk ( ) + yk ( ) y ( k) = v yk ( ) yk ( ) uk ( ) uk ( ) () y( k ) = u( k ) = v v y( k ) = y( k ) u( k ) = u( k ) he regreion vector ϕ and the vector of parameter θ are [ ] θ ( k) a, a, b, b ϕ ( k ) = y ( k ), y ( k ), u ( k ), u ( k ) = (3) and the differential equation () ha then vector form y ( k) = θ ( k) ϕ ( k ) + e( k) (4) where e(k) i a general random immeaurable component and the tak of the identification i to etimate the vector of parameter θ from known data vector ϕ. B. Recurive Identification It wa already mentioned, that adaptivity in thi approach i baed on the on-line parameter identification of the ELM. he recurive identification mathematically mean the etimation of the vector of parameter θ from the differential equation (4). he method ued here i a imple Recurive Leat- Square (RLS) method [5] which can be eaily programmed and alo extended by the additional forgetting technique. Generally, the RLS method ued for etimation of the vector of parameter ˆθ ( k ) could be decribed by the et of equation: ε ( k) = y( k) ϕ ( k) ˆ θ( k ) γ ( k) = + ϕ ( k) P ( k ) ϕ( k) (5) L( k) = γ ( k) P ( k ) ϕ ( k) ( k ) ( k) ( k) ( k ) ( k) P ϕ ϕ P P = P( k ) λ ( k ) λ ( k ) + ϕ ( k) P ( k ) ϕ( k) λ ( k ) ˆ θ( k) = ˆ θ ( k ) + L( k) ε ( k) where ε denote a prediction error, P i a covariance matrix and λ and λ are forgetting factor. For example contant exponential forgetting [5] ue λ = and λ ( ) ( ) k = K γ k ε ( k) (6) where K i a very mall value (e.g. K =.). C. Control Synthei It wa already mentioned, that parameter of the ELM are ued in the computation of the controller. he polynomial ynthei i employed here becaue it provide not only the tructure of the controller but alo relation for computing of the controller parameter. Negligible advantage could be found alo in the fulfillment of the baic control requirement and eaily programmability. he implet one degree-of-freedom (DOF) divide the control loop into two part the tranfer function G() repreenting controlled plant (i.e. the ELM of the ytem) and the tranfer function of the controller Q() ee Fig. 4. Fig. 4 One degree-of-freedom (DOF) control configuration ISSN:

5 INERNAIONAL JOURNAL OF MAHEMAICS AND COMPUERS IN SIMULAION Volume, 6 he ignal w in Fig. 4 repreent reference ignal (i.e. wanted value), u i control input, y controlled output, v denote random error and e i control error e = w y. he tranfer function of the controlled plant G() i known from the recurive identification and the tranfer function of the controller i generally q( ) Q ( ) = (7) p ( ) he parameter of the polynomial p ( ) and q() are computed from the Diophantine equation a( ) p ( ) + b( ) q( ) = d( ) (8) by the Method of uncertain coefficient which compare parameter of individual -power in (8). Polynomial a() and b() are known from the recurive identification and the polynomial d() on the right ide of the (8) i table optional polynomial the choice of which affect mainly the quality of the control. wo method of chooing of thi polynomial are dicued and teted in the next chapter Pole-placement method and LQ approach. D. Pole-placement Method he implet way i to chooe the polynomial d() by the Pole-placement method which divide the polynomial generally to deg d( ) d( ) = ( + α ) (9) i= with the tability condition α >. Degree of polynomial p ( ) and q() from (7) and the polynomial d() in (8) are for thi econd order tranfer function with relative order one (9) deg p ( ) = deg a( ) = deg q( ) = deg a( ) = () deg d( ) = deg a( ) + deg p ( ) + = 4 which mean that the tranfer function of the controller i q + q + q Q( ) = ` () ( + p ) and the polynomial d() ha four root. Diadvantage of thi method i that there i no rule how to chooe there root. We can have one quadruple root, two double root, one ordinary and one triple root or four different root. Our previou experiment have hown that it i good to connect the choice of the polynomial d() with the controlled ytem, for example with the ue of pectral factorization of the polynomial a() in the numerator of the tranfer function G(). Let u introduce new polynomial n() computed from the pectral factorization of the polynomial a(), i.e. * * n ( ) n( ) = a ( ) a( ) () It i clear, that thi polynomial ha the ame degree a the polynomial a() and a it i a part of the polynomial d(), we can rewrite thi polynomial to the form d( ) = n( ) ( + α ) (3) which mean that we have reduced the uncertainty to one double root. he controller deigned with thi method ha one tuning parameter α which could affect the quality of control. E. LQ Approach he econd, let ay a bit ophiticated, method i for deigning of the polynomial d() i the ue Linear-Quadratic (LQ) approach which i baed on the minimization of the cot function { μ () ϕ ()} J = e t + u t dt (4) LQ LQ LQ in the complex domain. Parameter > and μ LQ are weighting coefficient, e(t) i the control error and u ( t) denote the difference of the input variable. If we ue again the pectral factorization of the polynomial a(), imilarly a in previou cae, the polynomial d() i then divided into d( ) = n( ) g( ) (5) where the polynomial i olution of the minimization of (4), mathematically olution of the pectral factorization * * ( a( ) f ( ) ) ϕlq a( ) f ( ) + b ( ) μlq b( ) = (6) * = g g ( ) ( ) Degree of the controller polynomial p ( ) and q() and the polynomial d() on the right ide of Diophantine equation are for the econd order ELM (9) deg p ( ) deg a( ) = deg q( ) = deg a( ) + deg f ( ) = (7) deg d( ) = deg a+ = 5 and the tranfer function of the controller i q + q + q Q( ) = (8) ( + a + p) he LQ adaptive controller ha two tuning parameter, weighting factor and μ LQ but our experiment have hown that i good to fix one parameter and change only the econd one [6]. V. SIMULAION RESULS Both technique were teted by the imulation on the mathematical model (). he control output i the change of the input volumetric flow rate of the coolant in % and the controlled output i the change of the output temperature, imilarly a it i in (8): qc( t) qc u() t = [%]; y() t = r ( t, L ) r ( L)[ K] (9) qc Due to better comparability of thee method are alo imulation parameter the ame. he ampling period wa ISSN:

6 INERNAIONAL JOURNAL OF MAHEMAICS AND COMPUERS IN SIMULAION Volume, 6 v =.5, the imulation time wa 8 and there were done four different tep change to the poitive and negative value during thi time. he firt control imulation wa done for the Poleplacement method and variou value of the parameter α. =.7;. and.. w(t), y(t) [K] w(t) y(t) α =.7 y(t) α =. y(t) α = t [] Fig. 5 he coure of the reference ignal, w(t), and the output variable, y(t), for variou value of α, Pole-placement method u(t)[%] 4 - u(t) α =.7 u(t) α =. u(t) α = t [] Fig. 6 he coure of the input variable, u(t), for variou value of α, Pole-placement method a (t)[-] a (t)[-] α =.7 α =. α = x α =.7 α =. α = Fig. 7 he coure of identified parameter a (t) and a (t) for variou value of α, Pole-placement method Obtained imulation reult in Fig. 5 a 6 have hown that the increaing value of α reult in quicker output repone but overhoot of the output variable y(t). he coure of the control (input) variable u(t) i moother for lower value of α. A it wa already written, adaptive approach here i baed on the recurive identification of the ELM (9). he recurive leat quare method with exponential forgetting wa ued for online identification of parameter a (t), a (t), b (t) and b (t) and reult are hown in Fig. 7 and 8. You can ee that there i only problem with identification at the very beginning of the control where controller doe not have any information about the ytem and tarting value of the vector of parameter i generally θ ( ) [.,.,.,.] =. he controller need ome time for adaptation but the etimation i much moother after initial 5 min for all identified parameter. b (t)[-] b (t)[-] x α =.7 α =. α = x α =.7 α =. α = Fig. 8 he coure of identified parameter b (t) and b (t) for variou value of α, Pole-placement method he econd analyi wa done for LQ approach and different value of weighting parameter =.5;. and. and the reult are hown in Fig. 9 and. Although there are imilar value of the weighting parameter a α in previou cae, the meaning of thi parameter i different. In thi cae, increaing value of parameter reult in lower, more ocillating output repone but moother coure of the input variable which could be ometime good from the practical point view. he ue of LQ approach produce generally more ocillating output repone but both control technique could be ued for controlling of uch trongly nonlinear procee. ISSN:

7 INERNAIONAL JOURNAL OF MAHEMAICS AND COMPUERS IN SIMULAION Volume, 6 w(t), y(t) [K] w(t) y(t) =.5 y(t) =. y(t) = t [] Fig. 9 he coure of the reference ignal, w(t), and the output variable, y(t), for variou value of, LQ approach u(t)[%] a (t)[-] 4 - u(t) =.5 u(t) =. u(t) = t [] Fig. he coure of the input variable, u(t), for variou value of, LQ approach. a (t)[-].. -. =.5 =. = x -4 =.5 =. = Fig. he coure of identified parameter a (t) and a (t) for variou value of, LQ approach Fig. and Fig. repreenting reult of online identification how very imilar reult to thoe mentioned above for previou control approach. We can ay here that initial adaptation i much quicker than for previou cae. b (t)[-] b (t)[-] =.5 =. = x -5 =.5 =. = Fig. he coure of identified parameter b (t) and b (t) for variou value of, LQ approach All reult of identification preented in Fig. 7, Fig. 8, Fig. and Fig. how uability of thi recurive leat-quare method. Moreover, we can ee, that identified parameter do not change dramatically after ome, already mentioned, initial adaptation time. Here rie the quetion: I online recurive identification important here, where parameter doe not change? Of coure, we can ue controller with fixed parameter but what if the control condition change? What if there occur unexpected diturbance. In thee cae i the ue of online identification very good option. hoe controller react to thee change quickly and provide more optimal reult. Obtained reult were dicued only from the viual view until now but it i good to have any mathematical decription of reult for comparion. We can ue for example imple quadratic criterion S u and S y which quantitatively decribe the coure of the output variable, y(t), or it difference from the reference ignal, w(t),repectively and the change of the input variable, u(t): N Su = ( u() i u( i )) [ ] ; i= f, for N = (3) N v Sy = ( w() i y() i ) K i= Obtained value of thee quadratic criterion are hown in able, 3 and following figure 3-7. able Computed value of quadratic criterion S u and S y in control with Pole-placement method S u [-] S y [K ] α = α = α = ISSN:

8 INERNAIONAL JOURNAL OF MAHEMAICS AND COMPUERS IN SIMULAION Volume, 6 able 3 Computed value of quadratic criterion S u and S y in control with LQ method S u [-] S y [K ] = = = Preented value of criterion can help u with the choice of the optimal value of tuning parameter α or. For example, able and graph in Figure 3 and 5 which repreent control approach with Pole-placement method indicate, that from the input point of view are the bet reult for control with α =.. hi i repreented by the lowet value of the criterion S u that um quare of change of the input variable. Alo, the value of the econd criterion S y denoting the um of control error (w y) i alo the lowet for the lat control trategy. We can ay, that thi etting ha the bet reult and could be teted on the real proce S u i alo one of the lowet for thi etting, we can ay that control with =.5 ha the bet reult. If we compare alo thee criterion for both control trategie, Pole-placement method produce better value of the criterion S u then LQ method but thi method ha, on the other hand, better reult of the criterion S y. S y [K ] α =.7 α =. α =. Fig. 5 Value of the quadratic criterion S y for variou value of α, Pole-placement method 3 S u [-] S y [K ] α =.7 α =. α =. Fig. 3 Value of the quadratic criterion S u for variou value of α, Pole-placement method 8 =.5 =. =. Fig. 6 Value of the quadratic criterion S y for variou value of, LQ approach 7 S u [-] =.5 =. =. Fig. 4 Value of the quadratic criterion S u for variou value of, LQ approach On the other hand, reult for the next, LQ, trategy doe not indicate o clear reult. Value of input quadratic criterion S u are very imilar and the criterion S y i the lowet for the firt value of =.5. A the value of the criterion VI. CONCLUSION he paper preent two modification of the adaptive control applied on the control of the reactant temperature inide the tubular chemical reactor a a typical nonlinear ytem with ditributed parameter. he nonlinear ytem i decribed by the external linear model in the general form parameter of which are etimated recurively during the control which fulfill the adaptivity of the ytem. he difference between thee two modification i in the choice of the table polynomial in the Diophantine equation. he firt method ue imple Pole-placement method with pectral factorization and the econd modification i baed on the LQ approach again together with the pectral factorization of the polynomial in the denominator of the ELM. Both method have tuning parameter which can affect the quality of control, mainly the peed of the control and the overhoot. Obtained ISSN:

9 INERNAIONAL JOURNAL OF MAHEMAICS AND COMPUERS IN SIMULAION Volume, 6 imulation reult have hown the uability of the adaptive control for controlling of uch complex nonlinear ytem. Obtained reult were alo dicued and quantified by the quadratic criterion that ummarize change of the input variable and the control error. he choice of the bet controller etting alway depend on the main purpoe of the control, e.g. if the minimal control error or the change of the input variable. hee change of the input variable are important mainly from the practical point of view. he future work could be focued on the verification of the obtained reult on the real chemical reactor. REFERENCES [] J. Ingham, I. J. Dunn, E. Heinzle, J. E. Přenoil, Chemical Engineering Dynamic. An Introduction to Modelling and Computer. Simulation. Second, Completely Revied Edition, VCH Verlaggeellhaft, Weinheim,. [] W. L. Luyben, Proce Modelling, Simulation and Control for Chemical Engineer. McGraw-Hill, New York 989. [3] R. L. Johnton, Numerical Method. John Wiley & Son. 98 [4] R. B. Gnitchogna, A. Atangana. 5. Comparion of two iteration method for olving nonlinear fractional partial differential equation. International Journal of Mathematical Model and Method in Applied Science. Volume 9, 5, Page 5-3, ISSN: [5] K. J. Åtröm and B. Wittenmark 989. Adaptive Control. Addion Weley. Reading. MA. [6] V. Bobál, J. Böhm, J. Fel, J. Macháček, Digital Self-tuning Controller: Algorithm, Implementation and Application. Advanced extbook in Control and Signal Proceing. Springer-Verlag London Limited, 5. [7] V. Kučera, Diophantine equation in control A urvey Automatica, 9, , 993. [8] R. Matuu. 4. Robut tability analyi of dicrete-time ytem with parametric uncertainty: A graphical approach. International Journal of Mathematical Model and Method in Applied Science, Volume 8, Iue, 4, Page 95-, ISSN: [9] V. Bobal, P. Chalupa, P. Dotal, M. Kubalcik.. Deign and imulation verification of elftuning mith predictor. International Journal of Mathematic and Computer in Simulation. Volume 5, Iue 4,, Page 34-35, ISSN: [] D. Honc, F. Dušek.. Novel multivariable laboratory plant. Proceeding - 6th European Conference on Modelling and Simulation, ECMS ; [] P. Dotál, R. Prokop, Z. Prokopová, M. Fikar, Control deign analyi of tubular chemical reactor. Chemical Paper, 5, 95-98, 996. [] J. Vojtěšek, P. Dotál, R. Matušů, Effect of Co- and Counter-current Cooling in ubular Reactor, In: Proc. 7th International Scientific- echnical Conference Proce Control 6. Kouty n. Denou. Czech Republic, 6. [3] S. Mukhopadhyay, A. G. Patra, G. P. Rao, New cla of dicrete-time model for continuou-time ytem, International Journal of Control, vol.55, 6-87,99. [4] D. L. Stericker, N. K. Sinha, Identification of continuou-time ytem from ample of input-output data uing the -operator. Control-heory and Advanced echnology, vol. 9, 3-5, 993. [5] M. Fikar and J. Mikleš. 8. Proce modelling, optimization and control, Springer-Verlag, Berlin. [6] J. Vojteek and P. Dotal. Effect of Weighting Factor in Adaptive LQ Control. In Notradamu 3: Prediction, Modeling and Analyi of Complex Sytem. Springer-Verlag Berlin, 3. ISSN:

Adaptive Control of Level in Water Tank: Simulation Study

Adaptive Control of Level in Water Tank: Simulation Study Adaptive Control of Level in Water Tank: Simulation Study Jiri Vojteek and Petr Dotal Abtract An adaptive control i a popular, o called modern control method which could be ued for variou type of ytem

More information

NONLINEAR ADAPTIVE CONTROL OF CSTR WITH SPIRAL COOLING IN THE JACKET

NONLINEAR ADAPTIVE CONTROL OF CSTR WITH SPIRAL COOLING IN THE JACKET NONLINEAR ADAPIVE CONROL OF CSR WIH SPIRAL COOLING IN HE JACKE Jiri Vojteek and Petr Dotal Faculty of Applied Informatic oma Bata Univerity in Zlin Nam. GM, 76 Zlin, Czech Republic E-mail: {vojteek,dotalp}@fai.utb.cz

More information

Use of MATLAB Environment for Simulation and Control of CSTR

Use of MATLAB Environment for Simulation and Control of CSTR INERNAIONAL JOURNAL OF MAHEMAICS AND COMPUERS IN SIMULAION Ue of MALAB Environment for Simulation and Control of CSR Jiri Vojteek, Petr Dotal Abtract hi contribution preent the uability of the mathematical

More information

Pole-placement and LQ Hybrid Adaptive Control Applied Isothermal Continuous Stirred Tank Reactor

Pole-placement and LQ Hybrid Adaptive Control Applied Isothermal Continuous Stirred Tank Reactor WSEAS RANSACIONS on SYSEMS and CONROL Pole-placement and LQ Hybrid Adaptie Control Applied Iothermal Continuou Stirred ank Reactor JIRI VOJESEK, PER DOSAL Department of Proce Control, Faculty of Applied

More information

NONLINEAR CONTROLLER DESIGN FOR A SHELL AND TUBE HEAT EXCHANGER AN EXPERIMENTATION APPROACH

NONLINEAR CONTROLLER DESIGN FOR A SHELL AND TUBE HEAT EXCHANGER AN EXPERIMENTATION APPROACH International Journal of Electrical, Electronic and Data Communication, ISSN: 232-284 Volume-3, Iue-8, Aug.-25 NONLINEAR CONTROLLER DESIGN FOR A SHELL AND TUBE HEAT EXCHANGER AN EXPERIMENTATION APPROACH

More information

Use of Differential Equations In Modeling and Simulation of CSTR

Use of Differential Equations In Modeling and Simulation of CSTR Use of Differential Equations In Modeling and Simulation of CSTR JIRI VOJTESEK, PETR DOSTAL Department of Process Control, Faculty of Applied Informatics Tomas Bata University in Zlin nám. T. G. Masaryka

More information

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL 98 CHAPTER DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL INTRODUCTION The deign of ytem uing tate pace model for the deign i called a modern control deign and it i

More information

CONTROL OF TEMPERATURE INSIDE PLUG-FLOW TUBULAR CHEMICAL REACTOR USING 1DOF AND 2DOF ADAPTIVE CONTROLLERS

CONTROL OF TEMPERATURE INSIDE PLUG-FLOW TUBULAR CHEMICAL REACTOR USING 1DOF AND 2DOF ADAPTIVE CONTROLLERS CONTROL OF TEMPERATURE INSIDE PLUG-FLOW TUBULAR CHEMICAL REACTOR USING 1DOF AND 2DOF ADAPTIVE CONTROLLERS Jiri Vojtesek, Lubos Spacek and Frantisek Gazdos Faculty of Applied Informatics Tomas Bata University

More information

Control of Delayed Integrating Processes Using Two Feedback Controllers R MS Approach

Control of Delayed Integrating Processes Using Two Feedback Controllers R MS Approach Proceeding of the 7th WSEAS International Conference on SYSTEM SCIENCE and SIMULATION in ENGINEERING (ICOSSSE '8) Control of Delayed Integrating Procee Uing Two Feedback Controller R MS Approach LIBOR

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

Adaptive Control of Fluid Inside CSTR Using Continuous-Time and Discrete-Time Identification Model and Different Control Configurations

Adaptive Control of Fluid Inside CSTR Using Continuous-Time and Discrete-Time Identification Model and Different Control Configurations Adaptive Control of Fluid Inside CSTR Using Continuous-Time and Discrete-Time Identification Model and Different Control Configurations JIRI VOJTESEK, PETR DOSTAL Tomas Bata University in Zlin Faculty

More information

A Simplified Methodology for the Synthesis of Adaptive Flight Control Systems

A Simplified Methodology for the Synthesis of Adaptive Flight Control Systems A Simplified Methodology for the Synthei of Adaptive Flight Control Sytem J.ROUSHANIAN, F.NADJAFI Department of Mechanical Engineering KNT Univerity of Technology 3Mirdamad St. Tehran IRAN Abtract- A implified

More information

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays Gain and Phae Margin Baed Delay Dependent Stability Analyi of Two- Area LFC Sytem with Communication Delay Şahin Sönmez and Saffet Ayaun Department of Electrical Engineering, Niğde Ömer Halidemir Univerity,

More information

THE PARAMETERIZATION OF ALL TWO-DEGREES-OF-FREEDOM SEMISTRONGLY STABILIZING CONTROLLERS. Tatsuya Hoshikawa, Kou Yamada and Yuko Tatsumi

THE PARAMETERIZATION OF ALL TWO-DEGREES-OF-FREEDOM SEMISTRONGLY STABILIZING CONTROLLERS. Tatsuya Hoshikawa, Kou Yamada and Yuko Tatsumi International Journal of Innovative Computing, Information Control ICIC International c 206 ISSN 349-498 Volume 2, Number 2, April 206 pp. 357 370 THE PARAMETERIZATION OF ALL TWO-DEGREES-OF-FREEDOM SEMISTRONGLY

More information

CONTROL OF INTEGRATING PROCESS WITH DEAD TIME USING AUTO-TUNING APPROACH

CONTROL OF INTEGRATING PROCESS WITH DEAD TIME USING AUTO-TUNING APPROACH Brazilian Journal of Chemical Engineering ISSN 004-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 26, No. 0, pp. 89-98, January - March, 2009 CONROL OF INEGRAING PROCESS WIH DEAD IME USING AUO-UNING

More information

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS by Michelle Gretzinger, Daniel Zyngier and Thoma Marlin INTRODUCTION One of the challenge to the engineer learning proce control i relating theoretical

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. VIII Decoupling Control - M. Fikar

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. VIII Decoupling Control - M. Fikar DECOUPLING CONTROL M. Fikar Department of Proce Control, Faculty of Chemical and Food Technology, Slovak Univerity of Technology in Bratilava, Radlinkého 9, SK-812 37 Bratilava, Slovakia Keyword: Decoupling:

More information

Lecture 10 Filtering: Applied Concepts

Lecture 10 Filtering: Applied Concepts Lecture Filtering: Applied Concept In the previou two lecture, you have learned about finite-impule-repone (FIR) and infinite-impule-repone (IIR) filter. In thee lecture, we introduced the concept of filtering

More information

A PLC BASED MIMO PID CONTROLLER FOR MULTIVARIABLE INDUSTRIAL PROCESSES

A PLC BASED MIMO PID CONTROLLER FOR MULTIVARIABLE INDUSTRIAL PROCESSES ABCM Sympoium Serie in Mechatronic - Vol. 3 - pp.87-96 Copyright c 8 by ABCM A PLC BASE MIMO PI CONOLLE FO MULIVAIABLE INUSIAL POCESSES Joé Maria Galvez, jmgalvez@ufmg.br epartment of Mechanical Engineering

More information

Massachusetts Institute of Technology Dynamics and Control II

Massachusetts Institute of Technology Dynamics and Control II I E Maachuett Intitute of Technology Department of Mechanical Engineering 2.004 Dynamic and Control II Laboratory Seion 5: Elimination of Steady-State Error Uing Integral Control Action 1 Laboratory Objective:

More information

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.1 INTRODUCTION 8.2 REDUCED ORDER MODEL DESIGN FOR LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.3

More information

Module 4: Time Response of discrete time systems Lecture Note 1

Module 4: Time Response of discrete time systems Lecture Note 1 Digital Control Module 4 Lecture Module 4: ime Repone of dicrete time ytem Lecture Note ime Repone of dicrete time ytem Abolute tability i a baic requirement of all control ytem. Apart from that, good

More information

5.5 Application of Frequency Response: Signal Filters

5.5 Application of Frequency Response: Signal Filters 44 Dynamic Sytem Second order lowpa filter having tranfer function H()=H ()H () u H () H () y Firt order lowpa filter Figure 5.5: Contruction of a econd order low-pa filter by combining two firt order

More information

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam BSc - Sample Examination Digital Control Sytem (5-588-) Prof. L. Guzzella Solution Exam Duration: Number of Quetion: Rating: Permitted aid: minute examination time + 5 minute reading time at the beginning

More information

Evolutionary Algorithms Based Fixed Order Robust Controller Design and Robustness Performance Analysis

Evolutionary Algorithms Based Fixed Order Robust Controller Design and Robustness Performance Analysis Proceeding of 01 4th International Conference on Machine Learning and Computing IPCSIT vol. 5 (01) (01) IACSIT Pre, Singapore Evolutionary Algorithm Baed Fixed Order Robut Controller Deign and Robutne

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor T o T T o T F o, Q o F T m,q m T m T m T mo Aumption: 1. Homogeneou Sytem 2. Single Reaction 3. Steady State Two type of problem: 1. Given deired

More information

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Inverted Pendulum. (ECP Systems-Model: 505)

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Inverted Pendulum. (ECP Systems-Model: 505) EE 4443/5329 LAB 3: Control of Indutrial Sytem Simulation and Hardware Control (PID Deign) The Inverted Pendulum (ECP Sytem-Model: 505) Compiled by: Nitin Swamy Email: nwamy@lakehore.uta.edu Email: okuljaca@lakehore.uta.edu

More information

Digital Control System

Digital Control System Digital Control Sytem - A D D A Micro ADC DAC Proceor Correction Element Proce Clock Meaurement A: Analog D: Digital Continuou Controller and Digital Control Rt - c Plant yt Continuou Controller Digital

More information

Advanced D-Partitioning Analysis and its Comparison with the Kharitonov s Theorem Assessment

Advanced D-Partitioning Analysis and its Comparison with the Kharitonov s Theorem Assessment Journal of Multidiciplinary Engineering Science and Technology (JMEST) ISSN: 59- Vol. Iue, January - 5 Advanced D-Partitioning Analyi and it Comparion with the haritonov Theorem Aement amen M. Yanev Profeor,

More information

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax: Control Sytem Engineering ( Chapter 7. Steady-State Error Prof. Kwang-Chun Ho kwangho@hanung.ac.kr Tel: 0-760-453 Fax:0-760-4435 Introduction In thi leon, you will learn the following : How to find the

More information

Design By Emulation (Indirect Method)

Design By Emulation (Indirect Method) Deign By Emulation (Indirect Method he baic trategy here i, that Given a continuou tranfer function, it i required to find the bet dicrete equivalent uch that the ignal produced by paing an input ignal

More information

Chapter #4 EEE8013. Linear Controller Design and State Space Analysis. Design of control system in state space using Matlab

Chapter #4 EEE8013. Linear Controller Design and State Space Analysis. Design of control system in state space using Matlab EEE83 hapter #4 EEE83 Linear ontroller Deign and State Space nalyi Deign of control ytem in tate pace uing Matlab. ontrollabilty and Obervability.... State Feedback ontrol... 5 3. Linear Quadratic Regulator

More information

CONTINUOUS-TIME VS. DISCRETE-TIME IDENTIFICATION MODELS USED FOR ADAPTIVE CONTROL OF NONLINEAR PROCESS

CONTINUOUS-TIME VS. DISCRETE-TIME IDENTIFICATION MODELS USED FOR ADAPTIVE CONTROL OF NONLINEAR PROCESS CONINUOUS-IME VS. DISCREE-IME IDENIFICAION MODELS USED FOR ADAPIVE CONROL OF NONLINEAR PROCESS Jiri Vojtesek and Petr Dostal Faculty of Applied Informatics omas Bata Uniersity in Zlin Nam. GM 5555, 760

More information

Optimal Choice of Weighting Factors in Adaptive Linear Quadratic Control

Optimal Choice of Weighting Factors in Adaptive Linear Quadratic Control International Journal of Automation and Computing 11(3), June 2014, 241-248 DOI: 10.1007/s11633-014-0786-5 Optimal Choice of Weighting Factors in Adaptive Linear Quadratic Control Jiri Vojtesek Petr Dostal

More information

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281 72 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 28 and i 2 Show how Euler formula (page 33) can then be ued to deduce the reult a ( a) 2 b 2 {e at co bt} {e at in bt} b ( a) 2 b 2 5 Under what condition

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002 Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

Simple Observer Based Synchronization of Lorenz System with Parametric Uncertainty

Simple Observer Based Synchronization of Lorenz System with Parametric Uncertainty IOSR Journal of Electrical and Electronic Engineering (IOSR-JEEE) ISSN: 78-676Volume, Iue 6 (Nov. - Dec. 0), PP 4-0 Simple Oberver Baed Synchronization of Lorenz Sytem with Parametric Uncertainty Manih

More information

Automatic Control Systems. Part III: Root Locus Technique

Automatic Control Systems. Part III: Root Locus Technique www.pdhcenter.com PDH Coure E40 www.pdhonline.org Automatic Control Sytem Part III: Root Locu Technique By Shih-Min Hu, Ph.D., P.E. Page of 30 www.pdhcenter.com PDH Coure E40 www.pdhonline.org VI. Root

More information

THE IDENTIFICATION OF THE OPERATING REGIMES OF THE CONTROLLERS BY THE HELP OF THE PHASE TRAJECTORY

THE IDENTIFICATION OF THE OPERATING REGIMES OF THE CONTROLLERS BY THE HELP OF THE PHASE TRAJECTORY Mariu M. B LA Aurel Vlaicu Univerity of Arad, Engineering Faculty Bd. Revolu iei nr. 77, 3030, Arad, Romania, E-mail: mariu.bala@ieee.org THE IDENTIFICATION OF THE OPERATING REGIMES OF THE CONTROLLERS

More information

EE Control Systems LECTURE 14

EE Control Systems LECTURE 14 Updated: Tueday, March 3, 999 EE 434 - Control Sytem LECTURE 4 Copyright FL Lewi 999 All right reerved ROOT LOCUS DESIGN TECHNIQUE Suppoe the cloed-loop tranfer function depend on a deign parameter k We

More information

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog Chapter Sampling and Quantization.1 Analog and Digital Signal In order to invetigate ampling and quantization, the difference between analog and digital ignal mut be undertood. Analog ignal conit of continuou

More information

Chapter 4. The Laplace Transform Method

Chapter 4. The Laplace Transform Method Chapter 4. The Laplace Tranform Method The Laplace Tranform i a tranformation, meaning that it change a function into a new function. Actually, it i a linear tranformation, becaue it convert a linear combination

More information

Social Studies 201 Notes for November 14, 2003

Social Studies 201 Notes for November 14, 2003 1 Social Studie 201 Note for November 14, 2003 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

Sliding Mode Control of a Dual-Fuel System Internal Combustion Engine

Sliding Mode Control of a Dual-Fuel System Internal Combustion Engine Proceeding of the ASME 9 Dynamic Sytem and Control Conference DSCC9 October -4, 9, Hollywood, California, USA DSCC9-59 Control of a Dual-Fuel Sytem Internal Combution Engine Stephen Pace Department of

More information

Longitudinal automatic control system for a light weight aircraft

Longitudinal automatic control system for a light weight aircraft Longitudinal automatic control ytem for a light eight aircraft Critian VIDAN*,, Silviu Ionut BADEA *Correponding author Military echnical Academy, Faculty of Mechatronic and Integrated Armament Sytem,

More information

Lecture #9 Continuous time filter

Lecture #9 Continuous time filter Lecture #9 Continuou time filter Oliver Faut December 5, 2006 Content Review. Motivation......................................... 2 2 Filter pecification 2 2. Low pa..........................................

More information

Suggested Answers To Exercises. estimates variability in a sampling distribution of random means. About 68% of means fall

Suggested Answers To Exercises. estimates variability in a sampling distribution of random means. About 68% of means fall Beyond Significance Teting ( nd Edition), Rex B. Kline Suggeted Anwer To Exercie Chapter. The tatitic meaure variability among core at the cae level. In a normal ditribution, about 68% of the core fall

More information

An estimation approach for autotuning of event-based PI control systems

An estimation approach for autotuning of event-based PI control systems Acta de la XXXIX Jornada de Automática, Badajoz, 5-7 de Septiembre de 08 An etimation approach for autotuning of event-baed PI control ytem Joé Sánchez Moreno, María Guinaldo Loada, Sebatián Dormido Departamento

More information

USING NONLINEAR CONTROL ALGORITHMS TO IMPROVE THE QUALITY OF SHAKING TABLE TESTS

USING NONLINEAR CONTROL ALGORITHMS TO IMPROVE THE QUALITY OF SHAKING TABLE TESTS October 12-17, 28, Beijing, China USING NONLINEAR CONTR ALGORITHMS TO IMPROVE THE QUALITY OF SHAKING TABLE TESTS T.Y. Yang 1 and A. Schellenberg 2 1 Pot Doctoral Scholar, Dept. of Civil and Env. Eng.,

More information

Robust Decentralized Design of H -based Frequency Stabilizer of SMES

Robust Decentralized Design of H -based Frequency Stabilizer of SMES International Energy Journal: Vol. 6, No., Part, June 005-59 Robut Decentralized Deign of H -baed Frequency Stabilizer of SMES www.erd.ait.ac.th/reric C. Vorakulpipat *, M. Leelajindakrirerk *, and I.

More information

A Constraint Propagation Algorithm for Determining the Stability Margin. The paper addresses the stability margin assessment for linear systems

A Constraint Propagation Algorithm for Determining the Stability Margin. The paper addresses the stability margin assessment for linear systems A Contraint Propagation Algorithm for Determining the Stability Margin of Linear Parameter Circuit and Sytem Lubomir Kolev and Simona Filipova-Petrakieva Abtract The paper addree the tability margin aement

More information

Finding the location of switched capacitor banks in distribution systems based on wavelet transform

Finding the location of switched capacitor banks in distribution systems based on wavelet transform UPEC00 3t Aug - 3rd Sept 00 Finding the location of witched capacitor bank in ditribution ytem baed on wavelet tranform Bahram nohad Shahid Chamran Univerity in Ahvaz bahramnohad@yahoo.com Mehrdad keramatzadeh

More information

Chapter 13. Root Locus Introduction

Chapter 13. Root Locus Introduction Chapter 13 Root Locu 13.1 Introduction In the previou chapter we had a glimpe of controller deign iue through ome imple example. Obviouly when we have higher order ytem, uch imple deign technique will

More information

Design of Digital Filters

Design of Digital Filters Deign of Digital Filter Paley-Wiener Theorem [ ] ( ) If h n i a caual energy ignal, then ln H e dω< B where B i a finite upper bound. One implication of the Paley-Wiener theorem i that a tranfer function

More information

One Class of Splitting Iterative Schemes

One Class of Splitting Iterative Schemes One Cla of Splitting Iterative Scheme v Ciegi and V. Pakalnytė Vilniu Gedimina Technical Univerity Saulėtekio al. 11, 2054, Vilniu, Lithuania rc@fm.vtu.lt Abtract. Thi paper deal with the tability analyi

More information

DYNAMIC MODELS FOR CONTROLLER DESIGN

DYNAMIC MODELS FOR CONTROLLER DESIGN DYNAMIC MODELS FOR CONTROLLER DESIGN M.T. Tham (996,999) Dept. of Chemical and Proce Engineering Newcatle upon Tyne, NE 7RU, UK.. INTRODUCTION The problem of deigning a good control ytem i baically that

More information

March 18, 2014 Academic Year 2013/14

March 18, 2014 Academic Year 2013/14 POLITONG - SHANGHAI BASIC AUTOMATIC CONTROL Exam grade March 8, 4 Academic Year 3/4 NAME (Pinyin/Italian)... STUDENT ID Ue only thee page (including the back) for anwer. Do not ue additional heet. Ue of

More information

Analysis of Step Response, Impulse and Ramp Response in the Continuous Stirred Tank Reactor System

Analysis of Step Response, Impulse and Ramp Response in the Continuous Stirred Tank Reactor System ISSN: 454-50 Volume 0 - Iue 05 May 07 PP. 7-78 Analyi of Step Repone, Impule and Ramp Repone in the ontinuou Stirred Tank Reactor Sytem * Zohreh Khohraftar, Pirouz Derakhhi, (Department of hemitry, Science

More information

Lecture Notes II. As the reactor is well-mixed, the outlet stream concentration and temperature are identical with those in the tank.

Lecture Notes II. As the reactor is well-mixed, the outlet stream concentration and temperature are identical with those in the tank. Lecture Note II Example 6 Continuou Stirred-Tank Reactor (CSTR) Chemical reactor together with ma tranfer procee contitute an important part of chemical technologie. From a control point of view, reactor

More information

Sensorless speed control including zero speed of non salient PM synchronous drives

Sensorless speed control including zero speed of non salient PM synchronous drives BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 54, No. 3, 2006 Senorle peed control including zero peed of non alient PM ynchronou drive H. RASMUSSEN Aalborg Univerity, Fredrik Bajer

More information

STATE RETENTION OF AN INVERTED PENDULUM

STATE RETENTION OF AN INVERTED PENDULUM ISSN:9-69 Potluri Krihna Murthy et al, Int.J.Computer echnology & Application,Vol 7 (,6-67 SAE REENION OF AN INVERED PENDULUM Potluri Krihna Murthy Aitant Profeor Department of Electrical and Electronic

More information

Stability. ME 344/144L Prof. R.G. Longoria Dynamic Systems and Controls/Lab. Department of Mechanical Engineering The University of Texas at Austin

Stability. ME 344/144L Prof. R.G. Longoria Dynamic Systems and Controls/Lab. Department of Mechanical Engineering The University of Texas at Austin Stability The tability of a ytem refer to it ability or tendency to eek a condition of tatic equilibrium after it ha been diturbed. If given a mall perturbation from the equilibrium, it i table if it return.

More information

Calculation of the temperature of boundary layer beside wall with time-dependent heat transfer coefficient

Calculation of the temperature of boundary layer beside wall with time-dependent heat transfer coefficient Ŕ periodica polytechnica Mechanical Engineering 54/1 21 15 2 doi: 1.3311/pp.me.21-1.3 web: http:// www.pp.bme.hu/ me c Periodica Polytechnica 21 RESERCH RTICLE Calculation of the temperature of boundary

More information

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems Wolfgang Hofle Wolfgang.Hofle@cern.ch CERN CAS Darmtadt, October 9 Feedback i a mechanim that influence a ytem by looping back an output to the input a concept which i found in abundance in nature and

More information

Control Systems Analysis and Design by the Root-Locus Method

Control Systems Analysis and Design by the Root-Locus Method 6 Control Sytem Analyi and Deign by the Root-Locu Method 6 1 INTRODUCTION The baic characteritic of the tranient repone of a cloed-loop ytem i cloely related to the location of the cloed-loop pole. If

More information

Lqr Based Load Frequency Control By Introducing Demand Response

Lqr Based Load Frequency Control By Introducing Demand Response Lqr Baed Load Frequency Control By Introducing Demand Repone P.Venkateh Department of Electrical and Electronic Engineering, V.R iddhartha Engineering College, Vijayawada, AP, 520007, India K.rikanth Department

More information

Problem Set 8 Solutions

Problem Set 8 Solutions Deign and Analyi of Algorithm April 29, 2015 Maachuett Intitute of Technology 6.046J/18.410J Prof. Erik Demaine, Srini Devada, and Nancy Lynch Problem Set 8 Solution Problem Set 8 Solution Thi problem

More information

EXTENDED STABILITY MARGINS ON CONTROLLER DESIGN FOR NONLINEAR INPUT DELAY SYSTEMS. Otto J. Roesch, Hubert Roth, Asif Iqbal

EXTENDED STABILITY MARGINS ON CONTROLLER DESIGN FOR NONLINEAR INPUT DELAY SYSTEMS. Otto J. Roesch, Hubert Roth, Asif Iqbal EXTENDED STABILITY MARGINS ON CONTROLLER DESIGN FOR NONLINEAR INPUT DELAY SYSTEMS Otto J. Roech, Hubert Roth, Aif Iqbal Intitute of Automatic Control Engineering Univerity Siegen, Germany {otto.roech,

More information

Hybrid Projective Dislocated Synchronization of Liu Chaotic System Based on Parameters Identification

Hybrid Projective Dislocated Synchronization of Liu Chaotic System Based on Parameters Identification www.ccenet.org/ma Modern Applied Science Vol. 6, No. ; February Hybrid Projective Dilocated Synchronization of Liu Chaotic Sytem Baed on Parameter Identification Yanfei Chen College of Science, Guilin

More information

State Space: Observer Design Lecture 11

State Space: Observer Design Lecture 11 State Space: Oberver Deign Lecture Advanced Control Sytem Dr Eyad Radwan Dr Eyad Radwan/ACS/ State Space-L Controller deign relie upon acce to the tate variable for feedback through adjutable gain. Thi

More information

MATEMATIK Datum: Tid: eftermiddag. A.Heintz Telefonvakt: Anders Martinsson Tel.:

MATEMATIK Datum: Tid: eftermiddag. A.Heintz Telefonvakt: Anders Martinsson Tel.: MATEMATIK Datum: 20-08-25 Tid: eftermiddag GU, Chalmer Hjälpmedel: inga A.Heintz Telefonvakt: Ander Martinon Tel.: 073-07926. Löningar till tenta i ODE och matematik modellering, MMG5, MVE6. Define what

More information

ON THE APPROXIMATION ERROR IN HIGH DIMENSIONAL MODEL REPRESENTATION. Xiaoqun Wang

ON THE APPROXIMATION ERROR IN HIGH DIMENSIONAL MODEL REPRESENTATION. Xiaoqun Wang Proceeding of the 2008 Winter Simulation Conference S. J. Maon, R. R. Hill, L. Mönch, O. Roe, T. Jefferon, J. W. Fowler ed. ON THE APPROXIMATION ERROR IN HIGH DIMENSIONAL MODEL REPRESENTATION Xiaoqun Wang

More information

Lecture 7: Testing Distributions

Lecture 7: Testing Distributions CSE 5: Sublinear (and Streaming) Algorithm Spring 014 Lecture 7: Teting Ditribution April 1, 014 Lecturer: Paul Beame Scribe: Paul Beame 1 Teting Uniformity of Ditribution We return today to property teting

More information

A Comparative Study on Control Techniques of Non-square Matrix Distillation Column

A Comparative Study on Control Techniques of Non-square Matrix Distillation Column IJCTA, 8(3), 215, pp 1129-1136 International Science Pre A Comparative Study on Control Technique of Non-quare Matrix Ditillation Column 1 S Bhat Vinayambika, 2 S Shanmuga Priya, and 3 I Thirunavukkarau*

More information

A FUNCTIONAL BAYESIAN METHOD FOR THE SOLUTION OF INVERSE PROBLEMS WITH SPATIO-TEMPORAL PARAMETERS AUTHORS: CORRESPONDENCE: ABSTRACT

A FUNCTIONAL BAYESIAN METHOD FOR THE SOLUTION OF INVERSE PROBLEMS WITH SPATIO-TEMPORAL PARAMETERS AUTHORS: CORRESPONDENCE: ABSTRACT A FUNCTIONAL BAYESIAN METHOD FOR THE SOLUTION OF INVERSE PROBLEMS WITH SPATIO-TEMPORAL PARAMETERS AUTHORS: Zenon Medina-Cetina International Centre for Geohazard / Norwegian Geotechnical Intitute Roger

More information

Loss Less Image firmness comparision by DPCM and DPCM with LMS Algorithm

Loss Less Image firmness comparision by DPCM and DPCM with LMS Algorithm Lo Le Image firmne compariion by DPCM and DPCM with LMS Algorithm Pramod Kumar Rajput 1 and Brijendra Mihra 2 1,2 Department of Electronic & Communication, Nagaji Intitute of Technology and Management

More information

Molecular Dynamics Simulations of Nonequilibrium Effects Associated with Thermally Activated Exothermic Reactions

Molecular Dynamics Simulations of Nonequilibrium Effects Associated with Thermally Activated Exothermic Reactions Original Paper orma, 5, 9 7, Molecular Dynamic Simulation of Nonequilibrium Effect ociated with Thermally ctivated Exothermic Reaction Jerzy GORECKI and Joanna Natalia GORECK Intitute of Phyical Chemitry,

More information

White Rose Research Online URL for this paper: Version: Accepted Version

White Rose Research Online URL for this paper:   Version: Accepted Version Thi i a repoitory copy of Identification of nonlinear ytem with non-peritent excitation uing an iterative forward orthogonal leat quare regreion algorithm. White Roe Reearch Online URL for thi paper: http://eprint.whiteroe.ac.uk/107314/

More information

POWER SYSTEM SMALL SIGNAL STABILITY ANALYSIS BASED ON TEST SIGNAL

POWER SYSTEM SMALL SIGNAL STABILITY ANALYSIS BASED ON TEST SIGNAL POWE YEM MALL INAL ABILIY ANALYI BAE ON E INAL Zheng Xu, Wei hao, Changchun Zhou Zheang Univerity, Hangzhou, 37 PChina Email: hvdc@ceezueducn Abtract - In thi paper, a method baed on ome tet ignal (et

More information

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples Root Locu Content Root locu, ketching algorithm Root locu, example Root locu, proof Root locu, control example Root locu, influence of zero and pole Root locu, lead lag controller deign 9 Spring ME45 -

More information

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is EE 4G Note: Chapter 6 Intructor: Cheung More about ZSR and ZIR. Finding unknown initial condition: Given the following circuit with unknown initial capacitor voltage v0: F v0/ / Input xt 0Ω Output yt -

More information

Optimal Coordination of Samples in Business Surveys

Optimal Coordination of Samples in Business Surveys Paper preented at the ICES-III, June 8-, 007, Montreal, Quebec, Canada Optimal Coordination of Sample in Buine Survey enka Mach, Ioana Şchiopu-Kratina, Philip T Rei, Jean-Marc Fillion Statitic Canada New

More information

III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SUBSTANCES

III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SUBSTANCES III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SBSTANCES. Work purpoe The analyi of the behaviour of a ferroelectric ubtance placed in an eternal electric field; the dependence of the electrical polariation

More information

A Simple Approach to Synthesizing Naïve Quantized Control for Reference Tracking

A Simple Approach to Synthesizing Naïve Quantized Control for Reference Tracking A Simple Approach to Syntheizing Naïve Quantized Control for Reference Tracking SHIANG-HUA YU Department of Electrical Engineering National Sun Yat-Sen Univerity 70 Lien-Hai Road, Kaohiung 804 TAIAN Abtract:

More information

Social Studies 201 Notes for March 18, 2005

Social Studies 201 Notes for March 18, 2005 1 Social Studie 201 Note for March 18, 2005 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

THE EXPERIMENTAL PERFORMANCE OF A NONLINEAR DYNAMIC VIBRATION ABSORBER

THE EXPERIMENTAL PERFORMANCE OF A NONLINEAR DYNAMIC VIBRATION ABSORBER Proceeding of IMAC XXXI Conference & Expoition on Structural Dynamic February -4 Garden Grove CA USA THE EXPERIMENTAL PERFORMANCE OF A NONLINEAR DYNAMIC VIBRATION ABSORBER Yung-Sheng Hu Neil S Ferguon

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems Control and Dynamical Sytem CDS 0 Problem Set #5 Iued: 3 Nov 08 Due: 0 Nov 08 Note: In the upper left hand corner of the econd page of your homework et, pleae put the number of hour that you pent on thi

More information

Feedback Control Systems (FCS)

Feedback Control Systems (FCS) Feedback Control Sytem (FCS) Lecture19-20 Routh-Herwitz Stability Criterion Dr. Imtiaz Huain email: imtiaz.huain@faculty.muet.edu.pk URL :http://imtiazhuainkalwar.weebly.com/ Stability of Higher Order

More information

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004 METR4200 Advanced Control Lecture 4 Chapter Nie Controller Deign via Frequency Repone G. Hovland 2004 Deign Goal Tranient repone via imple gain adjutment Cacade compenator to improve teady-tate error Cacade

More information

Behavioral thermal modeling for quad-core microprocessors

Behavioral thermal modeling for quad-core microprocessors Behavioral thermal modeling for quad-core microproceor Duo Li and Sheldon X.-D. Tan Department of Electrical Engineering Univerity of California, Riveride, CA Murli Tirumala Intel Corporation Outline Introduction

More information

Homework 12 Solution - AME30315, Spring 2013

Homework 12 Solution - AME30315, Spring 2013 Homework 2 Solution - AME335, Spring 23 Problem :[2 pt] The Aerotech AGS 5 i a linear motor driven XY poitioning ytem (ee attached product heet). A friend of mine, through careful experimentation, identified

More information

ISSN: [Basnet* et al., 6(3): March, 2017] Impact Factor: 4.116

ISSN: [Basnet* et al., 6(3): March, 2017] Impact Factor: 4.116 IJESR INERNAIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH ECHNOLOGY DIREC ORQUE CONROLLED INDUCION MOOR DRIVE FOR ORQUE RIPPLE REDUCION Bigyan Banet Department of Electrical Engineering, ribhuvan Univerity,

More information

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis EE/ME/AE34: Dynamical Sytem Chapter 8: Tranfer Function Analyi The Sytem Tranfer Function Conider the ytem decribed by the nth-order I/O eqn.: ( n) ( n 1) ( m) y + a y + + a y = b u + + bu n 1 0 m 0 Taking

More information

EE Control Systems LECTURE 6

EE Control Systems LECTURE 6 Copyright FL Lewi 999 All right reerved EE - Control Sytem LECTURE 6 Updated: Sunday, February, 999 BLOCK DIAGRAM AND MASON'S FORMULA A linear time-invariant (LTI) ytem can be repreented in many way, including:

More information

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions For Quetion -6, rewrite the piecewie function uing tep function, ketch their graph, and find F () = Lf(t). 0 0 < t < 2. f(t) = (t 2 4) 2 < t In tep-function form, f(t) = u 2 (t 2 4) The graph i the olid

More information

MM1: Basic Concept (I): System and its Variables

MM1: Basic Concept (I): System and its Variables MM1: Baic Concept (I): Sytem and it Variable A ytem i a collection of component which are coordinated together to perform a function Sytem interact with their environment. The interaction i defined in

More information

RELIABILITY OF REPAIRABLE k out of n: F SYSTEM HAVING DISCRETE REPAIR AND FAILURE TIMES DISTRIBUTIONS

RELIABILITY OF REPAIRABLE k out of n: F SYSTEM HAVING DISCRETE REPAIR AND FAILURE TIMES DISTRIBUTIONS www.arpapre.com/volume/vol29iue1/ijrras_29_1_01.pdf RELIABILITY OF REPAIRABLE k out of n: F SYSTEM HAVING DISCRETE REPAIR AND FAILURE TIMES DISTRIBUTIONS Sevcan Demir Atalay 1,* & Özge Elmataş Gültekin

More information

Question 1 Equivalent Circuits

Question 1 Equivalent Circuits MAE 40 inear ircuit Fall 2007 Final Intruction ) Thi exam i open book You may ue whatever written material you chooe, including your cla note and textbook You may ue a hand calculator with no communication

More information